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Abstract:

Considering previous constructions of pairs of dual Gabor

2. Therange ;#— <b< +

frames, we discuss ways to reduce the redundancy. Th&Ve first cite a result from [2]. It yields an explicit con-

focus is on B-spline type windows.

1. Introduction

We will consider Gabor systems it?(R), i.e., families of

functions{ E,.,s 709 }m.nez, Where
EppTng(z) := 2™ g(z — na).

If there exists a consta® > 0 such that

> W EmTug)? < BIIfI?, Vf € L*(R),

m,n€Z

then{ E,,,,Tg}m nez is called a Bessel sequence. If there
exist two constantgl, B > 0 such that

AIFIP < Y0 [ EmoTug)l” < BIIfII?, Vf € L*(R),

m,nez
then {E,1Tng}mnez Iis called a frame. If
{EmsThng}tmmnez is a frame with dual frame

{Emanh}m,nEZa then

f= Y (f EmTuh)EniTog, f € L*(R),

m,n€”Z

where the series expansion converges unconditionally in

L?(R).
Our starting point is the duality condition for Gabor

struction of dual Gabor frames:

Theorem2.1 Let N € N. Letg € L%*(R) be a real-
valued bounded function with sugpc [0, V], for which

Zg(z —n)=1. (2..1)
ne
Let b €]0, 55—]. Consider any scalar sequence

{an}N "y, forwhich
a=banda,+a_, =20, n=1,2,---N —1,(2..2)
and definer € L?(R) by

N-1

Z ang(x +n).

n=—N-+1

h(z)

(2..3)

Theng andh generate dual frame§E., ., T}, g }m nez and
{Emanh}m,neZ for LQ(R)

The above result can be extended:
Corollary 2..2 Consider anyp < 1/N. With g anda,, as
in Theorem 2..1, the function

N-1

h(z) = < >
n=—N+1

ang(z + ”)) Xpo.n)(7)  (2..4)

frames, originally due to Ron and Shen [4]. We use the s 3 dual frame generator af.

version due to Janssen [3]:

Lemma1..1 Two Bessel sequencgB.,,,1,g}m, nez and
{EmpTnh}mnez form dual Gabor frames for.?(R) if
and only if

> gl@—n/b+k)h(z + k)

keZ

bno  (1.1)

fora.e.xz € [0,1].

Proof. Consider the condition (1..1) far = 0; only the
values ofh(z) for z € [0, N] play a role, so since the
condition holds for the function in (2..3), it also holds for
the function in (2..4). O

The cut-off in (2..4) yields a non-smooth function. How-
ever, for anyb < 1/N, we might modifyh slightly and
obtain a smooth dual generator:

In particular, we obtain the following:

The Bessel condition in Lemma 1..1 is always satisfied

for bounded windows with compact support, see [1]. Note Corollary 2..3 Consider anyb < 1/N, and takee <
that if ¢ and h have compact support, we only need to 1/b — N. With g as in Theorem 2..1, the functidriz)
check a finite number of conditions in (1..1). In this paper b,2 € [0, N] has an extension to a function of desired
we will usually choosé so small that only the condition smoothness, supported ¢re, N + €|, which is a dual
for n = 0 has to be verified. frame generator of.



Proof. The choicea,, = b, n = —-N+1,...,N — 1,
leads to

N-1

Z ang(z+n)="b, z € [0, N].

n=—N+1

Givene < 1/b — N and any function®; : [—¢,0[— R
andg¢s :]N, N + ¢] — R, the function

¢71( ) x € [_650[5

N-1

W) = Yo nNg10ng(x+n) =0, x€l0,N],

o2, x €]N, N + ¢,

07 T ¢ [765N+6]7

will satisfy (1..1); in fact, forn # 0, the support of the
functionsg(- £ n/b) andh are disjoint, and fom = 0
we are (for all relevant values a) back at the function in
(2..4). The functiong); and ¢, can be chosen such that
the functionh has the desired smoothness. O
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The assumptions in Theorem 2..1 are tailored to B-splines, ° { : : 4

defined inductively by
B1 = X]0,1]» BN+1 = BN * Bl.

Direct calculations shows that

x if x €10,1],

By(z) = 2—z ifzell,2],

0 otherwise,

and
1z? if x €10,1],
_ 22 +3z -2 ifrell,2],
Bs(w) = 11:2—31:—1—%2 if x € [2,3],
0 otherwise.

In general, the function®y are (N — 2)—times differ-

entiable piecewise polynomials (explicit expressions are

known). Furthermore, supBy = [0, V], and the parti-
tion of unity condition (2..1) is satisfied.

