
HAL Id: hal-00451399
https://hal.science/hal-00451399v2

Submitted on 22 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transfer of Fourier multipliers into Schur multipliers
and sumsets in a discrete group

Stefan Neuwirth, Éric Ricard

To cite this version:
Stefan Neuwirth, Éric Ricard. Transfer of Fourier multipliers into Schur multipliers and sumsets in a
discrete group. Canadian Journal of Mathematics, 2011, 63 (5), pp.1161-1187. �10.4153/CJM-2011-
053-9�. �hal-00451399v2�

https://hal.science/hal-00451399v2
https://hal.archives-ouvertes.fr


Transfer of Fourier multipliers into Schur

multipliers and sumsets in a discrete group

Stefan Neuwirth Éric Ricard

Abstract

We inspect the relationship between relative Fourier multipliers on non-

commutative Lebesgue-Orlicz spaces of a discrete group Γ and relative

Toeplitz-Schur multipliers on Schatten-von-Neumann-Orlicz classes. Four

applications are given: lacunary sets, unconditional Schauder bases for the

subspace of a Lebesgue space determined by a given spectrum Λ ⊆ Γ , the

norm of the Hilbert transform and the Riesz projection on Schatten-von-

Neumann classes with exponent a power of 2, and the norm of Toeplitz

Schur multipliers on Schatten-von-Neumann classes with exponent less

than 1.

1 Introduction

Let Λ be a subset of Z and let x be a bounded measurable function on the
circle T with Fourier spectrum in Λ: we write x ∈ L∞

Λ , x ∼
∑

k∈Λ xkz
k. The

matrix of the associated operator y 7→ xy on L2 with respect to its trigonometric
basis is the Toeplitz matrix
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with support in Λ̋ = {(r, c) : r − c ∈ Λ}.
This is a point of departure for the interplay of harmonic analysis and op-

erator theory. In the general case of a discrete group Γ , the counterpart to
a bounded measurable function is defined as a bounded operator on ℓ2Γ whose
matrix has the form (xrc−1)(r,c)∈Γ×Γ for some sequence (xγ)γ∈Γ . This will be
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the framework of the body of this article, while the introduction sticks to the
case Γ = Z.

We are concerned with two kinds of multipliers. A sequence ϕ = (ϕk)k∈Λ
defines

• the relative Fourier multiplication operator on trigonometric polynomials
with spectrum in Λ by

∑

k∈Λ

xkz
k 7→

∑

k∈Λ

ϕkxkz
k; (1.1)

• the relative Schur multiplication operator on finite matrices with support
in Λ̋ by

(xr,c)(r,c)∈Z×Z 7→ (ϕ̋r,cxr,c)(r,c)∈Z×Z, (1.2)

where ϕ̋r,c = ϕr−c.

Marek Bożejko and Gero Fendler proved that these two multipliers have the
same norm. The operator (1.1) is nothing but the restriction of (1.2) to Toeplitz
matrices. They noted that it is automatically completely bounded: it has the
same norm when acting on trigonometric series with operator coefficients xk,
and this permits to remove this restriction. Schur multiplication is also auto-
matically completely bounded.

A part of this observation has been extended by Gilles Pisier to multipliers
acting on a translation invariant Lebesgue space LpΛ and on the subspace Sp

Λ̋
of el-

ements of a Schatten-von-Neumann class supported by Λ̋, respectively; it yields
that the complete norm of a relative Schur multiplier (1.2) remains bounded by
the complete norm of the relative Fourier multiplier (1.1).

But LpΛ is not a subspace of Sp
Λ̋
, so a relative Fourier multiplier may not

be viewed anymore as the restriction of a relative Schur multiplier to Toeplitz
matrices. We point out that this difficulty may be overcome by using Szegő’s
limit theorem: a bounded measurable real function on T is the weak∗ limit of
the normalised counting measure of eigenvalues of finite truncates of its Toeplitz
matrix. This method also applies to Orlicz norms.

