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Scalar conservation laws with stochastic

forcing

A. Debussche and J. Vovelle

January 29, 2010

Abstract

We show that the Cauchy Problem for a randomly forced, periodic
multi-dimensional scalar first-order conservation law with additive or
multiplicative noise is well-posed: it admits a unique solution, charac-
terized by a kinetic formulation of the problem, which is the limit of
the solution of the stochastic parabolic approximation.

Keywords: Stochastic partial differential equations, conservation laws, ki-
netic formulation, entropy solutions.

1 Introduction

Let (Ω,F ,P, (Ft), (βk(t))) be a stochastic basis and let T > 0. In this paper,
we study the first-order scalar conservation law with stochastic forcing

du+ div(A(u))dt = Φ(u)dW (t), x ∈ T
N , t ∈ (0, T ). (1)

The equation is periodic in the space variable x: x ∈ T
N where T

N is the
N -dimensional torus. The flux function A in (1) is supposed to be of class
C2: A ∈ C2(R;RN) and its derivatives have at most polynomial growth. We
assume that W is a cylindrical Wiener process: W =

∑
k≥1 βkek, where the

βk are independent brownian processes and (ek)k≥1 is a complete orthonormal
system in a Hilbert space H . For each u ∈ R, Φ(u) : H → L2(TN) is defined
by Φ(u)ek = gk(u) where gk(·, u) is a regular function on T

N . More precisely,
we assume gk ∈ C(TN × R), with the bounds

G2(x, u) =
∑

k≥1

|gk(x, u)|2 ≤ D0(1 + |u|2), (2)

∑

k≥1

|gk(x, u)− gk(y, v)|2 ≤ D1(|x− y|2 + |u− v|h(|u− v|)), (3)
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where x, y ∈ T
N , u, v ∈ R, and h is a continuous non-decreasing function

on R+ with h(0) = 0. Note in particular that, for each u ∈ R, Φ(u) : H →
L2(TN ) is Hilbert-Schmidt since ‖gk(·, u)‖L2(TN ) ≤ ‖gk(·, u)‖C(TN ) and thus

∑

k≥1

‖gk(·, u)‖2L2(TN ) ≤ D0(1 + |u|2).

The Cauchy Problem, resp. the Cauchy-Dirichlet Problem, for the stochastic
equation (1) in the case of an additive noise (Φ independent on u) has been
studied in [Kim03], resp. [VW10]. Existence and uniqueness of entropy
solutions are proved in both papers. The Cauchy Problem for the stochastic
equation (1) in case where the noise is multiplicative (and satisfies (2)-(3)
above) has been studied in [FN08]. In [FN08], uniqueness of (strong) entropy
solution is proved in any dimension, existence in dimension 1.

Our purpose here is to solve the Cauchy Problem for (1) in any dimen-
sion. To that purpose, we use a notion of kinetic solution, as developed
by Lions, Perthame, Tadmor for deterministic first-order scalar conserva-
tion laws [LPT94]. A very basic reason to this approach is the fact that no
pathwise L∞ a priori estimates are known for (1). Thus, viewing (1) as an
extension of the deterministic first-order conservation law, we have to turn to
the L1 theory developed for the latter, for which the kinetic formulation, once
conveniently adapted, is slightly better suited than the renormalized-entropy
formulation (developed in [CW99] for example).
There is also a definite technical advantage to the kinetic approach, for it
allows to keep track of the dissipation of the noise by solutions. For entropy
solutions, part of this information is lost and has to be recovered at some
stage (otherwise, the classical approach à la Kruzhkov [Kru70] to Comparison
Theorem fails): accordingly, Feng and Nualart need to introduce a notion of
“strong” entropy solution, i.e. entropy solution satisfying the extra property
that is precisely lacking [FN08]. This technical difference between the notions
of kinetic and entropy solution already appears in the context of degenerate
parabolic equations: in the comparison of entropy solutions, it is necessary
to recover in a preliminary step the quantitative entropy dissipation due to
the second-order part in non-degeneracy zones (see Lemma 1 in [Car99]). For
kinetic solutions, this preliminary step is unnecessary since this dissipation
is already encoded in the structure of the kinetic measure, (see Definition 2.2
in [CP03]).

In the case of an additive noise, Kim [Kim03] and Vallet andWittbold [VW10]
introduce the auxiliary unknown w := u − ΦW that satisfies the first-order
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scalar conservation law

∂tw + div(B(x, t, w)) = 0, (4)

where the flux B(x, t, w) := A(w + Φ(x)W (t)) is non-autonomous and has
limited (pathwise Hölder-) regularity with respect to the variable t. Then
entropy solutions are defined on the basis of (4). In this way it is actually
possible to avoid the use of Itô stochastic calculus.

In the case of an equation with a multiplicative noise, Feng and Nualart
define a notion of entropy solution by use of regular entropies and Itô For-
mula [FN08]. They also define a notion of strong entropy solution, which
is an entropy solution satisfying an additional technical criterion. This ad-
ditional criterion is required to prove a comparison result between entropy
and strong entropy solution. As already mentioned, they are able to prove
existence of strong entropy solutions only in dimension one.

In all three papers [Kim03, FN08, VW10], existence is proved via approxi-
mation by stochastic parabolic equation. We will proceed similarly, cf. The-
orem 19. Consequently, our notion of solution, defined in Definition 2, hap-
pen to be equivalent to the notion of entropy solution used in [Kim03, FN08,
VW10], provided the convergence of the vanishing viscosity method has been
proved, hence in the context of [Kim03, VW10] or in [FN08] in dimension
11. In fact, we prove that our notion of kinetic solution is also equivalent to
the notion of (mere – not strong) entropy solution of [FN08], whatever the
dimension, see section 3.3.

Our main results states that under assumptions (2) and (3), there exists
a unique kinetic solution in any space dimension. Due to the equivalence
with entropy solution, we fill the gap left open in [FN08]. Moreover, the use
of kinetic formulation considerably simplifies the arguments. For instance,
to construct a solution, only weak compactness of the viscous solutions is
necessary.

There are related problems to (1). We refer to the references given in, e.g.
[Kim03, VW10], in particular concerning the study of the deterministic in-
viscid Burgers equation with random initial datum. One of the important
question in the analysis of (1) (and, more precisely, in the analysis of the evo-
lution of the law of the solution process u(t)) is also the existence (unique-
ness, ergodic character, etc.) of an invariant measure. This question has

1note that we consider periodic boundary conditions here, unlike [Kim03, FN08, VW10].
However, our results extend to the whole Cauchy Problem or to the Cauchy-Dirichlet
Problem.
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been fully addressed in [EKMS00] for the inviscid periodic Burgers equation
in dimension 1 by use of the Hopf-Lax formula.

Our analysis of (1) uses the tools developed over the past thirty years for the
analysis of deterministic first-order scalar conservation laws, in particular the
notion of generalized solution. Thus, in Section 2, we introduce the notion
of solution to (1) by use of the kinetic formulation, and complement it with
a notion of generalized solution. In Section 3, we prove Theorem 11, which
gives uniqueness (and comparison results) for solutions and also shows that
a generalized solution is actually necessarily a solution. This result is used
in Section 4: we study the parabolic approximation to (1) and show that it
converges to a generalized solution, hence to a solution. This gives existence
and uniqueness of a solution, Theorem 19.

2 Kinetic solution

2.1 Definition

Definition 1 (Kinetic measure) We say that a map m from Ω to the set
of non-negative finite measures over T

N × [0, T ]× R is a kinetic measure if

1. m is measurable, in the sense that for each φ ∈ Cb(T
N × [0, T ] × R),

〈m,φ〉 : Ω → R is,

2. m vanishes for large ξ: if Bc
R = {ξ ∈ R, |ξ| ≥ R}, then

lim
R→+∞

Em(TN × [0, T ]×Bc
R) = 0, (5)

3. for all φ ∈ Cb(T
N × R), the process

t 7→
∫

TN×[0,t]×R

φ(x, ξ)dm(x, s, ξ)

is predictible.

Definition 2 (Solution) Let u0 ∈ L∞(TN). A measurable function u : TN×
[0, T ]× Ω → R is said to be a solution to (1) with initial datum u0 if (u(t))
is predictible, for all p ≥ 1, there exists Cp ≥ 0 such that for a.e. t ∈ [0, T ],

‖u(t)‖Lp(Ω×TN ) ≤ Cp (6)

4



and if there exists a kinetic measure m such that f := 1u>ξ satisfies: for all
ϕ ∈ C1

c (T
N × [0, T )× R),

∫ T

0

〈f(t), ∂tϕ(t)〉dt+ 〈f0, ϕ(0)〉+
∫ T

0

〈f(t), a(ξ) · ∇ϕ(t)〉dt

= −
∑

k≥1

∫ T

0

∫

TN

gk(x, u(x, t))ϕ(x, t, u(x, t))dxdβk(t)

− 1

2

∫ T

0

∫

TN

∂ξϕ(x, t, u(x, t))G
2(x, u(x, t))dxdt+m(∂ξϕ), (7)

a.s., where G2 :=
∑∞

k=1 |gk|2 and a(ξ) := A′(ξ).