In caseg = By, the dual generators in Theorem 2..1 are
splines, of the same smoothnesslﬁs itself. By com-
pressing the functloEniN+1 ang(xz +n) fromthe in-
terval [N + 1,0] to [—¢,0] and from[N,2N — 1] to
[N, N + €] we obtain a dual in (2..3) with the same fea-
tures:

Example 2.4 For the B-splineBs(x) andb = 1/5, The-
orem 2..1 yields the symmetric dual

1/22% 42z + 2, x € [-2,—1],
—1/22%+1, ze[-1,0],
1] 1, z €10,3],

ha(@) = = —1/22%2+32—7/2, z€[3,4],

1/2 2% -5z +25/2, x€[4,5],

0, xz ¢ 10,5[.

(2..5)

See Figure 1.

Now, forb = 1/4, we can use Corollary 2..3 far <
4 —3 = 1. Takinge = 1/2, we compress the function

Figure 2: The functiork in (3..13)..

hs in (2..5) from[—2,0] to [-1/2,0] and from(3, 5] to
[3,31/2] and obtain the dual

h(z) =
1/2 (4z)? + 2 (4z) + 2, €[-1/2,-1/4],
—1/2 (42)? + 1, € [-1/4,0],
1, x € [0, 3],
1] —1/2(4(z—3)+3)*+3 (4(x —3)+3) — 7/2,
4 x € [3,341/4],
1/2 (4(x — 3) +3)% — 5(4(z — 3) + 3) + 25/2,
r€[3+1/4,34+1/2],
0, ¢[-1/2,3+1/2].
822 +8x+2, e [-1/2,-1/4],
—-8z% +1, € [-1/4,0],
_1) € [0,3],
T4 -8a2+48x—T1, xe[3,3+1/4],
8 22 — 56 = + 98, x6[3+1/4 3+1/2],
0, v [-1/2,3+1/2].
See Figure 2. O

3. Band1/2<b<1

In the following discussion, we consider dual windows as-

sociated with a Gabor fram{eZ,,, T, B2 } m nez generated

by the B-splineB,. The arguments can be extended to

general functions supported ¢ 2]. Take any function

h with values specified only off, 2] and such that
Y By +k)hz+k)=1,z€0,1. (3.1

keZ

In fact, due to the support d82, only the values foh(x)
for z € [0, 2] play a role for that condition. We know that



for anyb < 1/2 the function generates — up to a certain Similarly, considering (3..3) for

scalar multiple — a dual of.
Now consider anyi/2 < b < 1; that is, we have <
1/b< 2.

Lemma 3..1 Assume thak(z), = € [0, 2] is chosen such
that (3..1)is satisfied. The the following hold:

@) If

> By(z—1/b+k)h(z+k) =0, z €R, (3.2)
kEZ

and

> Ba(x+1/b+k)h(z+k) =0, z R, (3.3)
kEZ

then

Ba(z — 1/b)h(z) + Ba(z — 1/b+ 1)h(z + 1) = 0,

x € [1/b,2], (3..4)

By(x+1/b—1)h(x — 1)+ Ba(z + 1/b)h(z) =0

ze0,2—1/b]. (3..5)
These equations determihéz) for

z€[-1,1-1/b]U[1+1/b,3].

(i) If h(z)forz e [-1,1—1/bJU[1+ 1/b,3]is chosen
such that(3..4)and (3..5)are satisfied, and

h(z) =0,z ¢ [0,2]U[-1,1—1/bJU[1 4+ 1/b,3],
then(3..2)and(3..3)hold.

Proof. We consider (3..2) for. € [1, 2], and split into two
cases:
Forz € [1,1/b], (3..2) yields that

0 = Bo(x—1/b+1)h(x+1)

+By(z —1/b+2)h(z+2);  (3..6)

the equation only involvé(x) for
x€[2,1+1/b]U[3,2+ 1/b].

Forz € [1/b,2], (3..2) yields that

0= Ba(x — 1/b)h(x) + Ba(x — 1/b+ 1)h(z + 1);

sinceh(x) is known, this implies that

—By(z — 1/b)h(z)

Mo+ 1) =5 o i+ 1)

, x €[1/b,2],

that is,

_ —By(x—1/b—1)h(z - 1)
hz) = Ba(z — 1/b)

e [1/b+1,3).

x€[0,1]=[0,2—1/bJU[2—1/b,1]
leads to (3..5) and

By(x+1/b—2)h(x —2) + Ba(z +1/b—1)h(x — 1)

=0, z€2-1/b1]; (3..7)
the equation (3..7) only involves ) for
x €[-1/b,—1JU[1 —1/b,0],
and (3..5) implies that
Wz —1) = ;Z?f;l//bb)_hf)c)’ ze0,2—1/b],
ie.,
h(z) = —By(z+1/b+ 1)h(z + 1), rel11- 11

Bo(x +1/b)
For the proof of (ii), the condition
h(z) =0,z ¢ [0,2]U[-1,1—1/bJU[1+1/b,3],

implies that (3..6) and (3..7) are satisfied. By construmtio
(3..2) and (3..3) are satisfied. O