Theorem 1.1. Let ψ : R+ → R+ be a continuous nondecreasing function van-
ishing only at 0. The norm of the relative Fourier multiplication operator (1.1)
on the Lebesgue-Orlicz space LψΛ is bounded by the norm of the relative Schur

multiplication operator (1.2) on the Schatten-von-Neumann-Orlicz class Sψ
Λ̋

.

In order to deal with complete norms, we deduce a block matrix variant
of Szegő’s limit theorem in the style of Erik Bédos ([2]), Theorem 2.6. Note
that other types of approximation are also available, as the completely positive
approximation property and Reiter sequences combined with complex interpo-
lation. They are studied in Section 3 in terms of local embeddings of Lp into Sp.
They are more canonical than Szegő’s limit theorem, but give no access to Orlicz
norms.
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Theorem 1.2. Let ψ : R+ → R+ be a continuous nondecreasing function van-
ishing only at 0. The norm of the following operators is equal:

• the relative Fourier multiplication operator (1.1) on the Lebesgue-Orlicz

space LψΛ(S
ψ) of Sψ-valued trigonometric series with spectrum in Λ;

• the relative Schur multiplication operator (1.2) on the Schatten-von-Neu-

mann-Orlicz class Sψ
Λ̋
(Sψ) of Sψ-valued matrices with support in Λ̋.

See Theorems 2.1 and 2.7 for the precise statement in the general case of an
amenable group Γ .

An application of this theorem to the class of all unimodular Fourier multi-
pliers yields a transfer of lacunary subsets into lacunary matrix patterns. Call Λ
unconditional in Lp if (zk)k∈Λ is an unconditional basis of LpΛ, and call Λ̋ uncon-
ditional in Sp if the sequence (eq)q∈Λ̋ of elementary matrices is an unconditional
basis of Sp

Λ̋
. These properties are also known as Λ(p) if p > 2 (Λ(2) if p < 2)

and σ(p), respectively; they have natural “complete” counterparts that are also
known as Λ(p)cb if p > 2 (K(p)cb if p 6 2) and σ(p)cb, respectively. (See
Definitions 4.1 and 4.2).

Corollary 1.3. Let 1 6 p < ∞. If Λ̋ is unconditional in Sp, then Λ is
unconditional in Lp. Λ̋ is completely unconditional in Sp if and only if Λ is
completely unconditional in Lp.

See Proposition 4.3 for the precise statement in the general case of a discrete
group Γ .

The two most prominent multipliers are the Riesz projection and the Hilbert
transform. The first consists in letting ϕ be the indicator function of nonnegative
integers and transfers into the upper triangular truncation of matrices. The
second corresponds to the sign function and transfers into the Hilbert matrix
transform. We obtain the following partial results.

Theorem 1.4. The norm of the matrix Riesz projection and of the matrix
Hilbert transform on Sψ(Sψ) coincide with their norm on Sψ.

• If p is a power of 2, then the norm of the matrix Hilbert transform on Sp

is cot(π/2p).

• The norm of the matrix Riesz projection on S4 is
√
2.

The transfer technique lends itself naturally to the case where Λ contains a
sumset R+C: if subsets R′ and C′ are extracted so that the r + c with r ∈ R′

and c ∈ C′ are pairwise distinct, they may play the role of rows and columns.
Here are the consequences of the conditionality of the sequence of elementary
matrices er,c in Sp for p 6= 2 and of the unboundedness of the Riesz transform
on S1 and S∞, respectively.

Theorem 1.5. If (zk)k∈Λ is a completely unconditional basis of LpΛ with p 6= 2,
then Λ does not contain sumsets R+ C of arbitrarily large sets. If either

3



• the space L1
Λ admits some completely unconditional approximating se-

quence, or

• the space CΛ of continuous functions with spectrum in Λ admits some
unconditional approximating sequence,

then Λ does not contain the sumset R+ C of two infinite sets.