In (7), f0(x, ξ) = 1u0(x)>ξ. We have used the brackets 〈·, ·〉 to denote the
duality between C∞

c (TN ×R) and the space of distributions over TN ×R. In
what follows, we will denote similarly the integral

〈F,G〉 =
∫

TN

∫

R

F (x, ξ)G(x, ξ)dxdξ, F ∈ Lp(TN × R), G ∈ Lq(TN × R),

where 1 ≤ p ≤ +∞ and q is the conjugate exponent of p. In (7) also, we
have indicated the dependence of gk and G2 on u, which is actually absent
in the additive case and we have used (with φ = ∂ξϕ) the shorthand m(φ)
for

m(φ) =

∫

TN×[0,T ]×R

φ(x, t, ξ)dm(x, t, ξ), φ ∈ Cb(T
N × [0, T ]× R).

Equation (7) is the weak form of the equation

(∂t + a(ξ) · ∇)1u>ξ = δu=ξẆ + ∂ξ(m− 1

2
G2δu=ξ). (8)

We present now a formal derivation of equation (8) from (1) in the casem = 0
(see also Section 4.1, where we give a rigorous derivation of the kinetic for-
mulation at the level of the viscous approximation): it is essentially a conse-
quence of Itô Formula. Indeed, by the identity (1u>ξ, θ

′) :=
∫
R
1u>ξθ

′(ξ)dξ =
θ(u)− θ(−∞), satisfied for θ ∈ C∞(R), and by Itô Formula, we have

d(1u>ξ, θ
′) = θ′(u)(−a(u) · ∇udt+ dW ) +

1

2
θ′′(u)G2dt

= −div(

∫ u

a(ξ)θ′(ξ)dξ)dt+
1

2
θ′′(u)G2dt+ θ′(u)dW

= −div((a1u>ξ, θ
′))dt− 1

2
(∂ξ(G

2δu=ξ), θ
′)dt+ (δu=ξ, θ

′)dW.
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Taking θ(ξ) =
∫ ξ
−∞

ϕ, we then obtain the kinetic formulation with m = 0.
The measure m is sometimes (quite improperly if no action, or Lagrangian,
is precisely defined) interpreted as a Lagrange multiplier for the evolution of
f by ∂t + a · ∇ under the constraint f = graph = 1u>ξ. It comes into play
only when u becomes discontinuous (occurrence of shocks); in particular, it
does not appear in the computation above that requires some regularity of
u with respect to x to apply the chain-rule of differentiation.

2.2 Generalized solutions

With the purpose to prepare the proof of existence of solution, we introduce
the following definitions.

Definition 3 (Young measure) Let (X, λ) be a finite measure space. Let
P1(R) denote the set of probability measures on R. We say that a map
ν : X → P1(R) is a Young measure on X, if, for all φ ∈ Cb(R), the map
z 7→ νz(φ) from X to R is measurable. We say that a Young measure ν
vanishes at infinity if, for every p ≥ 1,

∫

X

∫

R

|ξ|pdνz(ξ)dλ(z) < +∞. (9)

Definition 4 (Kinetic function) Let (X, λ) be a finite measure space. A
measurable function f : X×R → [0, 1] is said to be a kinetic function if there
exists a Young measure ν on X that vanishes at infinity such that, for λ-a.e.
z ∈ X, for all ξ ∈ R,

f(z, ξ) = νz(ξ,+∞).

If f : X × R → [0, 1] is a kinetic function, we denote by f̄ the conjugate
function f̄ := 1− f .
We also denote by χf the function defined by χf(z, ξ) = f(z, ξ) − 10>ξ.
Contrary to f , this modification is integrable. Actually, it is decreasing
faster then any power of ξ at infinity. Indeed,

χf (z, ξ) =





−
∫

(−∞,ξ]

dνz, ξ < 0,

∫

(ξ,+∞)

dνz, ξ > 0.

Therefore

|ξ|p
∫

X

|χf (z, ξ)|dλ(z) ≤
∫

X

∫

R

|ζ |pdνx,t(ζ)dλ(z) <∞, (10)
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for all ξ ∈ R, 1 ≤ p < +∞.

We have the following compactness results (the proof is classical and reported
to appendix).

Theorem 5 (Compactness of Young measures) Let (X, λ) be a finite
measure space. Let (νn) be a sequence of Young measures on X satisfying
(9) uniformly for some p ≥ 1:

sup
n

∫

X

∫

R

|ξ|pdνnz (ξ)dλ(z) < +∞. (11)

Then there exists a Young measure ν on X and a subsequence still denoted
(νn) such that, for all h ∈ L1(X), for all φ ∈ Cb(R),

lim
n→+∞

∫

X

h(z)

∫

R

φ(ξ)dνnz (ξ)dλ(z) =

∫

X

h(z)

∫

R

φ(ξ)dνz(ξ)dλ(z). (12)

Corollary 6 (Compactness of kinetic functions) Let (X, λ) be a finite
measure space. Let (fn) be a sequence of kinetic functions on X×R: fn(z, ξ) =
νnz (ξ,+∞) where νn are Young measures on X satisfying (11). Then there
exists a kinetic function f on X×R such that fn ⇀ f in L∞(X×R) weak-*.

Note that if f is a kinetic function then ∂ξf = −ν is non-negative. Observe
also that, in the context of Definition 2, setting f = 1u>ξ, we have ∂ξf =
−δu=ξ and ν := δu=ξ is a Young measure on Ω × T

N × (0, T ). The measure
ν vanishes at infinity (it even satisfies the stronger condition (13) below).
Therefore any solution will also be a generalized solution, according to the
definition below.

Definition 7 (Generalized solution) Let f0 : Ω × T
N × R → [0, 1] be a

kinetic function. A measurable function f : Ω × T
N × [0, T ] × R → [0, 1]

is said to be a generalized solution to (1) with initial datum f0 if (f(t)) is
predictible and is a kinetic function such that: for all p ≥ 1, there exists
Cp ≥ 1 such that for a.e. t ∈ (0, T )

E

∫

TN

∫

R

|ξ|pdνx,t(ξ)dx ≤ Cp, (13)
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where ν := −∂ξf , and if there exists a kinetic measure m such that for all
ϕ ∈ C1

c (T
N × [0, T )× R),

∫ T

0

〈f(t), ∂tϕ(t)〉dt+ 〈f0, ϕ(0)〉+
∫ T

0

〈f(t), a(ξ) · ∇ϕ(t)〉dt

= −
∑

k≥1

∫ T

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, t, ξ)dνx,t(ξ)dxdβk(t)

−1

2

∫ T

0

∫

TN

∫

R

∂ξϕ(x, t, ξ)G
2(x, ξ)dν(x,t)(ξ)dxdt+m(∂ξϕ), a.s.

(14)

Observe that, if f is a generalized solution such that f = 1u>ξ, then u(t, x) =∫
R
χf (x, t, ξ)dξ, hence u is predictible. Moreover, ν = δu=ξ and

E

∫

TN

|u(t, x)|pdx = E

∫

TN

∫

R

|ξ|pdνx,t(ξ)dx.

Condition (6) is thus contained in the condition (13).

We conclude this chapter with a remark about the time continuity of the
solution (see also [CG10] and references therein on this subject). Generalized
solutions are a useful and natural tool for the analysis of weak solutions to (1),
i.e. solutions that are weak with respect to space and time, but the process
of relaxation that generalizes the notion of solution introduces additional
difficulties regarding the question of time continuity of solutions. To illustrate
this fact, let us consider for example the following equation (the “Collapse”
equation in the Transport-Collapse method of Brenier [Bre81, Bre83])

∂tf(t) = 1u(t)>ξ − f, u(t) :=

∫

R

χf(t)(ξ)dξ, (15)

with initial datum f0(ξ) a kinetic function. Integrating (15) with respect to
ξ shows that u = u0 is constant and gives

f(t) = e−tf0 + (1− e−t)1u0>ξ,

i.e. f(t) is describing the progressive and continuous “collapse” from f0 to
1u0>ξ. It is also simple to show that

m(t, ξ) :=

∫ ξ

−∞

(1u>ζ − f(t, ζ))dζ ≥ 0

for all t, ξ, and, more generally,

∫ ξ

−∞

(f(τ, ζ)− f(t, ζ))dζ ≥ 0, ∀τ > t, ∀ξ ∈ R, (16)
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so that f satisfies ∂tf = ∂ξm, m ≥ 0. Now erase an interval [t1, t2] in the
evolution of f . Then

g(t) = f̂(t) := f(t)1[0,t1](t) + f(t+ t2 − t1)1(t1,+∞)(t)

satisfies

∂tg = ∂ξm̂+ (f(t2)− f(t1))δ(t− t1)

= ∂ξn, n(t, ξ) := m̂(t, ξ) +

∫ ξ

−∞

(f(t2, ζ)− f(t1, ζ))dζδ(t− t1).

