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Abstract: efficient, e.g. in the sense of sparsity, to use several side
Gabor multipliers are well-suited for the approximation of diagonals, but a lower redundancy in the Gabor system

certain time-variant systems. However, this class of sys-USed-

tems is rather restricted. To overcome this restrictiorl; mu | "€ @im of this contribution is the description of error es-
tiple Gabor multipliers allowing for more than one synthe- imates for the approximation of operators by generalized

sis windows are introduced. The influence of the choice of G@bor multipliers, based on the operator’s spreading func-
the various parameters involved on approximation qualityt'on- From this description guidelines for the choice of

is studied for both classical and multiple Gabor multipli- 900d parameters for the approximation are deduced and
ers. illustrated by various numerical experiments.

1. Introduction 2. Approximation in the time-frequency do-
main: the parameters

In a recent paper [1], the authors describe the representa-
tion of operators in the time-frequency domain by means Throughout this paperH denotes a (finite or infinite-
of a twisted convolution with the operator’s spreading dimensional) Hilbert space, equipped with an action of the
function. Although not suitable for direct discretization Heisenberg group of time-frequency shifts.
the spreading representation provides a better understand
ing of certain operators’ behavior: it reflects the operator 2.1 Time-frequency multipliers
action in the time-frequency domain. This motivates an . . - .
approach that uses the spreading representation of timel—‘et.% denote the adjoint of ;. A Gabor multiplier [4] is
frequency multipliers [1], in order to optimize the param- defined as

q y p p p

eterg involveq. More spepifically, in the ong-dirnensional, M: feHr— Mf =% (m-¥f).
continuous-time case, given an operatbmwith integral
kernelr ; and spreading function; : Here, m is the pointwise multiplication operator whose
oo symbol, defined on the latticewill also be denoted byn.
nu(b,v) = / rp(t,t —b)e 2™ dt, We shall denote byx° the adjoint lattice[1° its fundamen-
- tal domain, andI° the corresponding periodization oper-

we aim at modeling the operator by its action on the sam-ator. In the infinite-dimensional situatioh = L*(R),
pled short-time Fourier transform (STFT) or Gabor coef- @nd for a product lattice of the form = bZ x voZ,
ficients, given for anyf € L2(R) by we haveA” = toZ x &Z with ty = 1/vg, & = 1/bo,
andII’f(¢) = D yoeno f(C+A?), ¢ € O° In afinite-
Yo f (mbo, nxg) = (f, Gmn) , myn € Z (1) dimensional settingt = C*, with A = Zy, x Zy,, with
Ny, N, two divisors ofL, we haveA® = Zy,, x Zy,, and
where they,,, = M., Timp, g denote the Gabor atoms as- the obvious form for the periodization operator.
sociated toy € L*(R) and the lattice constantg, vy € In the definition of the multipliers, several parameterschav
R+, see [3}. In the case of classical Gabor multipliers, to be fixed: the analysis and synthesis windamand ,
the modification consists of a pure multiplication. Thus, the latticeA, and the symbom. For practical as well as
the linear operator applied to the coefficierfgf is di- theoretical reasons, the windows should be well-localized
agonal, an approach that leads to accurate approximatioin time and frequency. As for the lattice, it is expected that
for so-called underspread operators [5]. The restriction t denser lattices will lead to better results in approximatio
diagonality may be relaxed in order to achieve better ap-but higher computational cost. However, it will be seen
proximation for a wider class of operators at low cost. It that too dense lattices are not suitable.
also appears, that in certain approximation tasks it is moreFinally, the symbolm can be optimized to best approx-
IThe finite dimensional caset = CT is obtained similarly, replac- imate a given o_pergtor. In [1], a.n expl_icit eXpreSSiqn for
ing integrals with finite sums, and letting. = 0,... N, — 1, n — the best approximation was obtainned in the spreading do-
0,...N, — 1, whereN, = L/bo, N, = L/vg andby, v divide L. main, yielding a very efficient algorithm (compare [2]).




The spreading function of Gabor multipliers takes the Notice that this covers the multiplier case obtained in [1].
form mi(() = 4 (C) - V4h(C) , where.# is the sym-  Notice also that this immediately yields
plectic Fourier transform aofn. Note, that this leads to a S UY)BE;
periodic function with periodJ°. Hence, good approxi- E < |nu|? i, Rlaiae]
mation by a classical Gabor multiplier is possible, if the T
essential support of the spreading function is smaller tha
1 and can then be contained in the fundamental doimain
of the adjoint lattice for a dense enough lattite Also,

to reduce aliasing as much as possible, the analysis an
synthesis windows must be chosen such tigi is small i
outside[1° and positive on the support of the spreading 4. Choosing the parameters
function, also see Section 4.1.