The proof of the second part of this theorem consists in constructing infinite
subsets R′ and C′ and skipped block sums

∑

(Tkj+1
− Tkj ) of a given approx-

imating sequence that act like the projection on the “upper triangular” part
of R′ + C′. See Proposition 4.8 and Theorem 7.4 for the precise statement in
the general case of a discrete group Γ .

In the case of quasi-normed Schatten-von-Neumann classes Sp with p < 1,
the transfer technique yields a new proof for the following result of Alexey
Alexandrov and Vladimir Peller.

Theorem 1.6. Let 0 < p < 1. The Fourier multiplier ϕ is contractive on Lp or
on Lp(Sp) if and only if the Schur multiplier ϕ̋ is contractive on Sp or on Sp(Sp)
if and only if the sequence ϕ is the Fourier transform of an atomic measure of
the form

∑

agδg on T with
∑

|ag|p 6 1.

The emphasis put on relative Schur multipliers motivates the natural ques-
tion of how the norm of an elementary Schur multiplier, that is, a rank 1 matrix
(̺r,c) = (xryc), gets affected when the action of ̺ is restricted to matrices with
a given support. The surprising answer is the following theorem.

Theorem 1.7. Let I ⊆ R×C and consider (xr)r∈R and (yc)c∈C. The relative
Schur multiplier on S∞I given by (xryc)(r,c)∈I has norm sup(r,c)∈I |xryc|.

Let us finally describe the content of this article. Section 2 develops transfer
techniques for Fourier and Schur multipliers provided by a block matrix Szegő
limit theorem. This theorem provides local embeddings of Lψ into Sψ. Section 3
shows how interpolation may be used to define such embeddings for the scale
of Lp spaces. Section 4 is devoted to the transfer of lacunary sets into lacunary
matrix patterns; the unconditional constant of a set Λ is related to the size of the
sumsets it contains. Section 5 deals with Toeplitz Schur multipliers for p < 1 and
comments on the case p > 1. The Riesz projection and the Hilbert transform
are studied in Section 6. In Section 7, the presence of sumsets in a spectrum Λ is
shown to be an obstruction for the existence of completely unconditional bases
for LpΛ. The last section provides a norm-preserving extension for partially
specified rank 1 Schur multipliers.

Notation and terminology. Let T = {z ∈ C : |z| = 1} be the circle.
Given an index set C and c ∈ C, ec is the sequence defined on C as

the indicator function χ{c} of the singleton {c}, so that (ec)c∈C is the canonical
Schauder basis of the Hilbert space of square summable sequences indexed by C,
denoted by ℓ2C . We will use the notation ℓ2n = ℓ2{1,2,...,n} and ℓ2 = ℓ2

N
.

4



Given a product set I = R × C and q = (r, c), the indicator function eq =
er,c is the elementary matrix identified with the linear operator from ℓ2C to ℓ2R
that maps ec to er and all other basis vectors to 0. The matrix coefficient
at coordinate q of a linear operator x from ℓ2C to ℓ2R is xq = tr e∗qx, and its
matrix representation is (xq)q∈R×C =

∑

q∈R×C xq eq. The support or pattern
of x is {q ∈ R× C : xq 6= 0}.

The space of all bounded operators from ℓ2C to ℓ2R is denoted by B(ℓ2C , ℓ
2
R),

and its subspace of compact operators is denoted by S∞.
Let ψ : R+ → R+ be a continuous nondecreasing function vanishing only

at 0. The Schatten-von-Neumann-Orlicz class Sψ is the space of those compact
operators x from ℓ2C to ℓ2R such that trψ(|x|/a) < ∞ for some a > 0. If ψ is
convex, then Sψ is a Banach space for the norm given by ‖x‖Sψ = inf{a >
0 : trψ(|x|/a) 6 1}. Otherwise, Sψ is a Fréchet space for the F-norm given
by ‖x‖Sψ = inf{a > 0 : trψ(|x|/a) 6 a} (see [26, Chapter 3]). This space
may also be constructed as the noncommutative Lebesgue-Orlicz space Lψ(tr)
associated with a corner of the von Neumann algebra B(ℓ2C ⊕ ℓ2R) endowed with
the normal, faithful, semifinite trace tr. If ψ is the power function t 7→ tp,
this space is denoted Sp; if p > 1, then ‖x‖Sp = (tr |x|p)1/p; if p < 1, then
‖x‖Sp = (tr |x|p)1/(1+p).