By (16), n is non-negative, but, unless f0 = 1u0>ξ, g is discontinuous at t = t1.
In the analysis of a generalized solution f , we thus first show the existence
of modifications f+ and f− of f being respectively right- and left-continuous
everywhere and we work on f± in most of the proof of uniqueness and re-
duction (Theorem 11). Finally, we obtain the time-continuity of solutions in
Corollary 12.

2.3 Left and right limits of generalized solution

We show in the following proposition that, almost surely, any generalized
solution admits possibly different left and right weak limits at any point
t ∈ [0, T ]. This property is important to prove a comparison principle which
allows to prove uniqueness. Also, it allows us to see that the weak form (14)
of the equation satisfied by a generalized solution can be strengthened. We
write below a formulation which is weak only with respect to x and ξ.
Note that we obtain continuity with respect to time of solutions in Corol-
lary 12 below.

Proposition 8 (Left and right weak limits) Let f0 be a kinetic initial
datum. Let f be a generalized solution to (1) with initial datum f0. Then
f admits almost surely left and right limits at all point t∗ ∈ [0, T ]. More
precisely, for all t∗ ∈ [0, T ] there exists some kinetic functions f ∗,± on Ω ×
T
N × R such that P-a.s.

〈f(t∗ − ε), ϕ〉 → 〈f ∗,−, ϕ〉

and
〈f(t∗ + ε), ϕ〉 → 〈f ∗,+, ϕ〉

as ε→ 0 for all ϕ ∈ C1
c (T

N × R). Moreover, almost surely,

〈f ∗,+ − f ∗,−, ϕ〉 = −
∫

TN×[0,T ]×R

∂ξϕ(x, ξ)1{t∗}(t)dm(x, t, ξ). (17)
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In particular, almost surely, the set of t∗ ∈ [0, T ] such that f ∗,− 6= f ∗,+ is
countable.

In the following, for a generalized solution f , we define f± by f±(t∗) =
f ∗±, t∗ ∈ [0, T ]. Note that, since we are dealing with a filtration associated
to brownian motions, f± are also predictible. Also f = f+ = f− almost
everywhere in time and we can take any of them in an integral with respect
to the Lebesgue measure or in a stochastic integral. On the contrary, if the
integration is with respect to a measure - typically a kinetic measure in this
article -, the integral is not well defined for f and may differ if one chooses
f+ or f−.

Proof of Proposition 8. The set of test functions C1
c (T

N × R) (endowed
with the topology of the uniform convergence on any compact of the functions
and their first derivatives) is separable and we fix a dense countable subset
D1. For all ϕ ∈ C1

c (T
N × R), a.s., the map

Jϕ : t 7→
∫ t

0

〈f(s), a(ξ) · ∇ϕ〉ds

−
∑

k≥1

∫ t

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ)dνx,s(ξ)dxdβk(s)

+
1

2

∫ t

0

∫

TN

∫

R

∂ξϕ(x, ξ)G
2(x, ξ)dνx,s(ξ)dxds (18)

is continuous on [0, T ]. Consequently: a.s., for all ϕ ∈ D1, Jϕ is continuous
on [0, T ].
For test functions of the form (x, t, ξ) 7→ ϕ(x, ξ)α(t), α ∈ C1

c ([0, T ]), ϕ ∈ D1,
Fubini Theorem and the weak formulation (14) give

∫ T

0

gϕ(t)α
′(t)dt + 〈f0, ϕ〉α(0) = 〈m, ∂ξϕ〉(α), (19)

where gϕ(t) := 〈f(t), ϕ〉 − Jϕ(t). This shows that ∂tgϕ is a Radon measure
on (0, T ), i.e. the function gϕ ∈ BV (0, T ). In particular it admits left and
right limits at all points t∗ ∈ [0, T ]. Since Jϕ is continuous, this also holds
for 〈f, ϕ〉: for all t∗ ∈ [0, T ], the limits

〈f, ϕ〉(t∗+) := lim
t↓t∗

〈f, ϕ〉(t) and 〈f, ϕ〉(t∗−) := lim
t↑t∗

〈f, ϕ〉(t)

exist. Note that:

〈f, ϕ〉(t∗+) = lim
ε→0

1

ε

∫ t∗+ε

t∗

〈f, ϕ〉(t)dt, 〈f, ϕ〉(t∗−) = lim
ε→0

1

ε

∫ t∗

t∗−ε

〈f, ϕ〉(t)dt.
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Let (εn) ↓ 0. By the uniform in time integrability condition (13) and Corol-
lary 6, there exist a kinetic functions f ∗,± on Ω× T

N × R and subsequences
(εn±

k
) such that

1

εn−

k

∫ t∗

t∗−ε
n−

k

f(t)dt ⇀ f ∗,−,
1

εn+

k

∫ t∗+ε
n+

k

t∗

f(t)dt ⇀ f ∗,+

weakly-∗ in L∞(Ω× T
N × R) as k → +∞. We deduce:

〈f, ϕ〉(t∗+) = 〈f ∗,+, ϕ〉 and 〈f, ϕ〉(t∗−) = 〈f ∗,−, ϕ〉.

Taking for α the hat function α(t) =
1

ε
min((t−t∗+ε)+, (t−t∗−ε)−) in (19),

we obtain (17) at the limit [ε → 0]. In particular, almost surely, f ∗,+ = f ∗,−

whenever m has no atom at t∗.
We thus have proved the result for ϕ ∈ D1. Since D1 is dense in C

1
c (T

N ×R),
it is easy to see that in fact everything holds a.s. for every ϕ ∈ C1

c (T
N ×R).

Taking in (14) a test function of the form (x, s, ξ) 7→ ϕ(x, ξ)α(s) where α is
the function

α(s) =






1, s ≤ t,

1− s− t

ε
, t ≤ s ≤ t + ε,

0, t+ ε ≤ s,

we obtain at the limit [ε→ 0]: for all t ∈ [0, T ] and ϕ ∈ C1
c (T

N × R),

−〈f+(t), ϕ〉dt+ 〈f0, ϕ〉+
∫ t

0

〈f(s), a(ξ) · ∇ϕ〉ds

= −
∑

k≥1

∫ t

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, ξ)dνx,s(ξ)dxdβk(s)

−1

2

∫ t

0

∫

TN

∫

R

∂ξϕ(x, ξ)G
2(x, ξ)dν(x,s)(ξ)dxds+ 〈m, ∂ξϕ〉([0, t]), a.s.,

(20)

where 〈m, ∂ξϕ〉([0, t]) =
∫

TN×[0,t]×R

∂ξϕ(x, ξ)dm(x, s, ξ).

11



3 Comparison, uniqueness, entropy solution

and regularity

3.1 Doubling of variables

In this paragraph, we prove a technical proposition relating two generalized
solutions fi, i = 1, 2 of the equation

dui + div(A(ui))dt = Φ(ui)dW. (21)

Proposition 9 Let fi, i = 1, 2, be generalized solution to (21). Then, for
0 ≤ t ≤ T , and non-negative test functions ρ ∈ C∞(TN ), ψ ∈ C∞

c (R), we
have

E

∫

(TN )2

∫

R2

ρ(x− y)ψ(ξ − ζ)f±
1 (x, t, ξ)f̄

±
2 (y, t, ζ)dξdζdxdy

≤ E

∫

(TN )2

∫

R2

ρ(x− y)ψ(ξ − ζ)f1,0(x, ξ)f̄2,0(y, ζ)dξdζdxdy+ Iρ + Iψ, (22)

where

Iρ = E

∫ t

0

∫

(TN )2

∫

R2

f1(x, s, ξ)f̄2(y, s, ζ)(a(ξ)− a(ζ))ψ(ξ − ζ)dξdζ

· ∇xρ(x− y)dxdyds

and

Iψ =
1

2

∫

(TN )2
ρ(x− y)E

∫ t

0

∫

R2

ψ(ξ − ζ)

×
∑

k≥1

|gk(x, ξ)− gk(y, ζ)|2dν1x,s ⊗ ν2y,s(ξ, ζ)dxdyds.