Lemma 3..1 shows that if we want that (3..1), (3..2), and
(3..3) hold for somé €]1/2, 1], thenh in general will take
values outsidg0, 2]. However, the proof shows that we
under certain circumstances can find a solufidmaving
support in[0, 2]. In that case, the support will actually be
a subset 0f0, 2]:

Corollary 3.2 Letb €]1/2,1]. Assume that supp C

[0, 2] and that(3..1)and(3..2)holds. Then
h(z) =0, x €[0,2—1/b]U[1/b,2]. (3..8)

Proof. According to the proof of Lemma 3..1, we obtain

thath(z) = 0on[1/b+1, 3] by requiring thak(x) = 0 for

x € [1/b,2]; and we obtain thai(z) =0on[—1,1—1/b]

by requiring that.(x) = 0 forz € [0,2 — 1/b)]. O

If supph C [0,2], the condition (3..8) implies that at
most can be nonzero on the inter{al- 1/b, 1/b] having
length2/b — 2. In order for (3..1) to hold, this interval
must have length at least 1; thus, we need to congider
suchtha/b—2 > 1,i.e.,b < 2/3. Note that ifb < 2/3,
then2/b > 3 : that is, becaus®; andh are supported on
[0, 2], Janssen’s duality conditions in (1..1) are automati-
cally satisfied fom = +2,+3, . ...

Corallary 3.3 Considerb €]1/2,2/3]. Then there exists
a functionh with supph C [0, 2] such tha(3..1)and(3..2)
hold; andbh(x) is a dual generator 0B, for these values
of b.



Proof. Forz € (0,2 —1/b]U[1/b,2], leth(z) = 0. For
x € [0, 1], the equation (3..1) means that

ah(z) + (1 —2)h(x + 1) = 1.

This implies that

th(®) = 1, zell/b-11]
(1—a)hz+1) = 1, z€[0,2—1/b];
thatis,
h(z) = é ze/b—1.1], (3.9)
and
M) = 5=, 2 € [1L,3-1/8] (3..10)

Finally, forxz € [2—1/b,1/b— 1] andz € [3—1/b,1/b],
chooseh(z) such that

zh(z) + (1 —2)h(x + 1) = 1.
By constructionph(z) is a dual generator. O

Forb = 3/5 we will now explicitly construct a continu-
ous dual generatdr of B, with support in[0, 2]. Putting

Corollary 3..2, (3..9), and (3..10) together, we can state Auhile forz e

result about how a dual window supported [6n2] must
look like on parts of0, 2]:

Lemma3.4 For b = 3/5, every dual generator 0B,
with support in[0, 2] has the form

0 if z <1/3;
1

h(z) if z € [2/3,1];
) =
—Qiz if z €[1,4/3];
0 ifz>5/3.

That is, we only have freedom on the definitiorhadn
11/3,2/3[U]4/3,5/3].

Note that on[2/3,4/3], the functionh is symmetric
aroundz = 1. We will now show that it is possible to
defineh on]1/3,2/3[U]4/3,5/3[in such a way that be-
comes symmetric aroungd= 1.

First, we note that this form of symmetry means that

h(l1—z)=h(l+x), z€]1/3,2/3.  (3..11)

Put together with the duality condition, we thus require

that
zh(z) =1— (1 —2)h(1 —z), v €]1/3,2/3[. (3..12)

The condition (3..12) shows that must defih@ /2) =
1. Now, taking any continuous functioh defined on
[1/3,1/2] with the properties that(1/3) = 0 and
h(1/2) =
fine h(x) on]1/2,2/3]; and, finally, the condition (3..11)
shows how to defink on]4/3, 5/3[ such that the resulting
function is a symmetric dual generator.

1, the condition (3..12) shows how to de-
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Figure 3: The functiork in (3..13)..

Put
h(z) =6z —2, z€[1/3,1/2].
Then, forx € [1/2,2/3],
1-(1-2)h(l —x)
x
—622 +10x — 3
EEE—
The conditionh(1 + ) = h(1 — x), = €]1/3,2/3[ can
also be expressed &$x) = h(2 — z), z €]4/3,5/3].
Thus, forx € [4/3,3/2] we arrive at
—62% + 142 — 7
2—x

h(z) =

h(z) =h(2—z) = ;@ €[4/3,3/2);

3/2,5/3];
h(z) =h(2—2)=6(2—2x)—2=10— 6.

We have arrived at the following conclusion:

Lemma3..5 For b = 3/5, the function

0 if 2 < 1/3;

6z — 2 if 2 € [1/3,1/2);
=6a%+100=3 jf 4 ¢ [1/2,2/3];

ha) =4 To /3.1 5 13

1 if z €[1,4/3];

—6et o7 f g ¢ [4/3,3/2);

10 — 6z if 2 € [3/2,5/3);

0 if 2 >5/3

is a continuous symmetric dual generatorigy.
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