If #C = #R = n, then B(ℓ2C , ℓ
2
R) identifies with the space of n×n matrices

denoted S∞n , and we write Sψn for Sψ. Let (Rn×Cn) be a sequence of finite sets
such that each element of R × C eventually is in Rn × Cn. Then the sequence
of operators Pn : x 7→

∑

q∈Rn×Cn
xqeq tends pointwise to the identity on Sψ .

For I ⊆ R×C, we define the space SψI as the closed subspace of Sψ spanned
by (eq)q∈I ; this coincides with the subspace of those x ∈ Sψ whose support is a
subset of I.

A relative Schur multiplier on SψI is a sequence ̺ = (̺q)q∈I ∈ CI such that
the associated Schur multiplication operator M̺ defined by eq 7→ ̺q eq for q ∈ I

is bounded on SψI . The norm ‖̺‖M(SψI )
of ̺ is defined as the norm of M̺.

This norm is the supremum of the norm of its restrictions to finite rectangle
sets R′ × C′. We used [31, 32] as a reference.

Let Γ be a discrete group with identity ǫ. The reduced C∗-algebra of Γ is
the closed subspace spanned by the left translations λγ (the linear operators
defined on ℓ2Γ by λγ eβ = eγβ) in B(ℓ2Γ ); we denote it by C, set in roman type.
The von Neumann algebra of Γ is its weak∗ closure, endowed with the normal,
faithful, normalised finite trace τ defined by τ(x) = xǫ,ǫ; we denote it by L∞.
Let ψ : R+ → R+ be a continuous nondecreasing function vanishing only at 0.
We define the noncommutative Lebesgue-Orlicz space Lψ of Γ as the completion
of L∞ with respect to the norm given by ‖x‖Lψ = inf{a > 0 : τ(ψ(|x|/a)) 6 1}
if ψ is convex, and with respect to the F-norm given by ‖x‖Lψ = inf{a >
0 : τ(ψ(|x|/a)) 6 a} otherwise. If ψ is the power function t 7→ tp, this space
is denoted Lp; if p > 1, then ‖x‖Lp = τ(|x|p)1/p; if p < 1, then ‖x‖Lp =

τ(|x|p)1/(1+p). The Fourier coefficient of x at γ is xγ = τ(λ∗γx) = xγ,ǫ and its
Fourier series is

∑

γ∈Γ xγλγ . The spectrum of an element x is {γ ∈ Γ : xγ 6= 0}.
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Let X be the C∗-algebra C or the space Lψ and let Λ ⊆ Γ ; then we define
XΛ as the closed subspace of X spanned by the λγ with γ ∈ Λ. We skip the
general question of when this coincides with the subspace of those x ∈ X whose
spectrum is a subset of Λ, but note that this is the case if Γ is an amenable
group (or if Γ has the AP and L∞ has the QWEP by [15, Theorem 4.4]) and
ψ is the power function t 7→ tp. Note also that our definition of XΛ makes it a
subspace of the heart of X : if x ∈ XΛ, then τ(ψ(|x|/a)) is finite for all a > 0.

A relative Fourier multiplier on XΛ is a sequence ϕ = (ϕγ)γ∈Λ ∈ CΛ such
that the associated Fourier multiplication operator Mϕ defined by λγ 7→ ϕγλγ
for γ ∈ Λ is bounded on XΛ. The norm ‖ϕ‖M(XΛ) of ϕ is defined as the norm
of Mϕ. Fourier multipliers on the whole of the C∗-algebra C are also called
multipliers of the Fourier algebra A(Γ ) (which may be identified with L1); they
form the set M(A(Γ )).