Remark 10 Each term in (22) is finite. Let us for instance consider the
first one on the right hand side. Let us introduce the auxiliary functions

ψ1(ξ) =

∫ ξ

−∞

ψ(s)ds, ψ2(ζ) =

∫ ζ

−∞

ψ1(ξ)dξ,

which are well-defined since ψ is compactly supported. Note that both ψ1 and
ψ2 vanish at −∞. When ξ → +∞, ψ1 remains bounded while ψ2 has linear
growth. To lighten notations, we omit the index 0. Let us set f̄2 = 1− f2. In

12



the case where f1 and f2 correspond to kinetic solutions, i.e. fi = 1ui>ξ, we
compute (forgetting the dependence upon t and x): f̄2(ζ) = 1u2≤ζ and

∫

R2

ψ(ξ − ζ)f1(ξ)f̄2(ζ)dξdζ = ψ2(u1 − u2).

In the case of generalized solutions, we introduce the integrable modifications
χfi of fi, i = 1, 2:

f1(ξ) = χf1(ξ) + 10>ξ, f̄2(ζ) = 10≤ζ − χf2(ζ).

Accordingly, we have, by explicit integration:

∫

R2

ψ(ξ − ζ)f1(ξ)f̄2(ζ)dξdζ = −
∫

R2

ψ(ξ − ζ)χf1(ξ)χf2(ζ)dξdζ

+

∫

R

ψ1(ξ)χf1(ξ)dξ −
∫

R

ψ1(ζ)χf2(−ζ)dζ + ψ2(0) (23)

Each term in the right hand-side of (23) is indeed finite by (10).

Proof of Proposition 9: Set G2
1(x, ξ) =

∑∞
k=1 |gk(x, ξ)| and G2

2(y, ζ) =∑∞
k=1 |gk(y, ζ)|. Let ϕ1 ∈ C∞

c (TNx × Rξ) and ϕ2 ∈ C∞
c (TNy × Rζ). By (20),

we have
〈f+

1 (t), ϕ1〉 = 〈f1,0, ϕ1〉+ F1(t) + 〈m̃1, ∂ξϕ1〉([0, t])
with

F1(t) = −
∑

k≥1

∫ t

0

∫

TN

∫

R

gk,1ϕ1dν
1
x,s(ξ)dxdβk(s)

and

〈m̃1, ∂ξϕ1〉([0, t]) =
∫ t

0

〈f1, a · ∇ϕ1〉ds

+
1

2

∫ t

0

∫

TN

∫

R

∂ξϕ1G
2
1dν

1
(x,s)(ξ)dxds− 〈m1, ∂ξϕ1〉([0, t]).

Similarly

〈f̄+
2 (t), ϕ2〉 = 〈f̄2,0, ϕ2〉+ F̄2(t)− 〈m̃2, ∂ξϕ2〉([0, t])

with

F̄2(t) =
∑

k≥1

∫ t

0

∫

TN

∫

R

gk,2ϕ2dν
2
x,s(ξ)dxdβk(s)

13



and

〈m̃2, ∂ξϕ2〉([0, t]) = −
∫ t

0

〈f̄2, a · ∇ϕ2〉ds

+
1

2

∫ t

0

∫

TN

∫

R

∂ξϕ2G
2
1dν

2
(x,s)(ξ)dxds− 〈m2, ∂ξϕ2〉([0, t]).

Set α(x, ξ, y, ζ) = ϕ1(x, ξ)ϕ2(y, ζ). Using Itô formula for F1(t)F̄2(t), integra-
tion by parts for functions of finite variation (see for instance [RY99], chapter
0) for 〈m̃1, ∂ξϕ1〉([0, t])〈m̃2, ∂ξϕ2〉([0, t]), the following formula

〈m̃1, ∂ξϕ1〉([0, t])F̄2(t) =

∫ t

0

〈m̃1, ∂ξϕ1〉([0, s])dF̄2(s)+

∫ t

0

F̄2(s)〈m̃1, ∂ξϕ1〉(ds),

which is easy to obtain since F̄2 is continuous, and a similar formula for
〈m̃2, ∂ξϕ2〉([0, t])F̄1(t), we obtain that

〈f+
1 (t), ϕ1〉〈f̄+

2 (t), ϕ2〉 = 〈〈f+
1 (t)f̄

+
2 (t), α〉〉

satisfies

E〈〈f+
1 (t)f̄

+
2 (t), α〉〉 = 〈〈f1,0f̄2,0, α〉〉

− E

∫ t

0

∫

(TN )2

∫

R2

f1f̄2(a(ξ) · ∇x + a(ζ) · ∇y)αdξdζdxdyds

+
1

2
E

∫ t

0

∫

(TN )2

∫

R2

∂ξαf̄2(s)G
2
1dν

1
(x,s)(ξ)dζdxdyds

− 1

2
E

∫ t

0

∫

(TN )2

∫

R2

∫

R

∂ζαf1(s)G
2
2dν

2
(x,s)(ζ)dξdydxds

− E

∫ t

0

∫

(TN )2

∫

R2

∫

R

G1,2αdν
1
x,s(ξ)dν

2
y,s(ζ)dxdy

− E

∫ t

0

∫

(TN )2

∫

R2

f̄+
2 (s)∂ξαdm1(x, s, ξ)dζdy

+ E

∫ t

0

∫

(TN )2

∫

R2

f−
1 (s)∂ζαdm2(y, s, ζ)dξdx (24)

where G1,2(x, y; ξ, ζ) :=
∑

k≥1 gk(x, ξ)gk(y, ζ) and 〈〈·, ·〉〉 denotes the duality

distribution over TNx ×Rξ×T
N
y ×Rζ . By a density argument, (24) remains true

for any test-function α ∈ C∞
c (TNx ×Rξ×T

N
y ×Rζ). Using similar arguments as

in Remark 10, the assumption that α is compactly supported can be relaxed
thanks to the condition at infinity (5) on mi and (9) on νi, i = 1, 2. Using
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truncates of α, we obtain that (24) remains true if α ∈ C∞
b (TNx ×Rξ×T

N
y ×Rζ)

is compactly supported in a neighborhood of the diagonal

{(x, ξ, x, ξ); x ∈ T
N , ξ ∈ R}.

We then take α = ρψ where ρ = ρ(x−y), ψ = ψ(ξ−ζ). Note the remarkable
identities

(∇x +∇y)α = 0, (∂ξ + ∂ζ)α = 0. (25)

In particular, the last term in (24) is

E

∫ t

0

∫

(TN )2

∫

R2

f−
1 (s)∂ζαdξdxdm2(y, s, ζ)

=− E

∫ t

0

∫

(TN )2

∫

R2

f−
1 (s)∂ξαdξdxdm2(y, s, ζ)

=− E

∫ t

0

∫

(TN )2

∫

R2

αdν1,−x,s (ξ)dxdm2(y, s, ζ) ≤ 0

since α ≥ 0. The symmetric term

− E

∫ t

0

∫

(TN )2

∫

R2

f̄+
2 (s)∂ξαdm1(x, s, ξ)dζdy

=− E

∫ t

0

∫

(TN )2

∫

R2

αdν2,+y,s (ζ)dydm1(x, s, ξ)

is, similarly, non-positive. Consequently, we have

E〈〈f+
1 (t)f̄

+
2 (t), α〉〉 ≤ 〈〈f1,0f̄2,0, α〉〉+ Iρ + Iψ, (26)

where

Iρ := −E

∫ t

0

∫

(TN )2

∫

R2

f1f̄2(a(ξ) · ∇x + a(ζ) · ∇y)αdξdζdxdyds

and

Iψ =
1

2
E

∫ t

0

∫

(TN )2

∫

R2

∂ξαf̄2(s)G
2
1dν

1
(x,s)(ξ)dζdxdyds

− 1

2
E

∫ t

0

∫

(TN )2

∫

R2

∫

R

∂ζαf1(s)G
2
2dν

2
(x,s)(ζ)dξdydxds

− E

∫ t

0

∫

(TN )2

∫

R2

∫

R

G1,2αdν
1
x,s(ξ)dν

2
y,s(ζ)dxdy.
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Equation (26) is indeed equation (22) for f+
i since, by (25),

Iρ = E

∫ t

0

∫

(TN )2

∫

R2

f1f̄2(a(ξ)− a(ζ)) · ∇xαdξdζdxdyds

and, by (25) also and integration by parts,

Iψ =
1

2
E

∫ t

0

∫

(TN )2

∫

R2

α(G2
1 +G2

2 − 2G1,2)dν
1
x,s ⊗ ν2y,s(ξ, ζ)dxdyds

=
1

2
E

∫ t

0

∫

(TN )2

∫

R2

α
∑

k≥0

|gk(x, ξ)− gk(y, ζ)|2dν1x,s ⊗ ν2y,s(ξ, ζ)dxdyds.

