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Abstract:

Considering previous constructions of pairs of dual Gabor
frames, we discuss ways to reduce the redundancy. The
focus is on B-spline type windows.

1. Introduction

We will consider Gabor systems inL2(R), i.e., families of
functions{EmbTng}m,n∈Z, where

EmbTng(x) := e2πimbxg(x − na).

If there exists a constantB > 0 such that
∑

m,n∈Z

|〈f, EmbTng〉|2 ≤ B ||f ||2, ∀f ∈ L2(R),

then{EmbTng}m,n∈Z is called a Bessel sequence. If there
exist two constantsA, B > 0 such that

A ||f ||2 ≤
∑

m,n∈Z

|〈f, EmbTng〉|2 ≤ B ||f ||2, ∀f ∈ L2(R),

then {EmbTng}m,n∈Z is called a frame. If
{EmbTng}m,n∈Z is a frame with dual frame
{EmbTnh}m,n∈Z, then

f =
∑

m,n∈Z

〈f, EmbTnh〉EmbTng, f ∈ L2(R),

where the series expansion converges unconditionally in
L2(R).
Our starting point is the duality condition for Gabor
frames, originally due to Ron and Shen [4]. We use the
version due to Janssen [3]:

Lemma 1..1 Two Bessel sequences{EmbTng}m,n∈Z and
{EmbTnh}m,n∈Z form dual Gabor frames forL2(R) if
and only if

∑

k∈Z

g(x − n/b + k)h(x + k) = bδn,0 (1..1)

for a.e.x ∈ [0, 1].

The Bessel condition in Lemma 1..1 is always satisfied
for bounded windows with compact support, see [1]. Note
that if g and h have compact support, we only need to
check a finite number of conditions in (1..1). In this paper
we will usually chooseb so small that only the condition
for n = 0 has to be verified.

2. The range 1
2N−1 < b < 1

N

We first cite a result from [2]. It yields an explicit con-
struction of dual Gabor frames:

Theorem 2..1 Let N ∈ N. Let g ∈ L2(R) be a real-
valued bounded function with suppg ⊂ [0, N ], for which

∑

n∈Z

g(x − n) = 1. (2..1)

Let b ∈]0, 1
2N−1 ]. Consider any scalar sequence

{an}
N−1
n=−N+1 for which

a0 = b and an + a−n = 2b, n = 1, 2, · · ·N − 1, (2..2)

and defineh ∈ L2(R) by

h(x) =

N−1
∑

n=−N+1

ang(x + n). (2..3)

Theng andh generate dual frames{EmbTng}m,n∈Z and
{EmbTnh}m,n∈Z for L2(R).

The above result can be extended:

Corollary 2..2 Consider anyb ≤ 1/N. With g andan as
in Theorem 2..1, the function

h(x) =

(

N−1
∑

n=−N+1

ang(x + n)

)

χ[0,N ](x) (2..4)

is a dual frame generator ofg.

Proof. Consider the condition (1..1) forn = 0; only the
values ofh(x) for x ∈ [0, N ] play a role, so since the
condition holds for the function in (2..3), it also holds for
the function in (2..4). �

The cut-off in (2..4) yields a non-smooth function. How-
ever, for anyb < 1/N, we might modifyh slightly and
obtain a smooth dual generator:
In particular, we obtain the following:

Corollary 2..3 Consider anyb < 1/N, and takeǫ <
1/b − N. With g as in Theorem 2..1, the functionh(x) =
b, x ∈ [0, N ] has an extension to a function of desired
smoothness, supported on[−ǫ, N + ǫ], which is a dual
frame generator ofg.



Proof. The choicean = b, n = −N + 1, . . . , N − 1,
leads to

N−1
∑

n=−N+1

ang(x + n) = b, x ∈ [0, N ].

Given ǫ < 1/b − N and any functionsφ1 : [−ǫ, 0[→ R

andφ2 :]N, N + ǫ] → R, the function

h(x) =



















φ1(x), x ∈ [−ǫ, 0[,
∑N−1

n=−N+1 ang(x + n) = b, x ∈ [0, N ],

φ2, x ∈]N, N + ǫ],

0, x /∈ [−ǫ, N + ǫ],

will satisfy (1..1); in fact, forn 6= 0, the support of the
functionsg(· ± n/b) andh are disjoint, and forn = 0
we are (for all relevant values ofx) back at the function in
(2..4). The functionsφ1 andφ2 can be chosen such that
the functionh has the desired smoothness. �

The assumptions in Theorem 2..1 are tailored to B-splines,
defined inductively by

B1 := χ[0,1], BN+1 := BN ∗ B1.