The space Sψ(Sψ) is the space of those compact operators x from ℓ2 ⊗ ℓ2C
to ℓ2 ⊗ ℓ2R such that ‖x‖Sψ(Sψ) = inf{a : tr⊗ trψ(|x|/a) 6 1}: it is the non-
commutative Lebesgue-Orlicz space Lψ(tr⊗ tr) associated with a corner of the
von Neumann algebra B(ℓ2) ⊗ B(ℓ2C ⊕ ℓ2R). One may think of Sψ(Sψ) as the
Sψ-valued Schatten-von-Neumann class; we define the matrix coefficient of x
at q by xq = (IdSψ ⊗ tr)

(

(Idℓ2 ⊗ e∗q)x
)

∈ Sψ and its matrix representation by
∑

q∈R×C xq ⊗ eq. The support of x and the subspace SψI (S
ψ) are defined in the

same way as SψI .
Similarly, the space Lψ(tr⊗τ) is the noncommutative Lebesgue-Orlicz space

associated with the von Neumann algebra B(ℓ2) ⊗ L∞ = L∞(tr⊗τ). One may
think of Lψ(tr⊗τ) as the Sψ-valued noncommutative Lebesgue space; we define
the Fourier coefficient of x at γ by xγ = (IdSψ ⊗ τ)

(

(Idℓ2 ⊗ λ∗γ)x
)

∈ Sψ and its
Fourier series by

∑

γ∈Γ xγ ⊗ λγ ; the spectrum of x is defined accordingly. The

subspace LψΛ(tr⊗τ) is the closed subspace of Lψ(tr⊗τ) spanned by the x ⊗ λγ
with x ∈ Sψ and γ ∈ Λ.

An operator T on SψI is bounded on SψI (S
ψ) if the linear operator IdSψ ⊗ T

defined by x ⊗ y 7→ x ⊗ T (y) for x ∈ Sψ and y in SψI on finite tensors extends
to a bounded operator IdSψ ⊗ T on SψI (S

ψ). The norm of a Schur multiplier ̺
on SψI (S

ψ) is defined as the norm of IdSψ ⊗M̺. Similar definitions hold for an
operator T on LψΛ; the norm of a Fourier multiplier ϕ on LψΛ(tr⊗τ) is the norm
of IdψS ⊗Mϕ on LψΛ(tr⊗τ).

Let ψ be the power function t 7→ tp with p > 1; the norms on Sp(Sp) and
Lp(tr⊗τ) describe the canonical operator space structure on Sp and Lp, respec-
tively (see [31, Corollary 1.4]); we should rather use the notation Sp[Sp] and
Sp[Lp]. This explains the following terminology. An operator T on SpI is com-
pletely bounded (c.b.) if IdSp⊗T is bounded on SpI(S

p); the norm of IdSp⊗T is the
complete norm of T (compare [31, Lemma 1.7]). The complete norm ‖̺‖Mcb(S

p

I
)

of a Schur multiplier ̺ is defined as the complete norm of M̺. Note that the
complete norm of a Schur multiplier ̺ on S∞I is equal to its norm ([28, Theo-
rem 3.2]): ‖̺‖Mcb(S∞

I ) = ‖̺‖M(S∞

I ). The complete norm ‖ϕ‖Mcb(L
p

Λ
) of a Fourier

multiplier ϕ is defined as the complete norm of Mϕ. The complete norm of an
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operator T on CΛ is the norm of IdS∞ ⊗ T on the subspace of S∞ ⊗C spanned
by the x ⊗ λγ with x ∈ S∞ and γ ∈ Λ. In the case Λ = Γ , ϕ is also called a
c.b. multiplier of the Fourier algebra A(Γ ) and one writes ϕ ∈ Mcb(A(Γ )). If
Γ is amenable, the complete norm of a Fourier multiplier ϕ on CΛ is equal to
its norm: ‖ϕ‖Mcb(CΛ) = ‖ϕ‖M(CΛ) (this follows from [7, Corollary 1.8] as shown
by the proof of Theorem 2.7 (c)).

