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Linear independence and coherence of Gabor systems in finite dimensional spaces

This paper reviews recent results on the geometry of Gabor systems in finite dimensions. For example, we discuss the coherence of Gabor systems, the linear independence of subsets of Gabor systems, and the condition number of matrices formed by a small number of vectors from a Gabor system. We state a result on the recovery of signals that have a sparse representation in certain Gabor systems.

Introduction and Notation

The theory of Gabor systems in the Hilbert space of square integrable functions on the real line has received significant attention during the last ten to twenty years (see, for example, [START_REF] Christensen | An introduction to frames and Riesz bases[END_REF][START_REF] Feichtinger | Gabor Analysis and Algorithms: Theory and Applications[END_REF][START_REF] Gröchenig | Foundations of Time-Frequency Analysis[END_REF][START_REF]Advances in Gabor Analysis[END_REF] and references within). Much of the research concentrates on showing that certain Gabor systems are frames or Riesz bases for their closed linear span. The seemingly simpler concept of linear independence of vectors in a Gabor system was addressed in [START_REF] Heil | Linear independence of time-frequency translates[END_REF]. There, it was conjectured that any finite set of time-frequency shifted copies of a single square integrable function is linear independent. This conjecture still remains to be resolved. In the last years, in part due to the emergence of the theory of compressed sensing and sparse signal recovery, the structure of Gabor systems in finite dimensional spaces has received increased attention. Such finite Gabor systems on finite Abelian groups are described below. We let G denote a finite Abelian group. Its dual group G consists of the group homomorphisms ξ : G → S 1 . We have G ⊆ C G = {f : G -→ C}, the latter being the space of complex valued functions on G. The sup-

port size of f ∈ C G is f 0 := |{x : f (x) = 0}|. The Fourier transform of f ∈ C G is normalized to be f (ξ) = x∈G f (x) ξ(x), ξ ∈ G.
Translation operators T x , x ∈ G, and modulation operators M ξ , ξ ∈ G, on C G are unitary operators given by

(T x f )(t) = f (t -x) and (M ξ f )(t) = f (t) • ξ(t). Time- frequency shift operators π(λ), λ = (x, ξ) ∈ G × G, are the unitary operator on C G represented by π(λ)f = T x • M ξ f , λ = (x, ξ) ∈ G × G. The system {π(λ)g : λ ∈ G × G} ⊆ C G is called (full) Gabor system with window g ∈ C G , it consists of |G| 2 vectors in a |G| dimensional space.
The short-time Fourier transform with respect to g is given by

V g f (λ) = f, π(λ)g = y∈G f (y)g(y -x)ξ(y), f ∈ C G , λ = (x, ξ) ∈ G × G.
We shall not make a distinction between the linear mapping V g : C G -→ C G× G and its matrix representation with respect to the Euclidean basis. Full Gabor systems in finite dimensions share an important and very useful property: for any g = 0, the collection {π(λ)g} λ∈G× G forms a uniform tight finite frame for C G with frame bound n 2 g 2 , that is,

λ∈G× G | f, π(λ)g | 2 = n 2 g 2 f 2 .
This is a simple consequence of the representation theory of the Weyl-Heisenberg group [START_REF] Grossmann | Transforms associated to square integrable group representations. I. General results[END_REF][START_REF] Lawrence | Linear independence of Gabor systems in finite dimensional vector spaces[END_REF]. In this paper we are concerned with properties of subsets of full Gabor systems. In Section 2, we consider the linear independence of subsets of |G| elements of {π(λ)g} λ∈G× G . Recall that a finite set of vectors in C G is in general linear position if any subset of at most |G| of these vectors are linearly independent. While being a classical concept in mathematics, it is also relevant for communications, namely, for information transmission through a so-called erasure channel [START_REF] Peter | Equal-norm tight frames with erasures[END_REF]. In fact, a frame

F = {x k } m
k=1 in C n is called maximally robust to erasures if the removal of any l ≤ m -n vectors from F leaves a frame. Moreover, we consider the coherence of Gabor systems in Section 3. We state probabilistic estimates of the coherence of a full Gabor system with respect to a randomly generated window. In Section 4, we consider the condition number of matrices formed by a small subset of a Gabor system. The results presented below were obtained over the last few years in collaboration with Jim Lawrence and David Walnut [START_REF] Lawrence | Linear independence of Gabor systems in finite dimensional vector spaces[END_REF], Felix Krahmer and Peter Rashkov [START_REF] Krahmer | Uncertainty principles for time-frequency representations on finite abelian groups[END_REF], and Holger Rauhut and Jared Tanner [START_REF] Pfander | Identification of matrices having a sparse representation[END_REF][START_REF] Pfander | Sparsity in timefrequency representations[END_REF].

Gabor systems in general linear position

The following simple observations illustrate the usefulness of Gabor systems which are in general linear position.

Proposition 1 [START_REF] Krahmer | Uncertainty principles for time-frequency representations on finite abelian groups[END_REF][START_REF] Lawrence | Linear independence of Gabor systems in finite dimensional vector spaces[END_REF] For g ∈ C G \ {0}, the following are equivalent:

1. {π(λ)g} λ∈G× G are in general linear position.

