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ON A CLASS OF STOCHASTIC OPTIMAL CONTROL PROBLEMS
RELATED TO BSDES WITH QUADRATIC GROWTH∗

MARCO FUHRMAN† , YING HU‡ , AND GIANMARIO TESSITORE§

Abstract. In this paper, we study a class of stochastic optimal control problems, where the drift
term of the equation has a linear growth on the control variable, the cost functional has a quadratic
growth, and the control process takes values in a closed set (not necessarily compact). This problem
is related to some backward stochastic differential equations (BSDEs) with quadratic growth and
unbounded terminal value. We prove that the optimal feedback control exists, and the optimal cost
is given by the initial value of the solution of the related BSDE.
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1. Introduction. In this paper, we consider a controlled equation of the form{
dXt = b(t,Xt) dt + σ(t,Xt) [dWt + r(t,Xt, ut) dt], t ∈ [0, T ],
X0 = x.

(1.1)

In the equation, W is an Rd-valued Wiener process, defined on a complete probability
space (Ω,F ,P) with respect to a filtration (Ft)t≥0 satisfying the usual conditions;
the unknown process X takes values in Rn; x is a given element of Rn; and u is the
control process, which is assumed to be an (Ft)-adapted process taking values in a
given nonempty closed set K ⊂ Rm. The control problem consists of minimizing a
cost functional of the form

J = E

∫ T

0

g(t,Xt, ut) dt + E φ(XT ).(1.2)

We suppose that r has a linear growth in u, g has quadratic growth in x and u,
and φ has quadratic growth in x.

The main novelty of the present paper, in comparison with the existing literature,
is that on the one hand we assume that neither K nor r is bounded; on the other hand
we consider a degenerate control problem (since nothing is assumed on the image of
σ). Moreover, we also allow φ to have quadratic growth.
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1280 MARCO FUHRMAN, YING HU, AND GIANMARIO TESSITORE

Nonlinear backward stochastic differential equations (BSDEs) were first intro-
duced by Pardoux and Peng [11]. A major application of BSDEs is in stochastic
control; see, e.g., [4] and [12]. We also refer the reader to [9], [5], and [7]. From
several points of view, the class of control problems addressed in these papers, and in
the references therein, is more general than the one considered here, but assumptions
implying “bounded control image” (i.e., boundedness of K or r in our notation) are a
common feature of all the above papers. The special “unbounded” case correspond-
ing to the assumptions K = Rm and g = 1

2 |u|2 + q(t, x) is treated in [6] by an ad
hoc exponential transform. We notice that in [6] φ is allowed to take the value +∞.
Finally, the same special case (in which the Hamiltonian is exactly the square of the
norm of the gradient) was treated in [8] by analytic techniques under nondegeneracy
assumptions and in an infinite-dimensional framework.

The difficulty here is that the Hamiltonian corresponding to the control prob-
lem has quadratic growth in the gradient and consequently the associated BSDE has
quadratic growth in the Z variable. Well-posedness for this class of BSDEs has been
proved in [10] in the case of bounded terminal value. Since we allow for unbounded
terminal cost, to treat such equations we have to apply the techniques recently intro-
duced in [2]. We notice that for such BSDEs no general uniqueness results are known:
we replace uniqueness with the selection of a maximal solution. Moreover, the usual
application of the Girsanov technique is not allowed (since the Novikov condition is
not guaranteed), and we have to develop specific arguments both to prove the fun-
damental relation (see section 4) and to obtain the existence of a (weak) solution to
the closed loop equation (see section 5). Our main result is to prove that the optimal
feedback control exists and the optimal cost is given by the value Y0 of the maximal
solution (Y,Z) of the BSDE with the quadratic growth and unbounded terminal value
mentioned above. Moreover, we show that we can construct an optimal feedback in
terms of the process Z. Finally, we prove that if we fix a particular optimal feed-
back law, then the solution of the corresponding closed loop equation is unique; see
Proposition 5.4.

An alternative approach to the control problem may consist of applying the
stochastic maximum principle; see, e.g., [12] for a detailed exposition. However, this
would require further differentiability conditions on the coefficients of the controlled
equation and would not immediately imply existence of an optimal control, since the
maximum principle is usually stated as a necessary condition for optimality.

The paper is organized as follows. In the next section, we describe the control
problem; in section 3, we study the related BSDE; and in section 4, we establish
the fundamental relation between the optimal control problem and BSDE. The last
section is devoted to the proof of the existence of optimal feedback control.

2. The control problem. We consider the optimal control problem given by a
state equation of the form{

dXt = b(t,Xt) dt + σ(t,Xt) [dWt + r(t,Xt, ut) dt], t ∈ [0, T ],
X0 = x,

(2.1)

and given by a cost functional of the form

J = E

∫ T

0

g(t,Xt, ut) dt + E φ(XT ).(2.2)

We work under the following assumptions.
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STOCHASTIC OPTIMAL CONTROL AND BSDES 1281

Hypothesis 2.1.

1. The process W is a Wiener process in Rd, defined on a complete probability
space (Ω,F ,P) with respect to a filtration (Ft) satisfying the usual conditions.

2. The set K is a nonempty closed subset of Rm.
3. The functions b : [0, T ]× Rn → Rn, σ : [0, T ]× Rn → Rn×d, r : [0, T ]× Rn ×

K → Rd, g : [0, T ] × Rn ×K → R, φ : Rn → R are Borel measurable.
4. For all t ∈ [0, T ], x ∈ Rn, r(t, x, ·) and g(t, x, ·) are continuous functions from

K to Rd and from K to R, respectively.
5. There exists a constant C > 0 such that for every t ∈ [0, T ], x, x′ ∈ Rn,

u ∈ K it holds that

|b(t, x) − b(t, x′)| ≤ C|x− x′|, |b(t, x)| ≤ C(1 + |x|),(2.3)

|σ(t, x) − σ(t, x′)| ≤ C|x− x′|,(2.4)

|σ(t, x)| ≤ C,(2.5)

|r(t, x, u) − r(t, x′, u)| ≤ C(1 + |u|)|x− x′|,(2.6)

|r(t, x, u)| ≤ C(1 + |u|),(2.7)

0 ≤ g(t, x, u) ≤ C(1 + |x|2 + |u|2),(2.8)

0 ≤ φ(x) ≤ C(1 + |x|2).(2.9)

6. There exist R > 0 and c > 0 such that for every t ∈ [0, T ], x ∈ Rn, and every
u ∈ K satisfying |u| ≥ R,

g(t, x, u) ≥ c|u|2.(2.10)

We will say that an (Ft)-adapted stochastic process {ut, t ∈ [0, T ]} with values
in K is an admissible control if it satisfies

E

∫ T

0

|ut|2dt < ∞.(2.11)

This square summability requirement is justified by (2.10): a control process which is
not square summable would have infinite cost.