An element whose norm is at most 1 is contractive, and if its complete norm
is at most 1, it is completely contractive.

If Γ is abelian, let G be its dual group and endow it with its unique nor-
malised Haar measurem. Then the Fourier transform identifies the C∗-algebraC
as the space of continuous functions on G, L∞ as the space of classes of bounded
measurable functions on (G,m), Lψ as the Lebesgue-Orlicz space of classes
of ψ-integrable functions on (G,m), τ(x) as

∫

G x(g) dm(g), Lψ(tr⊗τ) as the
Sψ-valued Lebesgue-Orlicz space Lψ(Sψ) and xγ as x̂(γ).

2 Transfer between Fourier and Schur multipliers

Let Λ be a subset of a discrete group Γ and let ϕ be a relative Fourier multiplier
on CΛ, the closed subspace spanned by (λγ)γ∈Λ in the reduced C∗-algebra of
Γ . Let x ∈ CΛ; the matrix of x is constant down the diagonals in the sense
that for every (r, c) ∈ Γ × Γ , xr,c = xrc−1,ǫ = xrc−1 . We say that x is a
Toeplitz operator on ℓ2Γ . Furthermore, the matrix of the Fourier product Mϕx
of ϕ with x is given by (Mϕx)r,c = ϕrc−1xr,c. This equality shows that if we
set Λ̋ = {(r, c) ∈ Γ × Γ : rc−1 ∈ Λ} and ϕ̋r,c = ϕrc−1 , then Mϕx is the Schur
product Mϕ̋x of ϕ̋ with x. We have transferred the Fourier multiplier ϕ into the
Schur multiplier ϕ̋. This proves at once that the norm of the Fourier multiplier ϕ
on CΛ is the norm of the Schur multiplier ϕ̋ on the subspace of Toeplitz elements
of B(ℓ2Γ ) with support in Λ̋, and that the same holds for complete norms.

We shall now provide the means to generalise this identification to the setting
of Lebesgue-Orlicz spaces Lψ. We shall bypass the main obstacle, that Lψ may
not be considered as a subspace of Sψ, by the Szegő limit theorem as stated by
Erik Bédos ([2]).

Consider a discrete amenable group Γ ; it admits a Følner averaging net of
sets (Γι), that is,

• each Γι is a finite subset of Γ ;

• #(γΓι∆Γι) = o(#Γι) for each γ ∈ Γ .

Each set Γι corresponds to the orthogonal projection pι of ℓ2Γ onto its (#Γι)-di-
mensional subspace of sequences supported by Γι. The truncate of a selfadjoint
operator y ∈ B(ℓ2Γ ) with respect to Γι is yι = pιyp

∗
ι ; it has #Γι eigenvalues αj ,

counted with multiplicities, and its normalised counting measure of eigenvalues
is

µι =
1

#Γι

#Γι
∑

j=1

δαj .
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If y is a Toeplitz operator, that is, if y ∈ L∞, Erik Bédos ([2, Theorem 10])
proved that (µι) converges weak∗ to the spectral measure of y with respect to τ ,
which is the unique Borel probability measure µ on R such that

τ(f(y)) =

∫

R

f(α)dµ(α)

for every continuous function f on R that tends to zero at infinity. If Γ is
abelian, then y may be identified as the class of a real-valued bounded measur-
able function on the group G dual to Γ and µ is the distribution of y.

Let us now state and prove the Lψ version of the identification described at
the beginning of this section.