1—

nThe finite-dimensional situation is similar, replacing the
integral over1° with a finite sum over the finite funda-
(r]nental domair0,...to — 1} x {0,...& — 1}.

For simlicity, we specialize the following discussion teth
infinite-dimensional cas® = L?(RR), and rectangular lat-
tice A = bgZ x voZ. The finite-dimensional situation is
Multiple Gabor multipliers are sums of Gabor multipliers handled similarly.

with different synthesis windows.

Definition 1 (Multiple Gabor Multiplier) Letg,h € H 4.1 Gabor Multipliers
denote two window functions. Latbe a time-frequency | an operator with known spreading function is to be
lattice. Let {z;,j € J} denote a finite set of time-  approximated by a Gabor multiplier, the lattice may be
frequency shifts, and |e{mj»]( _)E J} be a family of  agapted to the eccentricity of the spreading function ac-
bounded functions od. Seth") = 7(u;)h, then the  cording to the error expression obtained in Proposition 1,
associated generalized Gabor multipligf is defined, for \yhich may be considerably simplified for the case of only
feH, as one synthesis window, see [1]. In order to choose the
MF — . s A\ ARG eccentricity of the lattice accordingly and adapt the win-
/ Z Zm( 1) r(N)g)m(A) dow to the chosen lattice as to avoid aliasing, assume,

o _ ) ) N that we may findbg, vy, with by - 1y < 1, such that

Itis immediately obvious that in addition to the parameters supiny) € T.0°, where = [0,-1] x [0, zH- In
mentioned above, the windoiwvas well as the sampling  thjs case, the error resulting from best approximation by
points.J must be chosen. a Gabor multiplier with respect to the lattibgZ x 1,Z is

bounded byC.. - ||z |2, with

2.2 Generalized Gabor multipliers

\eA jeJ

3. Error analysis in L*(R)

C.=1— inf Y5t O
In [1], it was shown that the symbeh()\, 1z;) := m;()\) tee0y Yoy [ Voh(t + kto, & +1&0)[?
of the best approximation of a Hilbert-Schmidt operator Wi
by a multiple Gabor multiplier with fixed sets, J and
windows, is given by the symplectic Fourier transform
of the (°-periodic functions.#; obtained via the vector

3

th 0% = 0° N Supp(ny ), and becomes minimal for a
window that is optimally concentrated insid#. Heuris-
tically as well as from numerical experiments we know,
that the tight window, [3], corresponding to the given lat-

equation tice is usually a good choice to fulfill this requirement.
M) =UQTBEQ), e, (@) | .
where the matrix and vector valued functiddsnd 53 are 4.2 Generalized Gabor Multipliers
given by theA°-periodizations The main additional task in the generalized situation is the
—— ‘ choice of the sampling pointg; for the synthesis win-
Ui =T1° (%h(J )”f/gh(-’)) , Bj=T11° (WH%h(J)) : dows. A good choice will again be guided by the behav-

providedl/ is invertible a.e ior of the spreading function. The relevant areas in the
Th t on nth ’ i. windows mav be immediatel spreadlng domain shquld be covered as well as po_s&_ble
€ case of one synthesis ows may be eaiATEY yith the smallest possible overlap by the cross-ambiguity
obtained from t.h? ab ove formula._ Note that formu_la (2) functions of the different synthesis windows with respect
allows for an efficientimplementation of the otherwise ex- to a given reference-window localized @ 0) e.g. the
pensive cal_c u_Iation of the best approximation by multiple Gaussian window. Motivated by the results fro'm. the Ga-
Gabor mquphers. . . bor multiplier situation, we choose a tight window with
we May NOW gIve an expression for thezerror in the ap- respect to the analysis lattice and look for the most appro-
proximation given above, in the cage= L*(R) priate sampling points for the synthesis windows. Exam-
Proposition 1 Let.# denote the vector-valued function ples will be given in Section 5.2.
obtained as in2) and set, for the Hilbert-Schmidt opera-
tor H, Ty = 11°(|ng|?). Then the approximation error 5. Examples
E = |lny — X, ;75| is given by
. — We now turn to numerical experiments, in the finite case
E— |I‘H(Q|<1 iU )ij(OBi(C)Bj(O)dC H = CL. In the following examples, the relative approx-
Oe ITr Q)] imation error for the best approximatidh of H is given
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Figure 2: Approximation error for different lattice-eccentricity
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Figure 1: Approximation error for different bandwidth of

spreading function and different valuesiof vo. asf ‘ ‘ ‘ ‘
by . Figure 3: Spreading function of operator and best approxima-
E=|H-H|/|H]|, tion with one or two synthesis windows, approximation error for

the logarithm of which is represented in the next plots. 9r°Wing support of spreading function.

