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Gabor frames with reduced redundancy

Considering previous constructions of pairs of dual Gabor frames, we discuss ways to reduce the redundancy. The focus is on B-spline type windows.

Introduction

We will consider Gabor systems in L 2 (R), i.e., families of functions {E mb T n g} m,n∈Z , where E mb T n g(x) := e 2πimbx g(x -na).

If there exists a constant B > 0 such that

m,n∈Z | f, E mb T n g | 2 ≤ B ||f || 2 , ∀f ∈ L 2 (R),
then {E mb T n g} m,n∈Z is called a Bessel sequence. If there exist two constants A, B > 0 such that

A ||f || 2 ≤ m,n∈Z | f, E mb T n g | 2 ≤ B ||f || 2 , ∀f ∈ L 2 (R),
then {E mb T n g} m,n∈Z is called a frame.

If {E mb T n g} m,n∈Z is a frame with dual frame {E mb T n h} m,n∈Z , then

f = m,n∈Z f, E mb T n h E mb T n g, f ∈ L 2 (R),
where the series expansion converges unconditionally in L 2 (R). Our starting point is the duality condition for Gabor frames, originally due to Ron and Shen [START_REF] Strohmer | Frames and stable bases for shift-invariant subspaces of L 2 (R d )[END_REF]. We use the version due to Janssen [START_REF] Janssen | The duality condition for Weyl-Heisenberg frames[END_REF]:

Lemma 1..1 Two Bessel sequences {E mb T n g} m,n∈Z and {E mb T n h} m,n∈Z form dual Gabor frames for L 2 (R) if and only if k∈Z g(x -n/b + k)h(x + k) = bδ n,0 (1..1) for a.e. x ∈ [0, 1].
The Bessel condition in Lemma 1..1 is always satisfied for bounded windows with compact support, see [START_REF] Christensen | Frames and bases. An introductory course[END_REF]. Note that if g and h have compact support, we only need to check a finite number of conditions in (1..1). In this paper we will usually choose b so small that only the condition for n = 0 has to be verified.

The range

1 2N -1 < b < 1 N
We first cite a result from [START_REF] Christensen | On dual Gabor frame pairs generated by polynomials[END_REF]. It yields an explicit construction of dual Gabor frames:

Theorem 2..1 Let N ∈ N. Let g ∈ L 2 (R) be a real- valued bounded function with supp g ⊂ [0, N ], for which n∈Z g(x -n) = 1.
(2..1) 

Let b ∈]0, 1 2N -1 ]. Consider any scalar sequence {a n } N -1 n=-N +1 for which a 0 = b and a n + a -n = 2b, n = 1, 2, • • • N -1, (2..2) and define h ∈ L 2 (R) by h(x) = N -1 n=-N +1 a n g(x + n). ( 2 
h(x) = N -1 n=-N +1 a n g(x + n) χ [0,N ] (x) (2..4)
is a dual frame generator of g.

Proof. Consider the condition (1..1) for n = 0; only the values of h(x) for x ∈ [0, N ] play a role, so since the condition holds for the function in (2..3), it also holds for the function in (2..4).

The cut-off in (2..4) yields a non-smooth function. However, for any b < 1/N, we might modify h slightly and obtain a smooth dual generator:

In particular, we obtain the following: Proof. The choice

a n = b, n = -N + 1, . . . , N -1, leads to N -1 n=-N +1 a n g(x + n) = b, x ∈ [0, N ]. Given ǫ < 1/b -N and any functions φ 1 : [-ǫ, 0[→ R and φ 2 :]N, N + ǫ] → R, the function h(x) =          φ 1 (x), x ∈ [-ǫ, 0[, N -1 n=-N +1 a n g(x + n) = b, x ∈ [0, N ], φ 2 , x ∈]N, N + ǫ], 0, x / ∈ [-ǫ, N + ǫ],
will satisfy (1..1); in fact, for n = 0, the support of the functions g(• ± n/b) and h are disjoint, and for n = 0 we are (for all relevant values of x) back at the function in (2..4). The functions φ 1 and φ 2 can be chosen such that the function h has the desired smoothness.

The assumptions in Theorem 2..1 are tailored to B-splines, defined inductively by

B 1 := χ [0,1] , B N +1 := B N * B 1 .
Direct calculations shows that

B 2 (x) =    x if x ∈ [0, 1], 2 -x if x ∈ [1, 2], 0
otherwise, and

B 3 (x) =        1 2 x 2 if x ∈ [0, 1], -x 2 + 3x -3 2 if x ∈ [1, 2], 1 2 x 2 -3x + 9 2 if x ∈ [2, 3], 0 otherwise.
In general, the functions B N are (N -2)-times differentiable piecewise polynomials (explicit expressions are known). Furthermore, supp B N = [0, N ], and the partition of unity condition (2..1) is satisfied.