Theorem 2.1. Let Γ be a discrete amenable group and let ψ : R+ → R+ be a
continuous nondecreasing function vanishing only at 0. Let Λ ⊆ Γ and ϕ ∈ CΛ.
Consider the associated Toeplitz set Λ̋ = {(r, c) ∈ Γ × Γ : rc−1 ∈ Λ} and the
Toeplitz matrix defined by ϕ̋r,c = ϕrc−1 . The norm of the relative Fourier

multiplier ϕ on LψΛ is bounded by the norm of the relative Schur multiplier ϕ̋

on Sψ
Λ̋

.

Proof. A Toeplitz matrix has the form (xrc−1)(r,c)∈Λ̋. Our definition of the

space LψΛ (in the section on Notation and terminology) ensures that we may
suppose that only a finite number of the xγ are nonzero for the computation of
the norm of ϕ. Then (xrc−1)(r,c)∈Λ̋ is the matrix of the operator x =

∑

γ∈Λ xγλγ

for the canonical basis of ℓ2Γ .
Let y = x∗x and let ψ̃ be a continuous function with compact support such

that ψ̃(t) = ψ(t) on [0, ‖y‖]. By Szegő’s limit theorem,

1

#Γι
trψ(yι) =

1

#Γι
tr ψ̃(yι) → τ(ψ̃(y)) = τ(ψ(y)).

We have yι = (xp∗ι )
∗
(xp∗ι ); let us describe how ϕ̋ acts on xp∗ι . Schur multi-

plication with ϕ̋ transforms the matrix of xp∗ι , that is, the truncated Toeplitz
matrix (xrc−1)(r,c)∈Λ̋∩Γ×Γι

, into the matrix (ϕrc−1xrc−1)(r,c)∈Λ̋∩Γ×Γι
so that it

transforms xp∗ι into (Mϕx)p
∗
ι .

Remark 2.2. In the case of a finite abelian group, no limit theorem is needed.
This case was considered in [22, Proposition 2.5 (b)]; compare with [29, Chapter
6, Lemma 3.8].

Remark 2.3. Our technique proves in fact that the norm of a Fourier multiplier
is the upper limit of the norm of the corresponding relative Schur multipliers
on subspaces of truncated Toeplitz matrices. We ignore whether or not it is
actually their supremum.

Remark 5.2 illustrates that the two norms in Theorem 2.1 are different in
general. This is not so in the Sψ-valued case because of the following argument.
It has been used (first in [5], see [6, Proposition D.6]) to show that the complete
norm of the Fourier multiplier ϕ on CΛ bounds the complete norm of the Schur
multiplier ϕ̋ on S∞

Λ̋
, so that we have in full generality ‖ϕ‖Mcb(CΛ) = ‖ϕ̋‖Mcb(S∞

Λ̋
).
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Lemma 2.4. Let Γ be a discrete group and let R and C be subsets of Γ .
With Λ ⊆ Γ associate Λ̋ = {(r, c) ∈ R × C : rc−1 ∈ Λ}; given ϕ ∈ CΛ,

define ϕ̋ ∈ CΛ̋ by ϕ̋r,c = ϕrc−1 . Let ψ : R+ → R+ be a continuous nonde-
creasing function vanishing only at 0. The norm of the relative Schur multi-
plier ϕ̋ on Sψ

Λ̋
(Sψ) is bounded by the norm of the relative Fourier multiplier ϕ

on LψΛ(tr⊗τ).

Proof. We adapt the argument in [31, Lemma 8.1.4]. Let xq ∈ Sψ , of which
only a finite number are nonzero. The space Lψ(tr⊗ tr⊗τ) is a left and right
L∞(tr⊗ tr⊗τ)-module, and

∑

γ∈Γ eγγ ⊗ λγ is a unitary in L∞(tr⊗τ) so that

∥

∥

∥

∑

q∈Λ̋

xq ⊗ eq

∥

∥

∥

Sψ
Λ̋
(Sψ)

=
∥

∥

∥

(

Id⊗
∑

r∈R

er,r ⊗ λr

)(

∑

q∈Λ̋

xq ⊗ eq ⊗ λǫ

)(

Id⊗
∑

c∈C

ec,c ⊗ λ∗c

)∥

∥

∥

Lψ(tr⊗ tr⊗τ)

=

∥

∥

∥

∥

∑

(r,c)∈Λ̋

xr,c ⊗ er,c ⊗ λrc−1

∥

∥

∥

∥

Lψ(tr⊗ tr⊗τ)

=

∥

∥

∥

∥

∑

γ∈Λ

(

∑

rc−1=γ

xr,c ⊗ er,c

)

⊗ λγ

∥

∥

∥

∥

Lψ
Λ
(tr⊗ tr⊗τ)

.