We display here the Bbenius norm, the plots obtained

with the operator norm are almost identical. the same operators as in the previous section, but allow
for one additional synthesis window. Here, and in the sub-
5.1 Classical Gabor Multipliers sequent examples, one window will always be a window

centered aboui, as above, with a time-shifted version of
the original window as additional window. Hence, only
the shift-parameter of the additional window has to be
considered. Figure 3 shows the improvement in approx-
imation quality for shift-parameters of the additional win

We generate operators with compact support in the spread

ing domain, in a square of side size betweeand 61,

symmetric abou). The values are random, the signal

length isL, = 180. We then investigate the approximation

quality for various pairs of lattice constants, withvary- . ;

ing betweer? and18 andy, betweer2 and10. The results dc_)w between—§ an(_j5 (solid), as opposed to the single
.window approximation.

are presented in Figure 1. Note the two distinct regimes: i i _ o
the error grows exponentially up to a certain value of the N&xt, we investigate the following situation: an operator
support size, depending on the lattice density, and sloweMith two effectively disjoint components in the spreading
thereafter. A possible explanation for this effect, to be fu domain is, again, approximated by a multiple Gabor mul-
ther investigated, is the fact, that the error (see the boundiPlier with 2 synthesis windows. For better comparison,
in (3)) is comprised of an aliasing error and the inherent the two components are the component from the previous
inaccuracy of Gabor multiplier approximation, even for €xa@mples plus a shifted version (By samples) thereof.
very high sampling density, of overspread operators. Figure 4 shows the spreading functions of one of the op-
In order to emphasize the importance of lattice adapta-€rators and its best approximation with two synthesis win-
tion to eccentricity, we show the results for differentizgt ~ dOWs, for the optimal additional window. Note the aliasing
constants resulting in the same redundandyr(Figure 2. effect. In this situation, using two appropriate synthesis
The solid lines show the results fo§ = v, = 6, leading windows, the obtaln_ed resuI'Fs are similar to those in the
to far better results than the lattice constants not adapte@se Of one spreading function component and one syn-

to the (symmetric) support of the spreading function. thesis window, as discussed in the previous section. In
Figure 5, we display the results f8rsymmetric pairs of

lattice constants, the optimal window’s result being repre
sented by the solid line, while the dashed lines show the
In order to illustrate the influence of additional synthesis results of close but suboptimal synthesis windows. As the
windows on the approximation quality, we first consider operator was generated by a translatiobgamples, the

5.2 Generalized Gabor Multipliers
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Figure 4: Spreading function of operator and best approxima-
tion.
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Figure 5: Approximation error for varying support of two com-
ponents of spreading function and two synthesis windows.

tight window, shifted byo0 samples itself, is expected to
be the optimal additional window. This is confirmed by
the experiments.

In a last experiment, the two components in the spread-

ing domain are close and, for growing bandwidth, overlap-

ping. Figure 6 shows, as before, the results of approxima-

tion for growing support of both spreading function com-
ponents, withhy = vy = 6 and various additional synthe-
sis windows. The additional window with shift-parameter
0 is, of course, the original window and yields the approx-
imation result obtained for a single synthesis window. For
the optimal window, the result is close to the single win-
dow/single component case for the same lattice.

6. Discussion and conclusions

The examples given in the previous section show that the[4]
choice of various parameters has considerable influence

on the performance of approximation by (generalized) Ga-
bor multipliers. While the situation is rather easily under-
stood in the case of classical Gabor multipliers, it is much

more intricate in the generalized case. It should be noted

that, while yielding better results in the approximatioss, u
ing a small number of additional synthesis windows does
not dramatically increase the computational cost: in (2),

_
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Figure 6: Approximation error for growing support of spread-
ing function and various additional synthesis windows.

going from|J| = 1 to larger index setg involves in-
verting (generally small) matrices instead of computing a
point-wise ratio. Higher redundancy of the Gabor system
involved is more expensive in the sense of coefficients. In
many cases, using an additional window may be more fa-
vorable in improving approximation quality than a denser
lattice. Future work on this topic will include systematic
numerical experiments as well as the analytical investiga-
tion of the approximation quality of generalized and clas-
sical Gabor multipliers. Another goal is the development
of a method to determine an adapted sampling scheme for
the synthesis windows from an operator’s spreading func-
tion.
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