Remark 2.2. Some classes of linear quadratic control problems fall within the
scope of our result. Consider the controlled system{

dXt = A(t)Xt dt + b(t) dt + Σ(t) [dWt + B(t)ut dt], t ∈ [0, T ],
X0 = x

(2.12)

and the cost functional

J =
1

2
E

∫ T

0

[〈Q(t)Xt, Xt〉 + 〈R(t)ut, ut〉] dt +
1

2
E 〈SXT , XT 〉,
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1282 MARCO FUHRMAN, YING HU, AND GIANMARIO TESSITORE

and assume that A, b,Σ, B,Q,R are bounded Borel measurable functions with values
in Rn×n, Rn, Rn×d, Rd×m, Rn×n, Rm×m, respectively, and that S ∈ Rn×n; also
suppose that Q(t) ≥ 0, S ≥ 0, R(t) ≥ cI for some c > 0 and all t, in the sense of the
usual matrix order. Then Hypothesis 2.1 is verified. We are not assuming K = Rm

in general. If K = Rm, then the usual linear quadratic theory applies and gives more
general results in the sense that state- and control-dependent noise can be considered,
as well as a more general drift coefficient, in (2.12).

Next we show that for every admissible control, the solution to (2.1) exists.
Proposition 2.3. Let u be an admissible control. Then there exists a unique,

continuous, (Ft)-adapted process X satisfying E supt∈[0,T ] |Xt|2 < ∞, and P-a.s.,

Xt = x +

∫ t

0

b(s,Xs) ds +

∫ t

0

σ(s,Xs) dWs +

∫ t

0

σ(s,Xs) r(s,Xs, us) ds, t ∈ [0, T ].

Proof. The proof of Proposition 2.3 relies on an approximation procedure that
will be used again in what follows. We introduce the sequence of stopping times

τn = inf

{
t ∈ [0, T ] :

∫ t

0

|us|2ds > n

}
,

with the convention that τn = T if the indicated set is empty. By (2.11), for P-almost
every ω ∈ Ω, there exists an integer N(ω) depending on ω such that

n ≥ N(ω) =⇒ τn(ω) = T.(2.13)

Let us fix u0 ∈ K, and for every n, let us define

un
t = ut 1t≤τn + u0 1t>τn

and consider the equation{
dXn

t = b(t,Xn
t ) dt + σ(t,Xn

t ) [dWt + r(t,Xn
t , u

n
t ) dt], t ∈ [0, T ],

Xn
0 = x.

(2.14)

We claim that (2.14) has a unique solution Xn in the class of (Ft)-adapted pro-
cesses X satisfying supt∈[0,T ] E |Xt|2 < ∞.

To prove the claim we use a classical argument: We first write (2.14) in the form

dXt = b(t,Xt) dt + b̃(t,Xt) dt + σ(t,Xt) dWt,

where b̃(t, x) = σ(t, x, un
t )r(t, x, un

t ) is a stochastic coefficient which satisfies, by (2.3)–
(2.7),

|̃b(t, x) − b̃(t, x′)| = |σ(t, x, un
t )r(t, x, un

t ) − σ(t, x′, un
t )r(t, x′, un

t )| ≤ C(1 + |un
t |)|x− x′|,

|̃b(t, x)| = |σ(t, x, un
t )r(t, x, un

t )| ≤ C(1 + |un
t |), t ∈ [0, T ], x, x′ ∈ Rn.

We define Kt(ω) = C(1 + |un
t (ω)|), and we note that∫ T

0

|Kt|2dt ≤ C

(
1 +

∫ T

0

|un
t |2dt

)
≤ C(1 + n + |u0|2) =: C̃, P-a.s.,
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STOCHASTIC OPTIMAL CONTROL AND BSDES 1283

by the definition of τn. Next we introduce the norm ‖X‖2 := supt∈[0,T ] e
−2λtE |Xt|2

and prove that the mapping Γ defined by

Γ(X)t =

∫ t

0

b(s,Xs) ds +

∫ t

0

b̃(s,Xs) ds +

∫ t

0

σ(s,Xs) dWs, t ∈ [0, T ],

is a contraction with respect to this norm for sufficiently large λ > 0. For a pair of
processes X,X ′, we have

E

∣∣∣∣∫ t

0

[̃b(s,Xs) − b̃(s,X ′
s)] ds

∣∣∣∣2 ≤ E

(∫ t

0

Ks|Xs −X ′
s| ds

)2

≤ E

(∫ t

0

|Ks|2ds
∫ t

0

|Xs −X ′
s|2 ds

)
≤ C̃E

∫ t

0

|Xs −X ′
s|2 ds

≤ C̃‖X −X ′‖2

∫ t

0

e2λs ds,

and it follows that

sup
t∈[0,T ]

e−2λtE

∣∣∣∣∫ t

0

[̃b(s,Xs) − b̃(s,X ′
s)] ds

∣∣∣∣2 ≤ C̃‖X −X ′‖2

∫ t

0

e−2λ(t−s) ds

≤ C̃

2λ
‖X −X ′‖2.

The other verifications needed to prove the contraction property are standard. The
claim is proved.

It is clear that the solution Xn of (2.14) is also continuous. Moreover, we have

Xn
t = Xn+1

t for t ≤ τn;

therefore there exists a process X such that

Xt = Xn
t for t ≤ τn,

and X is clearly the required solution. The property E supt∈[0,T ] |Xt|2 < ∞ is an
immediate consequence of the following lemma, which concludes the proof.