For all

f ∈ C G \{0} we have V g f ≥ |G| 2 -|G|+1.
3. For all f ∈ C G , V g f is completely determined by its values on any set Λ with |Λ| = n.

4. {π(λ)g} λ∈G× G is maximally robust to erasures.

5. The |G| × |G| 2 matrix V g has the property that every minor of order n is nonzero.

Corollary 2 [START_REF] Lawrence | Linear independence of Gabor systems in finite dimensional vector spaces[END_REF] If {π(λ)g} λ∈G× G are in general linear position, then g 0 = |G| and g 0 = |G|.

Unfortunately, not each finite Abelian groups G permits the existence of a vector g ∈ C G satisfying one and therefore all conditions listed in Proposition 1. For example, for the group

G = Z 2 × Z 2 , no such g exists [11]. The situation is different for G = Z p . Recall that E is of full measure if the Lebesgue measure of C G \ E is 0. Theorem 3 [12] If |G| is prime, that is, G = Z p , p prime,
then there is a dense open set E of full measure in C G such that for every g ∈ E, the elements of the full Gabor system {π(λ)g} λ∈G× G are in general linear position. That is, for almost all g we have V g f ≥ |G| 2 -|G|+1 for all f = 0.

Rudimentary numerical experiments encourage us to ask the following question.

Question 4 [START_REF] Lawrence | Linear independence of Gabor systems in finite dimensional vector spaces[END_REF] For G cyclic, that is, G = Z n , n ∈ N, exists g ∈ C G so that the conclusions of Proposition 1, and, therefore,

V g f ≥ |G| 2 -|G| + 1, f ∈ C G , hold
In fact, for |G| prime, Theorem 3 can be strengthened.

Theorem 5 [START_REF] Krahmer | Uncertainty principles for time-frequency representations on finite abelian groups[END_REF] Let G = Z p , p prime. For almost every g ∈ C G , we have

V g f 0 ≥ |G| 2 -f 0 + 1 ( 1 
)
for all f ∈ C G \ {0}. Moreover, for 1 ≤ k ≤ |G| and 1 ≤ l ≤ |G| 2 with k + l ≥ |G| 2 + 1 there exists f with f 0 = k and V g f 0 = l.
Proposition 6 [START_REF] Krahmer | Uncertainty principles for time-frequency representations on finite abelian groups[END_REF] If |G| is not prime, then V g has zero minors for all g ∈ C G . Hence, there is no g ∈ C G such that (1) holds for all f ∈ C G .

Numerical experiments for Abelian groups of order less than or equal to 8, as well as our result for all cyclic groups of prime order, indicate that the following question might have an affirmative answer.

Question 7 [START_REF] Krahmer | Uncertainty principles for time-frequency representations on finite abelian groups[END_REF] For every cyclic group G and almost every g ∈ C G , does

( f 0 , V g f 0 ), f ∈ C G \{0} = ( f 0 , f 0 +|G| 2 -|G| ), f ∈ C G \{0} hold?
The following result improves on Theorem 5. It allows for the construction of Gabor based equal norm tight frames of p 2 elements in C n , n ≤ p. To our knowledge, the only previously known equal norm tight frames that are maximally robust to erasures are so-called harmonic frames (see Conclusions in [START_REF] Peter | Equal-norm tight frames with erasures[END_REF]).

Proposition 8 [START_REF] Krahmer | Uncertainty principles for time-frequency representations on finite abelian groups[END_REF] There exists a unimodular g ∈ C Zp , p prime, that is, a g with |g(x)| = 1 for all x ∈ G satisfying the conclusions of Theorem 5.

To construct an equal norm tight frame, we choose a g ∈ (S 1 ) p satisfying the conclusions of Proposition 8. We remove p -n components of the equal norm tight frame {π(λ)g} λ∈G× G . The resulting frame remains an equal norm tight frame which is maximally robust to erasure. Note that this frame is not a Gabor frame proper.

Reducing the number of vectors in the frame to m ≤ p 2 vectors leaves an equal norm frame which is maximally robust to erasure but which might not be tight. With the restriction to frames with p 2 elements, p prime, we have shown the existence of Gabor frames which share the usefulness of harmonic frames when it comes to transmission of information through erasure channels.

Background and more details on frames and erasures can be found in [START_REF] Peter | Equal-norm tight frames with erasures[END_REF][START_REF] Strohmer | Grassmannian frames with applications to coding and communication[END_REF] and the references cited therein.

Note that Theorem 5 has as direct consequence

Theorem 9 [START_REF] Krahmer | Uncertainty principles for time-frequency representations on finite abelian groups[END_REF] Let g ∈ C Zp , p prime, satisfy the conclusion of Theorem 5. Then any f ∈ C Zp with f 0 ≤ 1 2 |Λ|, Λ ⊂ Z p × Z p , is uniquely determined by Λ and r Λ V g f .