In case g = B N , the dual generators in Theorem 2..1 are splines, of the same smoothness as B N itself. By compressing the function 

N -1 n=-N +1 a n g(x + n) from the in- terval [-N + 1, 0] to [-ǫ, 0] and from [N, 2N -1] to [N, N + ǫ]
h 3 (x) = 1 5                1/2 x 2 + 2 x + 2, x ∈ [-2, -1[, -1/2 x 2 + 1, x ∈ [-1, 0[, 1, x ∈ [0, 3[, -1/2 x 2 + 3 x -7/2, x ∈ [3, 4[, 1/2 x 2 -5x + 25/2, x ∈ [4, 5[, 0, x / ∈ [0, 5[. ( 2 
h(x) = 1 4                        1/2 (4x) 2 + 2 (4x) + 2, x ∈ [-1/2, -1/4[, -1/2 (4x) 2 + 1, x ∈ [-1/4, 0[, 1,
x ∈ [0, 3[, -1/2 (4(x -3) + 3) 2 + 3 (4(x -3) + 3) -7/2,

x ∈ [3, 3 + 1/4[, 1/2 (4(x -3) + 3) 2 -5(4(x -3) + 3) + 25/2,

x 

∈ [3 + 1/4, 3 + 1/2[, 0, x / ∈ [-1/2, 3 + 1/2[. = 1 4                8 x 2 + 8 x + 2, x ∈ [-1/2, -1/4[, -8 x 2 + 1, x ∈ [-1/4, 0[, 1, x ∈ [0, 3[, -8 x 2 + 48 x -71, x ∈ [3, 3 + 1/4[, 8 x 2 -56 x + 98, x ∈ [3 + 1/4, 3 + 1/2[, 0, x / ∈ [-1/2, 3 + 1/2[. See Figure 2.

B

B 2 (x + k)h(x + k) = 1, x ∈ [0, 1]. (3..1)
In fact, due to the support of B 2 , only the values for h(x) for x ∈ [0, 2] play a role for that condition. We know that for any b ≤ 1/2 the function generates -up to a certain scalar multiple -a dual of g. Now consider any 1/2 < b < 1; that is, we have 1 < 1/b < 2.

Lemma 3..1

Assume that h(x), x ∈ [0, 2] is chosen such that (3..1) is satisfied. The the following hold:

(i) If k∈Z B 2 (x -1/b + k)h(x + k) = 0, x ∈ R, (3..2)
and k∈Z

B 2 (x + 1/b + k)h(x + k) = 0, x ∈ R, (3..3) then B 2 (x -1/b)h(x) + B 2 (x -1/b + 1)h(x + 1) = 0, x ∈ [1/b, 2], (3..4) 
B 2 (x + 1/b -1)h(x -1) + B 2 (x + 1/b)h(x) = 0 x ∈ [0, 2 -1/b]. (3..5) 
These equations determine h(x) for

x ∈ [-1, 1 -1/b] ∪ [1 + 1/b, 3]. (ii) If h(x) for x ∈ [-1, 1 -1/b] ∪ [1 + 1/b, 3
] is chosen such that (3..4) and (3..5) are satisfied, and

h(x) = 0, x / ∈ [0, 2] ∪ [-1, 1 -1/b] ∪ [1 + 1/b, 3], then (3. 
.2) and (3..3) hold.

Proof. We consider (3..2) for x ∈ [1, 2], and split into two cases:

For x ∈ [1, 1/b], (3..2) yields that 0 = B 2 (x -1/b + 1)h(x + 1) +B 2 (x -1/b + 2)h(x + 2); (3..6) the equation only involve h(x) for x ∈ [2, 1 + 1/b] ∪ [3, 2 + 1/b]. For x ∈ [1/b, 2], (3..2) yields that 0 = B 2 (x -1/b)h(x) + B 2 (x -1/b + 1)h(x + 1); since h(x) is known, this implies that h(x + 1) = -B 2 (x -1/b)h(x) B 2 (x -1/b + 1) , x ∈ [1/b, 2],
that is,

h(x) = -B 2 (x -1/b -1)h(x -1) B 2 (x -1/b) , x ∈ [1/b + 1, 3].
Similarly, considering (3..3) for