Lemma 2.4. Under the previous assumptions, the family of random variables

sup
t∈[0,T ]

|Xn
t |2, n = 1, 2, . . . ,

is uniformly integrable.
Proof. We set Mn

t =
∫ t

0
σ(s,Xn

s ) dWs. By (2.14), we have

Xn
t = x +

∫ t

0

b(s,Xn
s ) ds +

∫ t

0

σ(s,Xn
s )r(s,Xn

s , u
n
s ) ds + Mn

t .

First, we claim that the family {supt∈[0,T ] |Mn
t |2; n = 1, 2, . . . } is uniformly integrable;

indeed it is uniformly bounded in Lp(Ω,F ,P) for every p ∈ [1,∞), since by the
Burkholder–Davis–Gundy inequalities and the boundedness of σ (see (2.5)),

E sup
t∈[0,T ]

|Mn
t |2p ≤ CE

(∫ T

0

|σ(s,Xn
s )|2 ds

)p

≤ C
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1284 MARCO FUHRMAN, YING HU, AND GIANMARIO TESSITORE

for some constant independent of n. Next we note that, by (2.7),∣∣∣∣∫ t

0

σ(s,Xn
s )r(s,Xn

s , u
n
s ) ds

∣∣∣∣2 ≤ C

∫ t

0

(1 + |un
s |)2 ds ≤ C

(
1 +

∫ T

0

|us|2 ds

)
.

Then, setting lnt = supr∈[0,t] |Xn
r |2, we obtain by (2.3),

lnt ≤ C

(
1 +

∫ T

0

|us|2 ds + sup
t∈[0,T ]

|Mn
t |2

)
+ C

∫ t

0

|Xn
s |2 ds

≤ C

(
1 +

∫ T

0

|us|2 ds + sup
t∈[0,T ]

|Mn
t |2

)
+ C

∫ t

0

lns ds.

From the Gronwall lemma we deduce

lnt ≤ C

(
1 +

∫ T

0

|us|2 ds + sup
t∈[0,T ]

|Mn
t |2

)
,

and the required uniform integrability follows.
The stochastic control problem associated with (2.1)–(2.2) consists of minimizing

the cost functional J(x, u) among all the admissible controls.

3. The forward-backward system. We consider again the functions b, σ, g, φ
satisfying the assumptions in Hypothesis 2.1. We define the Hamiltonian function

ψ(t, x, z) = inf
u∈K

[g(t, x, u) + z · r(t, x, u)], t ∈ [0, T ], x ∈ Rn, z ∈ Rd,(3.1)

where · denotes the usual scalar product in Rd. We collect some immediate properties
of the function ψ.

Lemma 3.1. The map ψ is a Borel measurable function from [0, T ]×Rn ×Rd to
R. There exists a constant C > 0 such that

−C(1 + |z|2) ≤ ψ(t, x, z) ≤ g(t, x, u) + C|z|(1 + |u|) ∀u ∈ K.(3.2)

Moreover, the infimum in (3.1) is attained in a ball of radius C(1 + |x|+ |z|), that is,

ψ(t, x, z) = min
u∈K,|u|≤C(1+|x|+|z|)

[g(t, x, u) + z · r(t, x, u)],(3.3)

t ∈ [0, T ], x ∈ Rn, z ∈ Rd,

and

ψ(t, x, z) < g(t, x, u) + z · r(t, x, u) if |u| > C(1 + |x| + |z|).(3.4)

Finally, for every t ∈ [0, T ] and x ∈ Rn, z → ψ(t, x, z) is continuous on Rd.
Proof. The measurability of ψ is straightforward since, by the continuity of r and

g with respect to u, we have ψ(t, x, z) = inf
u∈K̂

[g(t, x, u) + z · r(t, x, u)], t ∈ [0, T ],

x ∈ Rn, z ∈ Rd, where K̂ is any countable dense subset of K.
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STOCHASTIC OPTIMAL CONTROL AND BSDES 1285

Coming now to the proof of (3.2), we notice that, since g is nonnegative and
satisfies (2.10), we have g(t, x, u) ≥ c(|u|2 −R2) (c and R are the same as in (2.10)).
By (2.7) and (2.8), we have

g(t, x, u) + z · r(t, x, u) ≥ c(|u|2 −R2) − C|z|(1 + |u|),(3.5)

and it follows that

ψ(t, x, z) ≥ inf
u∈Rm

[g(t, x, u) + z · r(t, x, u)] ≥ inf
u∈Rm

[c(|u|2 −R2) − C|z|(1 + |u|)]
= −C1|z|2 − C2,

by direct computation, for suitable constants C1 and C2. This proves the left-hand
side of (3.2). The right-hand side of (3.2) is immediate, since by (2.7),

ψ(t, x, z) ≤ g(t, x, u) + z · r(t, x, u) ≤ g(t, x, u) + |z|C(1 + |u|).

We come now to the second assertion. By (3.5) we get

g(t, x, u) + z · r(t, x, u) ≥ c|u|
(
|u| − C

c
|z|

)
− cR2 − C|z|.(3.6)

On the other hand, if we fix an arbitrary u0 ∈ K, then

g(t, x, u0) + z · r(t, x, u0) ≤ C(1 + |x|2 + |u0|2) + C|z|(1 + |u0|) ≤ C3(1 + |x|2 + |z|).
(3.7)

Hence, there exists a constant C > 0 such that, if |u| > C(1 + |x| + |z|), then

g(t, x, u) + z · r(t, x, u) > g(t, x, u0) + z · r(t, x, u0),

and (3.3) follows from the continuity of g and r with respect to u.
Finally, the continuity of ψ(t, x, ·) can be easily proved, taking into account

(3.3).
Next we take an arbitrarily complete probability space (Ω,F ,P◦) and a Wiener

process W ◦ in Rd with respect to P◦. We denote by (F◦
t ) the associated Brownian

filtration, i.e., the filtration generated by W ◦ and augmented by the P◦-null sets of
F ; (F◦

t ) satisfies the usual conditions.
We introduce the forward equation{

dXt = b(t,Xt) dt + σ(t,Xt) dW
◦
t , t ∈ [0, T ],

X0 = x,
(3.8)

whose solution is a continuous (F◦
t )-adapted process, which exists and is unique by

classical results. Next we consider the associated backward equation{
dYt = −ψ(t,Xt, Zt) dt + Zt dW