Here, only the support size of f is known. No additional information on the support of f is required to determine f . In terms of sparse representations, we consider the question whether any vector f = λ∈Λ c λ π(λ)g can be determined by a few entries of f in case that |Λ| is small. Note that similar to before, the efficient recovery of f from 2|Λ| samples of f in Theorem 10 does not require knowledge of Λ. The question asking how to recover f from a small number of entries of f efficiently will be briefly addressed with Theorem 14

Coherence of Gabor systems

In the following we restrict our attention to cyclic groups G = Z n , n ∈ N. We consider the so-called Alltop window h A [START_REF] Strohmer | Grassmannian frames with applications to coding and communication[END_REF] with entries

h A (x) = 1 √ n e 2πix 3 /n , x = 0, . . . , n-1, (2) 
and the randomly generated window h R with entries

h R (x) = 1 √ n x , x = 0, . . . , n-1, (3) 
where the x are independent and uniformly distributed on the torus {z ∈ C, |z| = 1}.

For h 2 = 1, the coherence of a full Gabor systems is µ = max

( ,p) =( ,p ) | M T p h, M T p h |. (4) 
In [START_REF] Strohmer | Grassmannian frames with applications to coding and communication[END_REF] it is shown that the coherence of {π(λ)h A : λ ∈

Z n × Z n } ⊆ C n given in (2) satisfies µ = 1 √ n (5) 
for n prime. This is close to optimal since as the lower bound for the coherence of frames with n 2 elements in C n is µ ≥ 1 √ n+1 [START_REF] Strohmer | Grassmannian frames with applications to coding and communication[END_REF]. Unfortunately, the coherence (4) of h A applies only for n prime. For arbitrary n we now consider the random window h R .

Theorem 11 [START_REF] Pfander | Identification of matrices having a sparse representation[END_REF] Let n ∈ N and choose a random window h R with entries

h R (x) = 1 √ n x , x = 0, . . . , n-1,
where the x are independent and uniformly distributed on the torus {z ∈ C, |z| = 1}. Let µ be the coherence of the associated Gabor dictionary (4), then for α > 0 and n even,

P µ ≥ α √ n ≤ 4n(n-1)e -α 2 /4
, while for n odd,

P µ ≥ α √ n ≤ 2n(n-1) e -n-1 n α 2 /4 + e -n+1 n α 2 /4 . (6) 
Up to the constant factor α, the coherence in Theorem 11 comes close to the lower bound µ ≥ 1 √ n+1 with high probability. (The probability depends on α).

Conditioning of submatrices of V g

For applications such as sparse signal recovery, not only linear independence of subsets of Gabor systems is required. It is rather needed, that small subsets of Gabor systems form well-conditioned matrices. Throughout this section, we let Ψ = V g ∈ C n×n 2 with g = h R being the randomly generated unimodular window described in (3). For Λ ⊆ G× G we denote by Ψ Λ the matrix consisting only of those columns indexed by λ ∈ Λ.

Theorem 12 [START_REF] Pfander | Sparsity in timefrequency representations[END_REF] Let ε, δ ∈ (0, 1) and |Λ| = S. Suppose that S ≤ δ 2 n 4e(log(S/ε) + c) [START_REF]Advances in Gabor Analysis[END_REF] with c = log(e 2 /(4(e-1))) ≈ 0.0724. Then I Λ -Ψ * Λ Ψ Λ ≤ δ with probability at least 1 -ε; in other words the minimal and maximal eigenvalues of Ψ * Λ Ψ Λ satisfy 1 -δ ≤ λ min ≤ λ max ≤ 1 + δ with probability at least 1 -ε.

Remark 13 [START_REF] Pfander | Sparsity in timefrequency representations[END_REF] Assuming equality in condition [START_REF]Advances in Gabor Analysis[END_REF] and solving for ε we deduce 

P I Λ -Ψ * Λ Ψ Λ > δ) ≤
where x 1 = λ∈Z 2 n |x λ | is the 1 -norm of x. Efficient convex optimization techniques for Basis Pursuit can be found in [START_REF] Boyd | Convex Optimization[END_REF][START_REF] Chen | Atomic decomposition by Basis Pursuit[END_REF][START_REF] Donoho | Fast solution of l1-norm minimization problems when the solution may be sparse[END_REF].

Theorem 14 [START_REF] Pfander | Sparsity in timefrequency representations[END_REF] Assume x is an arbitrary S-sparse coefficient vector. Choose the random unimodular Gabor window g = h R defined in [START_REF] Chen | Atomic decomposition by Basis Pursuit[END_REF], that is, with random entries independently and uniformly distributed on the torus {z ∈ C, |z| = 1}. Assume that

S ≤ C n log(n/ε) (9) 
for some constant C. Then with probability at least 1 -ε Basis Pursuit (8) recovers x from y = Ψx = Ψ g x.

Theorem 10 [ 11 ]
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 1 CS exp -δ 2 n 4eS with C ≈ 1.075. Theorem 12 allows us to guarantee the successful use of efficient algorithms to determine f = λ∈Λ c λ π(λ)g from a few entries of f in case that |Λ| is small. Here, we will concentrate on algorithms based on Basis Pursuit. Basis Pursuit seeks the solution of the convex problem min x subject to Ψ g x = y,