Direct calculations shows that

B2(x) =







x if x ∈ [0, 1],
2 − x if x ∈ [1, 2],
0 otherwise,

and

B3(x) =















1
2x2 if x ∈ [0, 1],
−x2 + 3x − 3

2 if x ∈ [1, 2],
1
2x2 − 3x + 9

2 if x ∈ [2, 3],
0 otherwise.

In general, the functionsBN are(N − 2)−times differ-
entiable piecewise polynomials (explicit expressions are
known). Furthermore, suppBN = [0, N ], and the parti-
tion of unity condition (2..1) is satisfied.
In caseg = BN , the dual generators in Theorem 2..1 are
splines, of the same smoothness asBN itself. By com-
pressing the function

∑N−1
n=−N+1 ang(x + n) from the in-

terval [−N + 1, 0] to [−ǫ, 0] and from [N, 2N − 1] to
[N, N + ǫ] we obtain a dual in (2..3) with the same fea-
tures:

Example 2..4 For the B-splineB3(x) andb = 1/5, The-
orem 2..1 yields the symmetric dual

h3(x) =
1

5































1/2 x2 + 2 x + 2, x ∈ [−2,−1[,
−1/2 x2 + 1, x ∈ [−1, 0[,
1, x ∈ [0, 3[,
−1/2 x2 + 3 x − 7/2, x ∈ [3, 4[,
1/2 x2 − 5x + 25/2, x ∈ [4, 5[,
0, x /∈ [0, 5[.

(2..5)
See Figure 1.
Now, for b = 1/4, we can use Corollary 2..3 forǫ <
4 − 3 = 1. Taking ǫ = 1/2, we compress the function
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Figure 1:B3 and the dual generatorh3 in (2..5).
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Figure 2: The functionh in (3..13)..

h3 in (2..5) from [−2, 0] to [−1/2, 0] and from[3, 5] to
[3, 31/2] and obtain the dual

h(x) =

1

4















































1/2 (4x)2 + 2 (4x) + 2, x ∈ [−1/2,−1/4[,
−1/2 (4x)2 + 1, x ∈ [−1/4, 0[,
1, x ∈ [0, 3[,
−1/2 (4(x − 3) + 3)2 + 3 (4(x − 3) + 3) − 7/2,

x ∈ [3, 3 + 1/4[,
1/2 (4(x − 3) + 3)2 − 5(4(x − 3) + 3) + 25/2,

x ∈ [3 + 1/4, 3 + 1/2[,
0, x /∈ [−1/2, 3 + 1/2[.

=
1

4































8 x2 + 8 x + 2, x ∈ [−1/2,−1/4[,
−8 x2 + 1, x ∈ [−1/4, 0[,
1, x ∈ [0, 3[,
−8 x2 + 48 x − 71, x ∈ [3, 3 + 1/4[,
8 x2 − 56 x + 98, x ∈ [3 + 1/4, 3 + 1/2[,
0, x /∈ [−1/2, 3 + 1/2[.

See Figure 2. �

3. B2 and 1/2 < b < 1

In the following discussion, we consider dual windows as-
sociated with a Gabor frame{EmbTnB2}m,n∈Z generated
by the B-splineB2. The arguments can be extended to
general functions supported on[0, 2]. Take any function
h with values specified only on[0, 2] and such that

∑

k∈Z

B2(x + k)h(x + k) = 1, x ∈ [0, 1]. (3..1)

In fact, due to the support ofB2, only the values forh(x)
for x ∈ [0, 2] play a role for that condition. We know that



for any b ≤ 1/2 the function generates – up to a certain
scalar multiple – a dual ofg.
Now consider any1/2 < b < 1; that is, we have1 <
1/b < 2.