◦
t , t ∈ [0, T ],

YT = φ(XT ).
(3.9)

The solution of (3.9) exists in the sense specified by the following proposition.
Proposition 3.2. Assume that b, σ, g, φ satisfy Hypothesis 2.1. Then there exist

Borel measurable functions

v : [0, T ] × Rn → R, ζ : [0, T ] × Rn → Rd
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1286 MARCO FUHRMAN, YING HU, AND GIANMARIO TESSITORE

with the following property: For an arbitrarily chosen complete probability space (Ω,F ,P◦)
and Wiener process W ◦ in Rd, denoting by X the solution of (3.8), the processes Y,Z
defined by

Yt = v(t,Xt), Zt = ζ(t,Xt)

satisfy

E◦ sup
t∈[0,T ]

|Yt|2 < ∞, E◦
∫ T

0

|Zt|2 dt < ∞;

moreover, Y is continuous and nonnegative, and P◦-a.s.,

Yt +

∫ T

t

Zs dW
◦
s = φ(XT ) +

∫ T

t

ψ(s,Xs, Zs) ds, t ∈ [0, T ].

Finally, this solution is the maximal solution among all the solutions (Y ′, Z ′) of (3.9)
satisfying

E◦

[
sup

t∈[0,T ]

|Y ′
t |2

]
< +∞.

Proof. From Lemma 3.1, there exists a constant C > 0 such that

−C(1 + |z|2) ≤ ψ(t, x, z) ≤ g(t, x, u0) + C(1 + |u0|)|z|.

Let us first note that

E◦ sup
t∈[0,T ]

|Xt|p < ∞ ∀p ≥ 2.

Next, we adopt the same strategy as that in [2] to construct a maximal solution
to (3.9); i.e., for each n ≥ C, we define the globally Lipschitz continuous function,

ψn(t, x, z) = sup{ψ(t, x, q) − n|q − z| : q ∈ Qd},

which is decreasing and converges to ψ; then by (Y n, Zn) we denote the unique
solution to the BSDE with Lipschitz coefficient ψn,{

dY n
t = −ψn(t,Xt, Z

n
t ) dt + Zn

t dW ◦
t , t ∈ [0, T ],

Y n
T = φ(XT ),

(3.10)

and by (Y S , ZS) the unique solution to the BSDE,{
dY S

t = −[g(t,Xt, u
0) + C(1 + |u0|)|ZS

t |] dt + ZS
t dW ◦

t , t ∈ [0, T ],

Y S
T = φ(XT ),

(3.11)

where C is the same as in (3.2). We notice that, since ψn(t, x, 0) ≥ ψ(t, x, 0) ≥ 0,
then by an application of the comparison theorem (see [4]),

0 ≤ Y n
t ≤ Y S

t .

Then let us introduce the following stopping time: For k ≥ 1,

τk = inf{t ∈ [0, T ] : max(|Xt|, Y S
t ) > k},

with the convention that τk = T if the indicated set is empty.
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STOCHASTIC OPTIMAL CONTROL AND BSDES 1287

Then (Y n
k , Zn

k ) := (Y n
t∧τk

, Zn
t 1t≤τk) satisfies the following BSDE:

Y n
k (t) = ξnk +

∫ T

t

1s≤τkψn(s,Xs, Z
n
k (s))ds−

∫ T

t

Zn
k (s)dW ◦

s ,

where of course ξnk = Y n
k (T ) = Y n

τk
.

For fixed k, Y n
k is decreasing in n and remains bounded by k. It follows from

Lemma 3 in [2] (which is a slight generalization of Proposition 2.4 in [10]) that there

exists a process (Yk, Zk) such that Yk is a continuous process, E
∫ T

0
|Zk(s)|2ds < +∞,

lim
n

sup
t∈[0,T ]

|Y n
k (t) − Yk(t)| = 0, lim

n
E

∫ T

0

|Zn
k (t) − Zk(t)|2dt = 0,

and (Yk, Zk) solves the BSDE

Yk(t) = ξk +

∫ T

t

1s≤τkψ(s,Xs, Zk(s))ds−
∫ T

t

Zk(s)dW
◦
s ,(3.12)

where ξk = infn Y
n
τk

.
On the other hand, τk ≤ τk+1, and, from the definition of (Y n

k , Zn
k ), we have

Y n
k+1(t ∧ τk) = Y n

k (t), Zn
k+1(t)1t≤τk = Zn

k (t).

Sending n to infinity, we get

Yk+1(t ∧ τk) = Yk(t), Zk+1(t)1t≤τk = Zk(t).

Now we define Y and Z on [0, T ] by setting

Yt = Yk(t), Zt = Zk(t) if t ∈ [0, τk].

For P◦-a.s. ω, there exists an integer K(ω) such that for k ≥ K(ω), τk(ω) = T .

Thus Y is a continuous process, YT = φ(XT ), and
∫ T

0
|Zt|2ds < ∞, P◦-a.s.

From (3.12), (Y,Z) satisfies

Yt∧τk = Yτk +

∫ τk

t∧τk

ψ(s,Xs, Z(s))ds−
∫ τk

t∧τk

Z(s)dW ◦
s .(3.13)

By sending k to infinity, we deduce that (Y,Z) is a solution of (3.9) and

lim
n

sup
t∈[0,T ]

|Y n
t − Yt| = 0, lim

n

∫ T

0

|Zn
t − Zt|2dt = 0, P◦-a.s.

Thus |Zn − Z| converges to zero in measure dP◦ ⊗ dt, and passing, if needed, to
a subsequence (that by abuse of language we still denote Zn), we can assume that
|Zn − Z| → 0, dP◦ ⊗ dt almost everywhere.