To obtain the result for f−
i , we take tn ↑ t, write (22) for f+

i (tn) and let
n→ ∞.

3.2 Uniqueness, reduction of generalized solution

In this section we use Proposition 9 above to deduce the uniqueness of solu-
tions and the reduction of generalized solutions to solutions.

Theorem 11 (Uniqueness, Reduction) Let u0 ∈ L∞(Ω). Assume (2)-
(3). Then, there is at most one solution with initial datum u0 to (1). Besides,
any generalized solution f is actually a solution, i.e. if f is a generalized
solution to (1) with initial datum 1u0>ξ, then there exists a solution u to (1)
with initial datum u0 such that f(x, t, ξ) = 1u(x,t)>ξ a.s., for a.e. (x, t, ξ).
Moreover u has left and right limit at any point in the sense of Lp(TN) for
any p ≥ 1 and, for any t ∈ [0, T ], f±(x, t, ξ) = 1u(x,t±)>ξ a.s., for a.e. (x, ξ).

Corollary 12 (Continuity in time) Let u0 ∈ L∞(Ω). Assume (2)-(3).
Then, for every p ∈ [1,+∞), the solution u to (1) with initial datum u0 has
almost surely continuous trajectories in Lp(TN).

Proof of Theorem 11: Consider first the additive case: Φ(u) independent
on u. Let fi, i = 1, 2 be two generalized solutions to (1). Then, we use (22)
with gk independent on ξ and ζ . By (3), the last term Iψ is bounded by

tD1

2
‖ψ‖L∞

∫

(TN )2
|x− y|2ρ(x− y)dxdy.

We then take ψ := ψδ and ρ = ρε where (ψδ) and (ρε) are approximations to
the identity on R and T

N respectively to obtain

Iψ ≤ tD1

2
ε2δ−1. (27)
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Let t ∈ [0, T ] and let (tn) ↓ t be such that (13) is satisfied for ν = ν1,+ at tn.
Then ν

i,+
x,t , being the weak-limit (in the sense of (12)) of νi,+x,tn satisfies (13).

Similarly for νi,−. In particular, by (10), χf±i (t) is integrable on T
N × R and

E

∫

TN

∫

R

f±
1 (x, t, ξ)f̄

±
2 (x, t, ξ)dxdξ

= E

∫

(TN )2

∫

R2

ρε(x− y)ψδ(ξ − ζ)f±
1 (x, t, ξ)f̄

±
2 (x, t, ξ)dξdζdxdy+ ηt(ε, δ),

where limε,δ→0 ηt(ε, δ) = 0. To conclude, we need a bound on the term Iρ.
Since a has at most polynomial growth, there exists C ≥ 0, p > 1, such that

|a(ξ)− a(ζ)| ≤ Γ(ξ, ζ)|ξ − ζ |, Γ(ξ, ζ) = C(1 + |ξ|p−1 + |ζ |p−1).

Supposing additionally that ψδ(ξ) = δ−1ψ1(δ
−1ξ) where ψ1 is supported in

(−1, 1), this gives

|Iρ| ≤ E

∫ t

0

∫

(TN )2

∫

R2

f1f̄2Γ(ξ, ζ)|ξ − ζ |ψδ(ξ − ζ)|∇xρε(x− y)|dξdζdxdydσ.

By integration by parts with respect to (ξ, ζ), we deduce

|Iρ| ≤ E

∫ t

0

∫

(TN )2

∫

R2

Υ(ξ, ζ)dν1x,σ ⊗ ν2y,σ(ξ, ζ)|∇xρε(x− y)|dxdydσ,

where

Υ(ξ, ζ) =

∫ +∞

ζ

∫ ξ

−∞

Γ(ξ′, ζ ′)|ξ′ − ζ ′|ψδ(ξ′ − ζ ′)dξ′dζ ′.

It is shown below that Υ admits the bound

Υ(ξ, ζ) ≤ C(1 + |ξ|p + |ζ |p)δ. (28)

Since ν1 and ν2 vanish at infinity, we then obtain, for a given constant Cp,

|Iρ| ≤ tCpδ

(∫

TN

|∇xρε(x)|dx
)
.

It follows that, for possibly a different Cp,

|Iρ| ≤ tCpδε
−1. (29)

We then gather (27), (29) and (22) to deduce for t ∈ [0, T ]

E

∫

TN

∫

R

f±
1 (t)f̄

±
2 (t)dxdξ ≤

∫

TN

∫

R

f1,0f̄2,0dxdξ + r(ε, δ), (30)
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where the remainder r(ε, δ) is r(ε, δ) = TCpδε
−1 +

TD1

2
ε2δ−1 + ηt(ε, δ) +

η0(ε, δ). Taking δ = ε4/3 and letting ε→ 0 gives

E

∫

TN

∫

R

f±
1 (t)f̄

±
2 (t)dxdξ ≤

∫

TN

∫

R

f1,0f̄2,0dxdξ. (31)

Assume that f is a generalized solution to (1) with initial datum 1u0>ξ. Since
f0 is the (translated) Heavyside function 1u0>ξ, we have the identity f0f̄0 = 0.
Taking f1 = f2 = f in (31), we deduce f±(1 − f±) = 0 a.e., i.e. f± ∈ {0, 1}
a.e. The fact that−∂ξf is a Young measure then gives the conclusion: indeed,
by Fubini Theorem, for any t ∈ [0, T ], there is a set Et of full measure in
T
N×Ω such that, for (x, ω) ∈ Et, f

±(x, t, ξ, ω) ∈ {0, 1} for a.e. ξ ∈ R. Recall
that −∂ξf±(x, t, ·, ω) is a probability measure on R so that, necessarily, there
exists u±(x, t, ω) ∈ R such that f±(t, x, ξ, ω) = 1u±(x,t,ω)>ξ for almost every
(x, ξ, ω). In particular, u± =

∫
R
(f± − 1ξ>0)dξ for almost every (x, ω).

The discussion after Definition 7 tells us that f± is solution to (1) implies
that u± is a solution to (1). Since f = f+ a.e., this shows the reduction of
generalized solutions to solutions.
Write for p ≥ 1, t, s ∈ [0, T ],

∫

TN

[(u±(x, t)−u±(x, s))+]pdx =

∫

TN

∫

R

d|ξ|p
dξ

(1u±(x,t)>ξ−1u±(x,s)(x)>ξ)dξdx

=

∫

TN

∫

R

d|ξ|p
dξ

(f±(x, t, ξ)− f±(x, s, ξ))dξdx.

By (10) and Proposition 8, we deduce that u+ = u− except at a countable
set of t and at these points u± have left and right limits. Setting u = u+

yield the second part of the result.
If now u1 and u2 are two solutions to (1), we deduce from (31) with fi = 1ui>ξ
and from the identity

∫

R

1u1>ξ1u2>ξdξ = (u1 − u2)
+

the contraction property

E‖(u±1 (t)− u±2 (t))
+‖L1(TN ) ≤ E‖(u1,0 − u2,0)

+‖L1(TN ). (32)

This implies the L1-contraction property, comparison and uniqueness of so-
lutions.

In the multiplicative case (Φ depending on u), the reasoning is similar, except
that there is an additional term in the bound on Iψ. More precisely, by
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Hypothesis (3) we obtain in place of (27) the estimate

Iψ ≤ TD1

2
ε2δ−1 +

D1

2
Ihψ,

where

Ihψ = E

∫ t

0

∫

(TN )2
ρε

∫

R2

ψδ(ξ − ζ)|ξ − ζ |h(|ξ − ζ |)dν1x,σ ⊗ ν2y,σ(ξ, ζ)dxdydσ.

Choosing ψδ(ξ) = δ−1ψ1(δ
−1ξ) with ψ1 compactly supported gives

Iψ ≤ TD1

2
ε2δ−1 +

TD1Cψh(δ)

2
, Cψ := sup

ξ∈R
‖ξψ1(ξ)‖. (33)

We deduce (30) with a remainder term r′(ε, δ) := r(ε, δ) +
TD1Cψh(δ)

2
and

conclude the proof as in the additive case.