x ∈ [0, 1] = [0, 2 -1/b] ∪ [2 -1/b, 1]
leads to (3..5) and

B 2 (x + 1/b -2)h(x -2) + B 2 (x + 1/b -1)h(x -1) = 0, x ∈ [2 -1/b, 1]; (3..7)
the equation (3..7) only involves h(x) for

x ∈ [-1/b, -1] ∪ [1 -1/b, 0],
and (3..5) implies that

h(x -1) = -B 2 (x + 1/b)h(x) B 2 (x + 1/b -1) , x ∈ [0, 2 -1/b],
i.e.,

h(x) = -B 2 (x + 1/b + 1)h(x + 1) B 2 (x + 1/b) , x ∈ [-1, 1 -1/b].
For the proof of (ii), the condition 

h(x) = 0, x / ∈ [0, 2] ∪ [-1, 1 -1/b] ∪ [1 + 1/b,
(x) = 0, x ∈ [0, 2 -1/b] ∪ [1/b, 2]. ( 3 

Corollary 2 .. 3

 23 Consider any b < 1/N, and take ǫ < 1/b -N. With g as in Theorem 2..1, the function h(x) = b, x ∈ [0, N ] has an extension to a function of desired smoothness, supported on [-ǫ, N + ǫ], which is a dual frame generator of g.

Example 2 .. 4

 24 we obtain a dual in (2..3) with the same features: For the B-spline B 3 (x) and b = 1/5, Theorem 2..1 yields the symmetric dual

Figure 1 :Figure 2 :

 12 Figure 1: B 3 and the dual generator h 3 in (2..5).

Corollary 3 .. 3

 33 ..8)Proof. According to the proof of Lemma 3..1, we obtain that h(x) = 0 on [1/b+1, 3] by requiring that h(x) = 0 for x ∈ [1/b, 2]; and we obtain that h(x) = 0 on [-1, 1 -1/b] by requiring that h(x) = 0 for x ∈ [0, 2 -1/b]. If supp h ⊆ [0, 2],the condition (3..8) implies that h at most can be nonzero on the interval [2 -1/b, 1/b] having length 2/b -2. In order for (3..1) to hold, this interval must have length at least 1; thus, we need to consider b such that 2/b -2 ≥ 1, i.e., b ≤ 2/3. Note that if b ≤ 2/3, then 2/b ≥ 3 : that is, because B 2 and h are supported on [0, 2], Janssen's duality conditions in (1..1) are automatically satisfied for n = ±2, ±3, . . . . Consider b ∈]1/2, 2/3]. Then there exists a function h with supp h ⊆ [0, 2] such that (3..1) and (3..2) hold; and bh(x) is a dual generator of B 2 for these values of b.

Corollary 2..2 Consider any b ≤ 1/N. With g and a n as in Theorem 2..1, the function

  ..3)Then g and h generate dual frames {E mb T n g} m,n∈Z and {E mb T n h} m,n∈Z for L 2 (R).

	The above result can be extended:

  In the following discussion, we consider dual windows associated with a Gabor frame {E mb T n B 2 } m,n∈Z generated by the B-spline B 2 . The arguments can be extended to general functions supported on [0, 2]. Take any function h with values specified only on [0, 2] and such that

	k∈Z

2 and 1/2 < b < 1
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Proof. For x ∈ [0, 2 -1/b] ∪ [1/b, 2], let h(x) = 0. For x ∈ [0, 1], the equation (3..1) means that xh(x) + (1 -x)h(x + 1) = 1.

This implies that

.9) and

By construction, bh(x) is a dual generator. 

That is, we only have freedom on the definition of h on

Note that on [2/3, 4/3], the function h is symmetric around x = 1. We will now show that it is possible to define h on ]1/3, 2/3[∪]4/3, 5/3[ in such a way that h becomes symmetric around x = 1. First, we note that this form of symmetry means that

Put together with the duality condition, we thus require that

The condition (3..12) shows that must define h(1/2) = 1. Now, taking any continuous function h defined on [1/3, 1/2] with the properties that h(1/3) = 0 and h(1/2) = 1, the condition (3..12) shows how to define h(x) on ]1/2, 2/3[; and, finally, the condition (3..11) shows how to define h on ]4/3, 5/3[ such that the resulting function is a symmetric dual generator. 

The condition h(1 

We have arrived at the following conclusion: Lemma 3..5 For b = 3/5, the function