Now, as ψn is globally Lipschitz continuous, from [4] (see also [6]) there exist
Borel measurable functions

vn : [0, T ] × Rn → R, ζn : [0, T ] × Rn → Rd

such that

Y n
t = vn(t,Xt), Zn

t = ζn(t,Xt).
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1288 MARCO FUHRMAN, YING HU, AND GIANMARIO TESSITORE

It suffices to define

v(t, x) = lim inf
n→∞

vn(t, x), and ζ(t, x) = lim inf
n→∞

ζn(t, x)

(where the second lim inf is intended coordinatewise) to get

Yt = v(t,Xt), Zt = ζ(t,Xt),

which implies that (v, ζ) is the Borel function we look for.
Finally, 0 ≤ Yt ≤ Y S

t implies that

E sup
t∈[0,T ]

|Yt|2 < ∞,

and from the equation

|Yt|2 +

∫ τk

t

|Zs|2ds = 2

∫ τk

t

Ysψ(s,Xs, Zs)ds− 2

∫ τk

t

YsZsdW
◦
s ,

taking into consideration that

Ysψ(s,Xs, Zs) ≤ Ys(g(s,Xs, u
0) + C(1 + |u0|)|Zs|) ≤ Y S

s (g(s,Xs, u
0) + C(1 + |u0|)|Zs|),

we deduce, by standard arguments, that

E◦
∫ T

0

|Zt|2dt < ∞.

Moreover, this solution is the maximal solution among all the solutions (Y ′, Z ′)
satisfying

E◦

[
sup

t∈[0,T ]

|Y ′
t |2

]
< +∞,

and it suffices to apply Proposition 5 of [2] to deduce that Y n ≥ Y ′ and then Y ≥ Y ′.

4. The fundamental relation. In this section we revert to the notation intro-
duced in the first section and still assume that Hypothesis 2.1 holds.

Proposition 4.1. Let v, ζ denote the functions in the statement of Proposi-
tion 3.2. Then for every admissible control u and for the corresponding trajectory X
starting at x, we have

J(u) = v(0, x) + E

∫ T

0

[−ψ(t,Xt, ζ(t,Xt)) + ζ(t,Xt) · r(t,Xt, ut) + g(t,Xt, ut)] dt.

Proof. We introduce stopping times τn and control processes un as in the proof
of Proposition 2.3, and we denote by Xn the solution to (2.14). Let us define

Wn
t = Wt +

∫ t

0

r(s,Xn
s , u

n
s ) ds.

From the definition of τn and from (2.7), it follows that

∫ T

0

|r(s,Xn
s , u

n
s )|2 ds ≤ C

∫ T

0

(1 + |un
s |)2 ds ≤ C

∫ τn

0

(1 + |us|)2 ds + C ≤ C + Cn.

(4.1)
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STOCHASTIC OPTIMAL CONTROL AND BSDES 1289

Therefore defining

ρn = exp

(∫ T

0

−r(s,Xn
s , u

n
s ) dWs −

1

2

∫ T

0

|r(s,Xn
s , u

n
s )|2 ds

)
,

the Novikov condition implies that Eρn = 1. Setting dPn = ρndP, by the Girsanov
theorem Wn is a Wiener process under Pn. Let us denote by (Fn

t ) its natural aug-
mented filtration. Since{

dXn
t = b(t,Xn

t ) dt + σ(t,Xn
t ) dWn

t , t ∈ [0, T ],
Xn

0 = x

has a strong solution by classical results, the process Xn is also (Fn
t ) adapted. Let

us define

Y n
t = v(t,Xn

t ), Zn
t = ζ(t,Xn

t ).

Then by Proposition 3.2, we have{
dY n

t = Zn
t dWn

t − ψ(t,Xn
t , Z

n
t ) dt, t ∈ [0, T ],

Y n
T = φ(Xn

T )
(4.2)

and En
∫ T

0
|Zn

t |2 dt < ∞, where En denotes expectation with respect to Pn. It follows
that

Y n
τn = φ(Xn

T ) +

∫ T

τn

ψ(t,Xn
t , Z

n
t ) dt−

∫ T

τn

Zn
t dWt −

∫ T

τn

Zn
t · r(t,Xn

t , u
n
t ) dt.(4.3)

We note that for every p ∈ [1,∞) we have

ρ−p
n = exp

(
p

∫ T

0

r(s,Xn
s , u

n
s ) dWn

s − p2

2

∫ T

0

|r(s,Xn
s , u

n
s )|2 ds

)

· exp

(
p2 − p

2

∫ T

0

|r(s,Xn
s , u

n
s )|2 ds

)
.

By (4.1) the second exponential is bounded by a constant depending on n and p, while
the first one has Pn-expectation, equal to 1. So we conclude that Enρ

−p
n < ∞. It

follows that

E

(∫ T

0

|Zn
t |2dt

)1/2

= En

(
ρ−2
n

∫ T

0

|Zn
t |2dt

)1/2

≤
(
Enρ−2

n

)1/2 (
En

∫ T

0

|Zn
t |2dt

)1/2

< ∞.

We conclude that the stochastic integral in (4.3) has zero expectation, and we obtain

EY n
τn = Eφ(Xn

T ) + E

∫ T

τn

[ψ(t,Xn
t , Z

n
t ) − Zn

t · r(t,Xn
t , u

n
t )] dt.

Since by definition, ψ(t, x, z) − z · r(t, x, u) − g(t, x, u) ≤ 0, we have

EY n
τn ≤ Eφ(Xn

T ) + E

∫ T

τn

g(t,Xn
t , u

n
t ) dt.(4.4)

D
ow

nl
oa

de
d 

12
/2

0/
17

 to
 1

29
.2

0.
36

.1
17

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1290 MARCO FUHRMAN, YING HU, AND GIANMARIO TESSITORE

Now we let n → ∞. By the definition of un and (2.8),

E

∫ T

τn

g(t,Xn
t , u

n
t ) dt = E

∫ T

0

1t>τng(t,X
n
t , u

0) dt

≤ CE

∫ T

0

1t>τn(1 + |Xn
t |2 + |u0|2)dt ≤ CE

[
(T − τn)

(
1 + sup

t∈[0,T ]

|Xn
t |2

)]
,

and the right-hand side tends to 0 by Lemma 2.4 and (2.13). Next we note that, again
by (2.13), for n ≥ N(ω) we have τn(ω) = T and

φ(Xn
T ) = φ(Xn

τn) = φ(Xτn) = φ(XT ).

Moreover, by (2.9),

|φ(Xn
T )| ≤ C(1 + |Xn

T |2) ≤ C

(
1 + sup

t∈[0,T ]

|Xn
t |2

)
,

and by Lemma 2.4 the right-hand side is uniformly integrable. We deduce that
Eφ(Xn

T ) → Eφ(XT ), and from (4.4) we conclude that lim supn→∞ EY n
τn ≤ Eφ(XT ).