There remains to prove (28): setting ξ′′ = ξ′ − ζ ′, we have

Υ(ξ, ζ) =

∫ +∞

ζ

∫

|ξ′′|<δ,ξ′′<ξ−ζ′
Γ(ξ′′ + ζ ′, ζ ′)|ξ′′|ψδ(ξ′′)dξ′′dζ ′

≤C
∫ ξ+δ

ζ

max
|ξ′′|<δ,ξ′′<ξ−ζ′

Γ(ξ′′ + ζ ′, ζ ′)dζ ′ δ

≤C
∫ ξ+δ

ζ

(1 + |ξ|p−1 + |ζ ′|p−1)dζ ′ δ,

which gives (28).

Proof of Corollary 12: set f = 1u>ξ. Let us first show the continuity at
t = 0. We apply (17), which reads, at t = 0,

〈f+(0)− 1u0>ξ, ϕ〉 = 〈∂ξm0, ϕ〉,

where m0 is the restriction of m to T
N × {0} × R. In particular, by the

condition at infinity (5) on m, we have: almost surely, for a.e. x ∈ T
N ,

∫

R

f 0,+(x, ξ)− 1u0>ξdξ = 0.

We then write

u+(x, 0) =

∫

R

(f 0,+(x, ξ)− 10>ξ)dξ =

∫

R

(1u0(x)>ξ − 10>ξ)dξ = u0(x).
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This gives continuity at t = 0, indeed we already know that u converges to
u+(0) in Lp(TN ).
To prove similar results at time t∗ ∈ (0, T ), we consider t∗ as the origin of
time: indeed it follows from (14) and Proposition. 8 that

∫ T

t∗

〈f(t), ∂tϕ(t)〉dt+ 〈f−(t∗), ϕ(t∗)〉+
∫ T

t∗

〈f(t), a(ξ) · ∇ϕ(t)〉dt

= −
∑

k≥1

∫ T

t∗

∫

TN

∫

R

gk(x, ξ)ϕ(x, t, ξ)dνx,t(ξ)dxdβk(t)

− 1

2

∫ T

t∗

∫

TN

∫

R

∂ξϕ(x, t, ξ)G
2(x, ξ)dν(x,t)(ξ)dxdt+m(1[t∗,T ]∂ξϕ).

In other words, t 7→ f(t∗ + t) is a generalized solution to (1) on [0, T − t∗]
with initial datum f−(t∗) = 1u−(t∗)>ξ. We obtain u+(t∗) = u−(t∗) and the
result follows.

3.3 Entropy solutions

For deterministic first-order scalar conservation laws, the notion of entropy
solution was introduced by Kruzhkov [Kru70] prior to the notion of kinetic
solution [LPT94]. For the first-order scalar conservation law with stochastic
forcing, a corresponding notion of weak entropy solution has been introduced
by Feng and Nualart [FN08]:

Definition 13 (Weak entropy solution) A measurable function u : TN×
[0, T ] × Ω → R is said to be a weak entropy solution to (1) if (u(t)) is an
adapted L2(TN)-valued process, for all p ≥ 1, there exists Cp ≥ 0 such that
for a.e. t ∈ [0, T ],

‖u(t)‖Lp(Ω×TN ) ≤ Cp

and for all convex η ∈ C2(R), for all non-negative θ ∈ C1(TN ), for all
0 ≤ s ≤ t ≤ T ,

〈η(u(t)), θ〉 − 〈η(u(s)), θ〉 ≤
∫ t

s

〈q(u(r)),∇θ〉dr

+
∑

k≥1

∫ t

s

〈gk(·, u(r))η′(u(r)), θ〉dβk(r) +
1

2

∫ t

s

〈G2(·, u(r))η′′(u(r)), θ〉dr,

a.s., where q(u) =
∫ u
0
a(ξ)η′(ξ)dξ.
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An entropy solution is a kinetic solution and vice versa. Let us introduce an
auxiliary definition:

Definition 14 (Time-weak weak entropy solution) Let u0 ∈ L∞(Ω).
A measurable function u : TN × [0, T ] × Ω → R is said to be a time-weak
weak entropy solution to (1) with initial datum u0 if (u(t)) is an adapted
L2(TN )-valued process, for all p ≥ 1, there exists Cp ≥ 0 such that for a.e.
t ∈ [0, T ],

‖u(t)‖Lp(Ω×TN ) ≤ Cp

and for all convex η ∈ C2(R), for all non-negative ρ ∈ C1
c (T

N × [0, T )),

∫ T

0

〈η(u), ∂tρ〉dr + 〈η(u0), ρ(0)〉+
∫ T

0

〈q(u),∇ρ〉dr

≥ −
∑

k≥1

∫ T

0

〈gk(·, u(r))η′(u(r)), ρ〉dβk(r)−
1

2

∫ T

0

〈G2(·, u(r))η′′(u(r)), ρ〉dr,

(34)

a.s., where q(u) =
∫ u
0
a(ξ)η′(ξ)dξ.

Proposition 15 (Entropy and kinetic solutions) Let u0 ∈ L∞(Ω). For
a measurable function u : TN × [0, T ]×Ω → R, it is equivalent to be a kinetic
solution to (1), i.e. a solution in the sense of Definition 2, and a time-weak
weak solution.

The proof of the proposition is classical. Choosing test functions ϕ(x, t, ξ) =
ρ(x, t)η′(ξ) in (7) and using the inequality mη′′ ≥ 0 gives (34). Conversely,
starting from (34), one defines the measure m (actually ∂2ξm) by

m(ρ⊗ η′′) =

∫ T

0

〈η(u), ∂tρ〉dr + 〈η(u0), ρ(0)〉+
∫ T

0

〈q(u),∇ρ〉dr

+
∑

k≥1

∫ T

0

〈gk(·, u(r))η′(u(r)), ρ〉dβk(r) +
1

2

∫ T

0

〈G2(·, u(r))η′′(u(r)), ρ〉dr,

and then derives (7). See [Per02] for precise references.

It is clear also that a weak entropy solution, satisfying u(0) = u0, is a time-
weak entropy solution, while, for the converse assertion, time-continuity of
the solution is required. We have seen that a kinetic solution is continuous
in time, it follows that it is indeed a weak entropy solution.
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3.4 Spatial regularity

To conclude this paragraph and our applications of Proposition 9, we give a
result on the spatial regularity of the solution. To that purpose, we introduce
two semi-norms that measure the W σ,1-regularity of a function u ∈ L1(TN)
(σ ∈ (0, 1)): we set

pσ(u) :=

∫

TN

∫

TN

|u(x)− u(y)|
|x− y|N+σ

dxdy,

and

pσρ(u) = sup
0<ε<2DN

1

εσ

∫

TN

∫

TN

|u(x)− u(y)|ρε(x− y)dxdy,

where (ρε) is a fixed regularizing kernel: ρε(x) = ε−Nρ(ε−1|x|) where ρ is
supported in the ball B(0, 1) of RN . We define W σ,1(TN) as the subspace of
u ∈ L1(TN ) with finite norm

‖u‖Wσ,1(TN ) = ‖u‖L1(TN ) + pσ(u).

Lemma 16 (Comparison of the W σ,1 semi-norms) Let σ ∈ (0, 1). There
exists C depending on σ, ρ, N such that, for all 0 < s < σ, for all u ∈
L1(TN ),

pσρ(u) ≤ Cpσ(u), ps(u) ≤ C

σ − s
pσρ(u).

Proof: we have

1

εσ
ρε(x− y) ≤ ‖ρ‖L∞

εN+σ
1|x−y|<ε ≤

‖ρ‖L∞

|x− y|N+σ
,

hence pσρ(u) ≤ Cpσ(u). Multiplying the inequality

1

εσ

∫

TN

∫

TN

|u(x)− u(y)| 1
εN
ρ

( |x− y|
ε

)
dxdy ≤ pσρ(u)

by ε−1+(σ−s) and integrating over ε ∈ (|x− y|, 2DN) where DN =
√
N is the

diameter of [0, 1]N , we obtain the second inequality.

Theorem 17 (W σ,1-regularity) Let u0 ∈ L∞(TN), let u : TN × (0,+∞)×
Ω → R be the solution to (1) with initial datum u0. Assume that h satisfies

h(δ) ≤ Cδα, δ < 1, 0 < α. (35)
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Set σ = min
(

2α
1+α

, 1
2

)
. Then, there exists a constant C such that, for all

t ≥ 0, we have
Epσρ (u(t)) ≤ C(Epσρ(u0) + t). (36)

In particular, for all 0 < s < σ, there exists a constant Cs > 0 such that for
t ≥ 0,

E‖u(t)‖W s,1(TN ) ≤ Cs(‖u0‖Wσ,1(TN ) + t).