Lemma 3..1 Assume thath(x), x ∈ [0, 2] is chosen such
that (3..1)is satisfied. The the following hold:

(i) If

∑

k∈Z

B2(x − 1/b + k)h(x + k) = 0, x ∈ R, (3..2)

and
∑

k∈Z

B2(x + 1/b + k)h(x + k) = 0, x ∈ R, (3..3)

then

B2(x − 1/b)h(x) + B2(x − 1/b + 1)h(x + 1) = 0,

x ∈ [1/b, 2], (3..4)

B2(x + 1/b − 1)h(x − 1) + B2(x + 1/b)h(x) = 0

x ∈ [0, 2 − 1/b]. (3..5)

These equations determineh(x) for

x ∈ [−1, 1 − 1/b] ∪ [1 + 1/b, 3].

(ii) If h(x) for x ∈ [−1, 1− 1/b]∪ [1 + 1/b, 3] is chosen
such that(3..4)and (3..5)are satisfied, and

h(x) = 0, x /∈ [0, 2] ∪ [−1, 1 − 1/b] ∪ [1 + 1/b, 3],

then(3..2)and(3..3)hold.

Proof. We consider (3..2) forx ∈ [1, 2], and split into two
cases:
Forx ∈ [1, 1/b], (3..2) yields that

0 = B2(x − 1/b + 1)h(x + 1)

+B2(x − 1/b + 2)h(x + 2); (3..6)

the equation only involveh(x) for

x ∈ [2, 1 + 1/b] ∪ [3, 2 + 1/b].

Forx ∈ [1/b, 2], (3..2) yields that

0 = B2(x − 1/b)h(x) + B2(x − 1/b + 1)h(x + 1);

sinceh(x) is known, this implies that

h(x + 1) =
−B2(x − 1/b)h(x)

B2(x − 1/b + 1)
, x ∈ [1/b, 2],

that is,

h(x) =
−B2(x − 1/b − 1)h(x − 1)

B2(x − 1/b)
, x ∈ [1/b + 1, 3].

Similarly, considering (3..3) for

x ∈ [0, 1] = [0, 2 − 1/b] ∪ [2 − 1/b, 1]

leads to (3..5) and

B2(x + 1/b − 2)h(x − 2) + B2(x + 1/b − 1)h(x − 1)

= 0, x ∈ [2 − 1/b, 1]; (3..7)

the equation (3..7) only involvesh(x) for

x ∈ [−1/b,−1]∪ [1 − 1/b, 0],

and (3..5) implies that

h(x − 1) =
−B2(x + 1/b)h(x)

B2(x + 1/b − 1)
, x ∈ [0, 2 − 1/b],

i.e.,

h(x) =
−B2(x + 1/b + 1)h(x + 1)

B2(x + 1/b)
, x ∈ [−1, 1 − 1/b].

For the proof of (ii), the condition

h(x) = 0, x /∈ [0, 2] ∪ [−1, 1 − 1/b] ∪ [1 + 1/b, 3],

implies that (3..6) and (3..7) are satisfied. By construction,
(3..2) and (3..3) are satisfied. �

Lemma 3..1 shows that if we want that (3..1), (3..2), and
(3..3) hold for someb ∈]1/2, 1], thenh in general will take
values outside[0, 2]. However, the proof shows that we
under certain circumstances can find a solutionh having
support in[0, 2]. In that case, the support will actually be
a subset of[0, 2]:

Corollary 3..2 Let b ∈]1/2, 1]. Assume that supph ⊆
[0, 2] and that(3..1)and (3..2)holds. Then

h(x) = 0, x ∈ [0, 2 − 1/b] ∪ [1/b, 2]. (3..8)

Proof. According to the proof of Lemma 3..1, we obtain
thath(x) = 0 on [1/b+1, 3]by requiring thath(x) = 0 for
x ∈ [1/b, 2]; and we obtain thath(x) = 0 on [−1, 1−1/b]
by requiring thath(x) = 0 for x ∈ [0, 2 − 1/b]. �

If supph ⊆ [0, 2], the condition (3..8) implies thath at
most can be nonzero on the interval[2 − 1/b, 1/b] having
length2/b − 2. In order for (3..1) to hold, this interval
must have length at least 1; thus, we need to considerb
such that2/b− 2 ≥ 1, i.e.,b ≤ 2/3. Note that ifb ≤ 2/3,
then2/b ≥ 3 : that is, becauseB2 andh are supported on
[0, 2], Janssen’s duality conditions in (1..1) are automati-
cally satisfied forn = ±2,±3, . . . .