On the other hand, for n ≥ N(ω) we have τn(ω) = T and

Y n
τn = Y n

T = φ(Xn
T ) = φ(XT ).

Since Y n is positive, by the Fatou lemma, Eφ(XT ) ≤ lim infn→∞ EY n
τn . We have thus

proved that

lim
n→∞

EY n
τn = Eφ(XT ).(4.5)

Now we return to (4.2) and write

Y n
τn = Y n

0 +

∫ τn

0

−ψ(t,Xn
t , Z

n
t ) dt +

∫ τn

0

Zn
t dWt +

∫ τn

0

Zn
t · r(t,Xn

t , u
n
t ) dt.

Arguing as before, we conclude that the stochastic integral has zero P-expectation.
Moreover, we have Y n

0 = v(0, x), and, for t ≤ τn, also have un
t = ut, X

n
t = Xt, and

Zn
t = ζ(t,Xt). Thus we obtain

EY n
τn = v(0, x) + E

∫ τn

0

[−ψ(t,Xt, ζ(t,Xt)) + ζ(t,Xt) · r(t,Xt, ut)] dt

and

E

∫ τn

0

g(t,Xt, ut) dt + EY n
τn

= v(0, x) + E

∫ τn

0

[−ψ(t,Xt, ζ(t,Xt)) + ζ(t,Xt) · r(t,Xt, ut) + g(t,Xt, ut)] dt.

Noting that −ψ(t, x, z) + z · r(t, x, u) + g(t, x, u) ≥ 0 and recalling that g(t, x, u) ≥ 0,
by (4.5) and the monotone convergence theorem, we obtain for n → ∞,

E

∫ T

0

g(t,Xt, ut) dt + Eφ(XT ) = v(0, x)

+ E

∫ T

0

[−ψ(t,Xt, ζ(t,Xt)) + ζ(t,Xt) · r(t,Xt, ut) + g(t,Xt, ut)] dt,

which gives the required conclusion.
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STOCHASTIC OPTIMAL CONTROL AND BSDES 1291

Corollary 4.2. For every admissible control u and any initial datum x, we
have J(u) ≥ v(0, x), and the equality holds if and only if the following feedback law
holds P-a.s. for almost every t ∈ [0, T ]:

ψ(t,Xt, ζ(t,Xt)) = ζ(t,Xt) · r(t,Xt, ut) + g(t,Xt, ut),

where X is the trajectory starting at x and corresponding to control u.

5. Existence of optimal controls: The closed loop equation. Let us con-
sider again the functions b, σ, g, φ satisfying the assumptions in Hypothesis 2.1. We
recall the definition of the Hamiltonian function:

ψ(t, x, z) = inf
u∈K

[g(t, x, u) + z · r(t, x, u)], t ∈ [0, T ], x ∈ Rn, z ∈ Rd.(5.1)

Lemma 5.1. There exists a Borel measurable function γ : [0, T ] × Rn × Rd → K
such that

ψ(t, x, z) = g(t, x, γ(t, x, z)) + z · r(t, x, γ(t, x, z)), t ∈ [0, T ], x ∈ Rn, z ∈ Rd.

(5.2)

Moreover, there exists a constant C > 0 such that

|γ(t, x, z)| ≤ C(1 + |x| + |z|).(5.3)

Proof. Consider the function F (t, x, z, u) = g(t, x, u) + z · r(t, x, u), t ∈ [0, T ],
x ∈ Rn, z ∈ Rd. Clearly F is a Carathéodory map (that is, F (t, x, z, ·) is continuous
for all t ∈ [0, T ], x ∈ Rn, and z ∈ Rd, and F (·, ·, ·, u) is Borel measurable for all u ∈ K;
see [1, p. 311]). By (3.3) we have

ψ(t, x, z) ∈ {F (t, x, z, u) : u ∈ K} ∀t ∈ [0, T ], x ∈ Rn, z ∈ Rd.

Thus by the Filippov theorem (see, e.g., [1, Thm. 8.2.10, p. 316]) there exists a Borel
measurable map γ : [0, T ] × Rn × Rd → K such that F (t, x, z, γ(t, x, z)) = ψ(t, x, z);
see [3] as well. The fact that |γ(t, x, z)| ≤ C(1+ |x|+ |z|) is an immediate consequence
of (3.4).

Next we address the problem of finding a weak solution to the so-called closed
loop equation. We define

u(t, x) = γ(t, x, ζ(t, x)), t ∈ [0, T ], x ∈ Rn,

where ζ is defined in Proposition 3.2. The closed loop equation is{
dXt = b(t,Xt) dt + σ(t,Xt) [dWt + r(t,Xt, u(t,Xt)) dt], t ∈ [0, T ],
X0 = x.

(5.4)

By a weak solution we mean a complete probability space (Ω,F ,P) with a filtration
(Ft) satisfying the usual conditions, a Wiener process W in Rd with respect to P and
(Ft), and a continuous (Ft)-adapted process X with values in Rn satisfying, P-a.s.,∫ T

0

|u(t,Xt)|2 dt < ∞,(5.5)

and such that (5.4) holds. We note that by (2.7) it also follows that∫ T

0

|r(t,Xt, u(t,Xt))| dt < ∞, P-a.s.,

so that (5.4) makes sense.
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1292 MARCO FUHRMAN, YING HU, AND GIANMARIO TESSITORE

Proposition 5.2. Assume that b, σ, g, φ satisfy Hypothesis 2.1. Then there exists
a weak solution of the closed loop equation, satisfying in addition

E

∫ T

0

|u(t,Xt)|2 dt < ∞.(5.6)

Proof. Let us take an arbitrary complete probability space (Ω,F ,P◦) and a Wiener
process W ◦ in Rd with respect to P◦. Let (F◦

t ) be the associated Brownian filtration.
We define the process X as the solution of the equation{

dXt = b(t,Xt) dt + σ(t,Xt) dW
◦
t , t ∈ [0, T ],

X0 = x.
(5.7)