Proof: the last assertion is proved as follows: by Lemma 16, (36) implies
Eps(u(t)) ≤ Cs(p

σ(u0) + t). Poincaré Inequality gives

∥∥∥∥u(t)−
∫

TN

u(t)dx

∥∥∥∥
L1(TN )

≤ Csp
s(u(t)).

Since E
∫
TN u(t)dx = E

∫
TN u0dx, we obtain a bound on the L1-norm of u:

‖u(t)‖L1(TN ) ≤ Cs(p
s(u0) + t+ ‖u0‖L1(TN )),

hence E‖u(t)‖W s,1(TN ) ≤ Cs(‖u0‖Wσ,1(TN )+t). To prove (36), we apply Prop. 9
with f1 = f2 = 1u>ξ, ρ = ρε, ψ = ψδ. Since ∂ξ1u>ξ = −δu=ξ is a Radon
measure with mass 1, we have

E

∫

(TN )2
ρε(x− y)(u(x, t)− u(y, t))+dxdy

≤ E

∫

(TN )2

∫

R2

ρε(x− y)ψδ(ξ − ζ)1u(x,t)>ξ(1− 1u(y,t)>ζ)dxdydξdζ + δ

and

E

∫

(TN )2

∫

R2

ρε(x− y)ψδ(ξ − ζ)1u0(x)>ξ(1− 1u0(y)>ζ)dxdydξdζ

≤ E

∫

(TN )2
ρε(x− y)(u0(x)− u0(y))

+dxdy + δ.

We deduce that

E

∫

(TN )2
ρε(x− y)(u(x, t)− u(y, t))+dxdy

≤ E

∫

(TN )2
ρε(x− y)(u0(x)− u0(y))

+dxdy + Iρ + Iψ + 2δ.
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As in (33)-(29), we have

Iψ ≤ tC(ε2δ−1 + h(δ)), Iρ ≤ tCδε−1,

hence

E

∫

(TN )2
ρε(x− y)(u(x, t)− u(y, t))+dxdy

≤ E

∫

(TN )2
ρε(x− y)(u0(x)− u0(y))

+dxdy + tC(ε2δ−1 + h(δ) + δε−1) + 2δ.

By optimization in δ, using (35), we obtain (36).

4 Existence

4.1 The parabolic approximation, kinetic formulation

Let u0 ∈ L∞(TN ). To prove the existence of a solution to (1) with initial
datum u0, we show the convergence of the parabolic approximation
{
duη + div(A(uη))dt− η∆uηdt = Φη(u

η)dW (t), t > 0, x ∈ T
N ,

uη(x, 0) = u0(x), x ∈ T
N .

(37)
Where Φη is a suitable Lipschitz approximation of Φ satisfying (2), (3) uni-
formly. We define gηk and Gη as in the case η = 0.
It is shown in [GR00] that equation (37) has a unique Lρ(TN) valued continu-
ous solution provided ρ is large enough and u0 ∈ Lρ(TN), hence in particular
for u0 ∈ L∞(TN ). Moreover, it is also shown in [GR00] that using Itô Formula
one can prove that uη satisfies the energy inequality

E‖uη(t)‖2L2(TN ) + 2ηE

∫ t

0

‖∇uη‖2L2(TN )ds

≤ E‖u0‖2L2(TN ) + E

∫ t

0

‖Gη(u
η)‖2L2(TN )ds. (38)

By (2) and Gronwall Lemma, we easily derive

E‖uη(t)‖2L2(TN ) + ηE

∫ t

0

‖∇uη‖2L2(TN )ds ≤ C(T )(E‖u0‖2L2(TN ) + 1). (39)

Also, for p ≥ 2, by Itô Formula applied to |u|p and a martingale inequality

E

(
sup
t∈[0,T ]

‖uη(t)‖p
Lp(TN )

)
+ηE

∫ T

0

∫

TN

|uη(t, x)|p−2|∇uη(t)|2dxdt ≤ C(p, u0, T ).

(40)
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Proposition 18 (Kinetic formulation) Let u0 ∈ L∞(TN) and let uη be
the solution to (37). Then f η := 1uη>ξ satisfies: for all ϕ ∈ C1

c (T
N × [0, T )×

R),

∫ T

0

〈f η(t), ∂tϕ(t)〉dt+ 〈f0, ϕ(0)〉+
∫ T

0

〈f η(t), a(ξ) · ∇ϕ(t)− η∆ϕ(t)〉dt

= −
∑

k≥1

∫ T

0

∫

TN

∫

R

g
η
k(x, ξ)ϕ(x, t, ξ)dν

η
x,t(ξ)dxdβk(t)

− 1

2

∫ T

0

∫

TN

∫

R

∂ξϕ(x, t, ξ)G
2
η(x, ξ)dν

η
(x,t)(ξ)dxdt+mη(∂ξϕ), (41)

a.s., where f0(ξ) = 1u0>ξ and, for φ ∈ Cb(T
N × [0, T ]× R),

ν
η
(x,t) = δuη(x,t), mη(φ) =

∫

TN×[0,T ]×R

φ(x, t, uη(x, t))η|∇uη|2dxdt.

Note that the measure mη is explicitly known here: mη = η|∇uη|2δuη=ξ.
Proof: By Itô Formula, we have, for θ ∈ C2(R) with polynomial growth at
±∞,

d(1uη>ξ, θ
′) := d

∫

R

1uη>ξθ
′(ξ)dξ = dθ(uη)

= θ′(uη)(−a(uη) · ∇uηdt+ η∆uηdt+ Φη(u
η)dW ) +

1

2
θ′′(uη)G2

ηdt.

We rewrite the first term as

−θ′(uη)a(uη) · ∇uη = −div

{∫ uη

0

a(ξ)θ′(ξ)dξ

}
= −div(a1uη>ξ, θ

′),

the second term as

θ′(uη)η∆uη = η∆θ(uη)dt− η|∇uη|2θ′′(uη)

= η∆(1uη>ξ, θ
′)dt+ (∂ξ(η|∇uη|2δuη=ξ), θ′)

to obtain the kinetic formulation

d(1uη>ξ, θ
′) = −div[(a1uη>ξ, θ

′)]dt + η∆(1uη>ξ, θ
′)dt

+ (∂ξ(η|∇uη|2δuη=ξ −
1

2
G2
ηδuη=ξ), θ

′)dt+
∑

k≥1

(δuη=ξ, θ
′gk,η)dβk. (42)
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Taking θ(ξ) =
∫ ξ
−∞

β, we then obtain (42) with the test function β in place
of θ′. Since the test functions ϕ(x, ξ) = α(x)β(ξ) form a dense subset of
C∞
c (TN × R), (41) follows.

Equation (41) is close to the kinetic equation (7) satisfied by the solution
to (1). For η → 0, we lose the precise structure of mη = η|∇uη|2δuη=ξ and
obtain a solution u to (1). More precisely, we will prove the

Theorem 19 (Convergence of the parabolic approximation) Let u0 ∈
L∞(TN ). There exists a unique solution u to (1) with initial datum u0 which
is the strong limit of (uη) as η → 0: for every T > 0, for every 1 ≤ p < +∞,

lim
η→0

E‖uη − u‖Lp(TN×(0,T )) = 0. (43)

The proof of Theorem 19 is quite a straightforward consequence of both the
result of reduction of generalized solution to solution - Theorem 11 - and the
a priori estimates derived in the following section.

4.1.1 A priori estimates

We denote indifferently by Cp various constants that may depend on p ∈
[1,+∞), on u0, on the noise and on the terminal time T , but not on η ∈ (0, 1).

1. Estimate of mη: we analyze the kinetic measure mη = η|∇uη|2δuη=ξ. By
(39), we have a uniform bound Emη(TN × [0, T ]×R) ≤ C. Furthermore, the
second term in the left hand-side of (40) is E

∫
TN×[0,T ]×R

|ξ|p−2dmη(x, t, ξ), so

we have

E

∫

TN×[0,T ]×R

|ξ|pdmη(x, t, ξ) ≤ Cp. (44)

We also have the improved estimate, for p ≥ 0,

E

∣∣∣∣
∫

TN×[0,T ]×R

|ξ|2pdmη(x, t, ξ)

∣∣∣∣
2

≤ Cp. (45)

To prove (45), we apply Itô Formula to ψ(uη), ψ(ξ) := |ξ|2p+2:

dψ(uη)− div(F)dt+ ηψ′′(uη)|∇uη|2dt = ψ′(uη)Φη(u
η)dW +

1

2
ψ′′(uη)G2

ηdt,
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where F :=
∫ uη
0
a(ξ)ψ′(ξ)dξ − η∇ψ(uη). It follows

∫ T

0

∫

TN

ηψ′′(uη)|∇uη|2dxdt

≤
∫

TN

ψ(u0)dx+
∑

k≥1

∫ T

0

∫

TN

ψ′(uη)gk,η(x, u
η)dxdβk(t)

+
1

2

∫ T

0

∫

TN

G2
η(x, u

η)ψ′′(uη)dxdt.