Corollary 3..3 Considerb ∈]1/2, 2/3]. Then there exists
a functionh with supph ⊆ [0, 2] such that(3..1)and(3..2)
hold; andbh(x) is a dual generator ofB2 for these values
of b.



Proof. For x ∈ [0, 2 − 1/b] ∪ [1/b, 2], let h(x) = 0. For
x ∈ [0, 1], the equation (3..1) means that

xh(x) + (1 − x)h(x + 1) = 1.

This implies that

xh(x) = 1, x ∈ [1/b − 1, 1],

(1 − x)h(x + 1) = 1, x ∈ [0, 2 − 1/b];

that is,

h(x) =
1

x
, x ∈ [1/b − 1, 1], (3..9)

and

h(x) =
1

2 − x
, x ∈ [1, 3 − 1/b]. (3..10)

Finally, forx ∈ [2− 1/b, 1/b− 1] andx ∈ [3− 1/b, 1/b],
chooseh(x) such that

xh(x) + (1 − x)h(x + 1) = 1.

By construction,bh(x) is a dual generator. �

For b = 3/5 we will now explicitly construct a continu-
ous dual generatorh of B2 with support in[0, 2]. Putting
Corollary 3..2, (3..9), and (3..10) together, we can state a
result about how a dual window supported on[0, 2] must
look like on parts of[0, 2]:

Lemma 3..4 For b = 3/5, every dual generator ofB2

with support in[0, 2] has the form

h(x) =



















0 if x ≤ 1/3;
1
x

if x ∈ [2/3, 1];
1

2−x
if x ∈ [1, 4/3];

0 if x ≥ 5/3.

That is, we only have freedom on the definition ofh on
]1/3, 2/3[∪]4/3, 5/3[.

Note that on [2/3, 4/3], the function h is symmetric
aroundx = 1. We will now show that it is possible to
defineh on ]1/3, 2/3[∪]4/3, 5/3[ in such a way thath be-
comes symmetric aroundx = 1.
First, we note that this form of symmetry means that

h(1 − x) = h(1 + x), x ∈]1/3, 2/3[. (3..11)

Put together with the duality condition, we thus require
that

xh(x) = 1 − (1 − x)h(1 − x), x ∈]1/3, 2/3[. (3..12)

The condition (3..12) shows that must defineh(1/2) =
1. Now, taking any continuous functionh defined on
[1/3, 1/2] with the properties thath(1/3) = 0 and
h(1/2) = 1, the condition (3..12) shows how to de-
fine h(x) on ]1/2, 2/3[; and, finally, the condition (3..11)
shows how to defineh on ]4/3, 5/3[ such that the resulting
function is a symmetric dual generator.
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Figure 3: The functionh in (3..13)..

Put

h(x) = 6x − 2, x ∈ [1/3, 1/2].

Then, forx ∈ [1/2, 2/3],

h(x) =
1 − (1 − x)h(1 − x)

x

=
−6x2 + 10x − 3

x
.

The conditionh(1 + x) = h(1 − x), x ∈]1/3, 2/3[ can
also be expressed ash(x) = h(2 − x), x ∈]4/3, 5/3[.
Thus, forx ∈ [4/3, 3/2] we arrive at

h(x) = h(2 − x) =
−6x2 + 14x − 7

2 − x
, x ∈ [4/3, 3/2];

while, forx ∈ [3/2, 5/3],

h(x) = h(2 − x) = 6(2 − x) − 2 = 10 − 6x.

We have arrived at the following conclusion:

Lemma 3..5 For b = 3/5, the function

h(x) =



























































0 if x ≤ 1/3;

6x − 2 if x ∈ [1/3, 1/2];
−6x2+10x−3

x
if x ∈ [1/2, 2/3];

1
x

if x ∈ [2/3, 1];
1

2−x
if x ∈ [1, 4/3];

−6x2+14x−7
2−x

if x ∈ [4/3, 3/2];

10 − 6x if x ∈ [3/2, 5/3];

0 if x ≥ 5/3

(3..13)

is a continuous symmetric dual generator ofB2.
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[2] Christensen, O. and Kim, R. Y.:On dual Gabor
frame pairs generated by polynomials.J. Fourier
Anal. Appl., accepted for publication.

[3] Janssen, A.J.E.M.:The duality condition for Weyl-
Heisenberg frames.In ”Gabor analysis: theory
and applications” (eds. H.G. Feichtinger and T.
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