The solution is a continuous (F◦
t )-adapted process, which exists and is unique by

classical results. Moreover, it satisfies E◦ supt∈[0,T ] |Xt|p < ∞ for every p ∈ [1,∞).
By Proposition 3.2, setting

Yt = v(t,Xt), Zt = ζ(t,Xt),

the following backward equation holds:{
dYt = −ψ(t,Xt, Zt) dt + Zt dW

◦
t , t ∈ [0, T ],

YT = φ(XT ),

and we have

E◦
∫ T

0

|Zt|2 dt < ∞.(5.8)

By (2.7) we have |r(t,Xt, u(t,Xt))| ≤ C(1 + |u(t,Xt)|), and by (5.3),

|u(t,Xt)| = |γ(t,Xt, ζ(t,Xt))| ≤ C(1 + |Xt| + |ζ(t,Xt)|) = C(1 + |Xt| + |Zt|).(5.9)

Now let us define stopping times

τn = inf

{
t ∈ [0, T ] :

∫ t

0

|u(s,Xs)|2ds > n

}
,

with the convention that τn = T if the indicated set is empty. By (5.8) and (5.9), for
P◦-a.s. ω ∈ Ω, there exists an integer N(ω) depending on ω such that τn(ω) = T for
n ≥ N(ω). Let us fix u0 ∈ K, and for every n let us define

un
t = u(t,Xt) 1t≤τn + u0 1t>τn ,

Mn
t = exp

(∫ t

0

r(s,Xs, u
n
s ) dW ◦

s − 1

2

∫ t

0

|r(s,Xs, u
n
s )|2 ds

)
,

Mt = exp

(∫ t

0

r(s,Xs, u(s,Xs)) dW
◦
s − 1

2

∫ t

0

|r(s,Xs, u(s,Xs))|2 ds

)
,

Wn
t = W ◦

t −
∫ t

0

r(s,Xs, u
n
s ) ds,

Wt = W ◦
t −

∫ t

0

r(s,Xs, u(s,Xs)) ds.

D
ow

nl
oa

de
d 

12
/2

0/
17

 to
 1

29
.2

0.
36

.1
17

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p
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By the previous estimates, Mn, M , Wn, and W are well defined; moreover,∫ T

0

|r(s,Xs, u
n
s ) − r(s,Xs, u(s,Xs))|2 ds → 0, P◦-a.s.,

and consequently Mn
T → MT in probability and supt∈[0,T ] |Wn

t −Wt| → 0, P◦-a.s. We
will conclude the proof by showing that there exists a probability P such that W is a
Wiener process with respect to P and (F◦

t ).
The definition of τn and the Novikov condition implies that E◦Mn

T = 1. Setting
dPn = Mn

T dP◦, by the Girsanov theorem Wn is a Wiener process with respect to Pn

and (F◦
t ). Writing the backward equation with respect to Wn, we obtain

Yτn = Y0 +

∫ τn

0

−ψ(t,Xt, Zt) dt +

∫ τn

0

Zt dW
n
t +

∫ τn

0

Zt · r(t,Xt, u
n
t ) dt.

Arguing as in the proof of Proposition 4.1, we conclude that the stochastic integral
has zero expectation with respect to Pn. Taking into account that un

t = u(t,Xt) for
t ≤ τn, we obtain

EnYτn + En

∫ τn

0

g(t,Xt, u(t,Xt)) dt

= Y0 + En

∫ τn

0

[−ψ(t,Xt, Zt) + Zt · r(t,Xt, u(t,Xt)) + g(t,Xt, u(t,Xt))] dt

= Y0,

with the last equality coming from the definition of u. Recalling that Y is nonnegative,
it follows that

En

∫ τn

0

g(t,Xt, u(t,Xt)) dt ≤ C

for some constant C independent of n. By (2.10) we also deduce

En

∫ τn

0

|u(t,Xt)|2 dt ≤ C.(5.10)

Next we prove that the family {Mn
T , n = 1, 2, . . . } is uniformly integrable by

showing that E◦[Mn
T 1{Mn

T>c}] → 0 as c → ∞, uniformly with respect to n. We have

E◦[Mn
T 1{Mn

T>c}] = E◦[Mn
T 1{Mn

T>c,τn=T}] + E◦[Mn
T 1{Mn

T>c,τn<T}].(5.11)

The first term in the right-hand side tends to 0 uniformly with respect to n, since

E◦[Mn
T 1{Mn

T>c,τn=T}] = E◦[MT 1{MT>c,τn=T}] ≤ E◦[MT 1{MT>c}] → 0,

due to the fact that the equality E◦Mn
T = 1 and the Fatou lemma imply that E◦MT ≤

1. The second term in the right-hand side of (5.11) can be estimated as follows:

E◦[Mn
T 1{Mn

T>c,τn<T}] ≤ E◦[Mn
T 1τn<T}] = Pn(τn < T )

≤ Pn

(∫ τn

0

|u(t,Xt)|2dt > n

)
≤ 1

n
En

∫ τn

0

|u(t,Xt))|2dt ≤
C

n
,

with the last inequality coming from (5.10). The required uniform integrability follows
immediately. Recalling that Mn

T → MT in probability, we conclude that E◦|Mn
T −

MT | → 0, and in particular E◦MT = 1, and M is a P◦-martingale. Thus we can define
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1294 MARCO FUHRMAN, YING HU, AND GIANMARIO TESSITORE

a probability P by setting dP = MT dP◦, and by the Girsanov theorem we conclude
that W is a Wiener process with respect to P and (F◦

t ).
It remains to prove (5.6). We define stopping times

σn = inf

{
t ∈ [0, T ] :

∫ t

0

|Zs|2ds > n

}
,

with the convention that σn = T if the indicated set is empty. Writing the backward
equation with respect to W , we obtain

Yσn
= Y0 +

∫ σn

0

−ψ(t,Xt, Zt) dt +

∫ σn

0

Zt dWt +

∫ σn

0

Zt · r(t,Xt, u(t,Xt)) dt,

from which we deduce that

EYσn
+ E

∫ σn

0

g(t,Xt, u(t,Xt)) dt

= Y0 + E

∫ σn

0

[−ψ(t,Xt, Zt) + Zt · r(t,Xt, u(t,Xt)) + g(t,Xt, u(t,Xt))] dt

= Y0,

with the last equality coming from the definition of u. Recalling that Y is nonnegative,
it follows that

E

∫ σn

0

g(t,Xt, u(t,Xt)) dt ≤ C

for some constant C independent of n. By (2.10) and by sending n to infinity, we
finally prove (5.6).