Taking the square, then expectation, we deduce by Itô isometry

E

∣∣∣∣
∫ T

0

∫

TN

ηψ′′(uη)|∇uη|2dxdt
∣∣∣∣
2

≤ 2E

∣∣∣∣
∫

TN

ψ(u0)dx

∣∣∣∣
2

+2E

∫ T

0

∑

k≥1

∣∣∣∣
∫

TN

gk(x, u
η)ψ′(uη)dx

∣∣∣∣
2

dt+E

∣∣∣∣
∫ T

0

∫

TN

G2(x, uη)ψ′′(uη)dxdt

∣∣∣∣
2

.

By (2), (40) and Cauchy-Schwarz inequality, we obtain (45).

2. Estimate on νη: By the bound (40) on uη in Lp, we have, for t ∈ (0, T ),

E

∫

TN

∫

R

|ξ|pdνηx,t(ξ)dx ≤ Cp (46)

and, in particular,

E

∫ T

0

∫

TN

∫

R

|ξ|pdνηx,t(ξ)dxdt ≤ Cp. (47)

4.1.2 Generalized solution

Consider a sequence (ηn) ↓ 0. We use the a priori bounds derived in the
preceding subsection to deduce, up to subsequences:

1. by (47) and Theorem 5 and Corollary 6 respectively, the convergence
νηn → ν (in the sense of (12)) and the convergence f ηn ⇀ f in L∞(Ω×
T
N × (0, T )× R)-weak-*. Besides, the bound (46) is stable: ν satisfies

(13).

2. LetMb denote the space of bounded Borel measures over TN×[0, T ]×R

(with norm given by the total variation of measures), i.e. the dual space
of Cb, the set of continuous bounded functions on T

N× [0, T ]×R. Then
L2(Ω;Mb) is the dual space of L

2(Ω, Cb). By (45) with p = 0, we have,
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up to subsequence, the convergence mηn ⇀ m in L2(Ω;Mb)-weak star.
In particular, we have, for any k > 0,

E

∫

TN×[0,T ]×R

min(|ξ|p, k)dm(x, t, ξ)

= lim
n→+∞

E

∫

TN×[0,T ]×R

min(|ξ|p, k)dmηn(x, t, ξ) ≤ Cp

by (44), hence m vanishes at infinity, i.e. satisfies (5).

Let φ ∈ Cb(T
N × R) and set xn(t) :=

∫
TN×[0,t]×R

φ(x, ξ)dmηn(x, s, ξ),

α ∈ L2(Ω), γ ∈ L2([0, T ]), then, by Fubini’s Theorem,

E

(
α

∫ T

0

γ(t)xn(t)dt

)
= E

(
α

∫

TN×[0,t]×R

φ(x, ξ)Γ(s)dmηn(x, s, ξ)

)
,

where Γ(s) =
∫ T
s
γ(t)dt. Since Γ is continuous, and by weak conver-

gence of mηn , we have

E

(
α

∫ T

0

γ(t)xn(t)dt

)
→ E

(
α

∫ T

0

γ(t)x(t)dt

)
,

where

x(t) =

∫

TN×[0,t]×R

φ(x, ξ)dm(x, s, ξ).

Since tensor functions are dense in L2(Ω× [0, T ]), we obtain the weak
convergence xn → x in L2(Ω× [0, T ]). In particular, since the space of
predictible process is weakly-closed, x is predictible.

At the limit [n→ +∞] in (41), we obtain (14), so f is a generalized solution
to (1) with initial datum 1u0>ξ.

4.1.3 Conclusion: proof of Theorem 19

By Theorem 11, there corresponds a solution u to this f : f = 1u>ξ. This
proves the existence of a solution u to (1), unique by Theorem 11. Besides,
owing to the particular structure of f η and f , we have

‖uηn‖2L2(TN×(0,T )) − ‖u‖2L2(TN×(0,T )) =

∫ T

0

∫

TN

∫

R

2ξ(f ηn − f)dξdxdt

and (using the bound on uη in L3(TN ))

E

∫ T

0

∫

TN

∫

|ξ|>R

|2ξ(f ηn − f)(ξ)|dξdx ≤ C

1 +R
.
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It follows that uηn converges in norm to u in the Hilbert space L2(TN ×
(0, T )×Ω). Using the weak convergence, we deduce the strong convergence.
Since u is unique, the whole sequence actually converges. This gives the
result of the theorem for p = 2. The case of general p follows from the bound
on uη in Lq for arbitrary q and Hölder Inequality.

A Proof of Theorem 5 and Corollary 6

Let h ∈ L1(X) be non-negative. By the condition at infinity (11), the se-
quence of measure (νnh ) defined by

∫

R

φ(ξ)dνnh(ξ) =

∫

X

h(z)

∫

R

φ(ξ)dνnz (ξ)dz, φ ∈ Cb(R)

is tight. By Prokhorov Theorem, there exists a subsequence still denoted
(νnh ) that converges weakly in the sense of measure to a measure νh on R

having the same mass as the measures (νnh ):

νh(R) =

∫

X

h(z)dz. (48)

Since L1(X) is separable and h 7→ νnh is uniformly continuous in the sense
that

|νnh♭(φ)− νnh♯(φ)| ≤ ‖h♭ − h♯‖L1(X)‖φ‖Cb(R)

for all φ ∈ Cb(R), standard diagonal and limiting arguments give νnh ⇀ νh
along a subsequence independent on the choice of h ∈ L1(X). At fixed
φ ∈ Cb(R), the estimate 0 ≤ νh(φ) ≤ ‖h‖L1(X)‖φ‖Cb(R) and the linearity of
h 7→ νh(φ) show that

νh(φ) =

∫

X

h(z)g(z, φ)dz, ‖g(·, φ)‖L∞(X) ≤ ‖φ‖Cb(R).

Besides, g(·, φ) ≥ 0 a.e. since νh(φ) ≥ 0 for non-negative h, and φ 7→ g(·, φ)
is linear. Consequently, for a.e. z ∈ X , we have

g(z, φ) =

∫

R

φ(ξ)dνz(φ)

where νz is non-negative finite measure on R. By (48), νz(R) = 1. At last, ν
vanishes at infinity since

∫

X

∫

R

|ξ|pdνz(ξ)dλ(z) ≤ lim sup
n→+∞

∫

X

∫

R

|ξ|pdνnz (ξ)dλ(z) < +∞.
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This concludes the proof of the Theorem. To prove Corollary 6 we start from
the weak convergence νnh ⇀ νh (h ∈ L1(X) being fixed). This implies

νnh (ξ,+∞) → νh(ξ,+∞)

at all points ξ except the atomic points of νh, that are at most countable,
hence of zero measure. It follows in particular that

∫

R

νnh (ξ,+∞)g(ξ)dξ →
∫

R

νh(ξ,+∞)g(ξ)dξ

for all g ∈ L1(R). In other words, we have

∫

X×R

fn(z, ξ)H(z, ξ)dξdλ(z) →
∫

X×R

f(z, ξ)H(z, ξ)dξdλ(z) (49)

for all H ∈ L1(X×R) of the form H(z, ξ) = h(z)g(ξ). This implies the result
since tensor functions are dense in L1(X × R).
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[Kru70] S. N. Kružkov, First order quasilinear equations with several in-
dependent variables., Mat. Sb. (N.S.) 81 (123) (1970), 228–255.

[LPT94] P.-L. Lions, B. Perthame, and E. Tadmor, A kinetic formulation
of multidimensional scalar conservation laws and related equa-
tions, J. Amer. Math. Soc. 7 (1994), no. 1, 169–191.

[Per02] B. Perthame, Kinetic formulation of conservation laws, Oxford
Lecture Series in Mathematics and its Applications, vol. 21, Ox-
ford University Press, Oxford, 2002.

[RY99] D. Revuz and M. Yor, Continuous martingales and Brownian mo-
tion, third ed., Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], vol. 293,
Springer-Verlag, Berlin, 1999.

[VW10] G. Valet and P. Wittbold, On a stochastic first-order hyperbolic
equation in a bounded domain, IDAPQ (2010).

31