Corollary 5.3. By Corollary 4.2 it immediately follows that if X is the solution
to (5.4) and we set u�

s = u(s,Xs), then J(x, u�) = v(0, x), and consequently X is an
optimal state, u�

s is an optimal control, and u is an optimal feedback.
Next we prove uniqueness in law for the closed loop equation. We remark that

condition (5.5) is part of our definition of a weak solution.
Proposition 5.4. Assume that b, σ, g, φ satisfy Hypothesis 2.1. Fix γ : [0, T ] ×

Rn×Rd → K satisfying (5.2) (and consequently (5.3)) and let u(t, x) = γ(t, x, ζ(t, x)).
Then the weak solution of the closed loop equation (5.4) is unique in law.

Proof. Let (Ω,F ,P), (Ft), W , X be a weak solution of (5.4).
Let us define

MT = exp

(
−
∫ T

0

r(s,Xs, u(s,Xs)) dWs −
1

2

∫ T

0

|r(s,Xs, u(s,Xs))|2 ds

)
,

W ◦
t = Wt +

∫ t

0

r(s,Xs, u(s,Xs)) ds.

By (2.7) and (5.5), MT and W ◦ are well defined. We claim that EMT = 1. Assuming
the claim for a moment, and setting dP◦ = MT dP, by the Girsanov theorem W ◦ is a
Wiener process under P◦, X solves{

dXt = b(t,Xt) dt + σ(t,Xt) dW
◦
t , t ∈ [0, T ],

X0 = x,
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and

MT = exp

(
−
∫ T

0

r(s,Xs, u(s,Xs)) dW
◦
s +

1

2

∫ T

0

|r(s,Xs, u(s,Xs))|2 ds

)
.

By the Lipschitz and linear growth conditions on b and σ (see (2.3), (2.4), (2.5)) the
law of (X,W ◦) under P◦ is uniquely determined by b, σ, x. Taking into account the
last displayed formula, we conclude that the law of (X,W ◦,MT ) under P◦ is also
uniquely determined, and consequently so is the law of X under P.

To conclude the proof it remains to show that EMT = 1. We define stopping
times

τn = inf

{
t ∈ [0, T ] :

∫ t

0

|u(s,Xs)|2ds > n

}
,

with the convention that τn = T if the indicated set is empty. By (5.5), for P-almost
every ω ∈ Ω, there exists an integer N(ω) depending on ω such that τn(ω) = T for
n ≥ N(ω). Let us fix u0 ∈ K, and for every n, let us define

un
t = u(t,Xt) 1t≤τn + u0 1t>τn ,

Mn
T = exp

(
−
∫ T

0

r(s,Xs, u
n
s ) dWs −

1

2

∫ T

0

|r(s,Xs, u
n
s )|2 ds

)
.

By (2.7) and the definition of τn, the Novikov condition shows that EMn
T = 1. More-

over, we have ∫ T

0

|r(s,Xs, u
n
s ) − r(s,Xs, u(s,Xs))|2 ds → 0, P-a.s.,

and consequently Mn
T → MT in probability. In order to conclude the proof it is

therefore enough to show that the family {Mn
T , n = 1, 2, . . . } is uniformly integrable.

To prepare for this, let us set dPn = Mn
T dP and note that, by the Girsanov

theorem, the process

Wn
t = Wt +

∫ t

0

r(s,Xs, u
n
s ) ds

is a Wiener process under Pn. Since X solves{
dXt = b(t,Xt) dt + σ(t,Xt) dW

n
t , t ∈ [0, T ],

X0 = x,

it follows that X is adapted to the Brownian filtration (Fn
t ) associated to Wn, and

its law under Pn is uniquely determined by b, σ, x. In particular, the quantities

C ′ := En

∫ T

0

|Xt|2 dt, C ′′ := En

∫ T

0

|ζ(t,Xt)|2 dt

do not depend on n (here En denotes, of course, the expectation with respect to Pn).
C ′ is clearly finite. By Proposition 3.2, setting Zt = ζ(t,Xt), we have

En

∫ T

0

|ζ(t,Xt)|2 dt = En

∫ T

0

|Zt|2 dt < ∞,

and it follows that C ′′ is also finite.
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Now let us prove the uniform integrability of the family {Mn
T , n = 1, 2, . . . } by

showing that E[Mn
T 1{Mn

T>c}] → as c → ∞, uniformly with respect to n. We have

E[Mn
T 1{Mn

T>c}] = E[Mn
T 1{Mn

T>c,τn=T}] + E[Mn
T 1{Mn

T>c,τn<T}].(5.12)

The first term in the right-hand side tends to 0 uniformly with respect to n, since

E[Mn
T 1{Mn

T>c,τn=T}] = E[MT 1{MT>c,τn=T}] ≤ E[MT 1{MT>c}] → 0,

due to the fact that the equality EMn
T = 1 and the Fatou lemma imply that EMT ≤ 1.

The second term in the right-hand side of (5.12) can be estimated as follows:

E[Mn
T 1{Mn

T>c,τn<T}] ≤ E[Mn
T 1τn<T}] = Pn(τn < T )

≤ Pn

(∫ τn

0

|u(t,Xt)|2dt > n

)
≤ 1

n
En

∫ τn

0

|u(t,Xt)|2dt ≤
1

n
En

∫ T

0

|u(t,Xt)|2dt.

By (5.3) we have

|u(t,Xt)|2 = |γ(t,Xt, ζ(t,Xt))|2 ≤ C(1 + |Xt|2 + |ζ(t,Xt)|2)

for some constant C, and it follows that

E[Mn
T 1{Mn

T>c,τn<T}] ≤
C

n
En

∫ T

0

(1 + |Xt|2 + |ζ(t,Xt)|2) dt =
C

n
(T + C ′ + C ′′),

with C ′ and C ′′ defined as above. The required uniform integrability follows imme-
diately, and this concludes the proof.
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