This yields an isometric embedding of Sψ
Λ̋
(Sψ) in LψΛ(tr⊗ tr⊗τ). As Sψ(Sψ) is

the Schatten-von-Neumann-Orlicz class for the Hilbert space ℓ2⊗ℓ2Γ , which may
be identified with ℓ2,

∥

∥

∥

∑

q∈Λ̋

xq ⊗ ϕ̋qeq

∥

∥

∥

Sψ
Λ̋
(Sψ)

=

∥

∥

∥

∥

∑

γ∈Λ

(

∑

rc−1=γ

xr,c ⊗ er,c

)

⊗ ϕγλγ

∥

∥

∥

∥

Lψ
Λ
(tr⊗ tr⊗τ)

6 ‖IdSψ ⊗Mϕ‖
∥

∥

∥

∑

q∈Λ̋

xq ⊗ eq

∥

∥

∥

Sψ
Λ̋
(Sψ)

.

Remark 2.5. This proof also shows the following transfer: let (ri) and (cj) be

sequences in Γ , consider Λ̆ = {(i, j) ∈ N × N : ricj ∈ Λ} and define ϕ̆ ∈ CΛ̆

by ϕ̆(i, j) = ϕ(ricj). Then the norm of the relative Schur multiplier ϕ̆ on Sψ
Λ̆
(Sψ)

is bounded by the norm of the relative Fourier multiplier IdSψ⊗Mϕ on LψΛ(tr⊗τ)
(compare with [32, Theorem 6.4]). In particular, if the ricj are pairwise distinct,
this permits us to transfer every Schur multiplier, not just the Toeplitz ones.
See [22, Section 11] for applications of this transfer.

We shall now prove that the two norms in this lemma are in fact equal. As we
want to compute norms of multipliers on Sψ-valued spaces, we shall generalise
the Szegő limit theorem to the block matrix case, which was not considered in
[2]. This is the analogue of the scalar case for selfadjoint elements y ∈ S∞n ⊗L∞,
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whose S∞n -valued spectral measure µ is defined by
∫

R

f(α)dµ(α) = IdS∞

n
⊗ τ(f(y))

for every continuous function f on R that tends to zero at infinity.
The orthogonal projection p̃ι = Idℓ2n ⊗ pι defines the truncate yι = p̃ιyp̃

∗
ι ∈

S∞n ⊗B(ℓ2Γι), and the S∞n -valued normalised counting measure of eigenvalues µι
by

∫

R

f(α)dµι(α) = IdS∞

n
⊗ tr

#Γι
(f(yι))

for every continuous function f on R that tends to zero at infinity.

Theorem 2.6 (Matrix Szegő limit theorem). Let Γ be a discrete amenable
group and let (Γι) be a Følner averaging net for Γ . Let y be a selfadjoint
element of S∞n ⊗L∞. The net (µι) of S∞n -valued normalised counting measures
of eigenvalues of the truncates of y with respect to Γι converges in the weak∗

topology to the spectral measure of y:

∫

R

f(α)dµι(α) → IdS∞

n
⊗ τ(f(y))

for every continuous function f on R that tends to zero at infinity.

Sketch of proof. We first suppose that y =
∑

γ∈Γ yγ ⊗ λγ with only a finite
number of the yγ ∈ S∞n nonzero. The S∞n -valued matrix of the truncate yι of y
for the canonical basis of ℓ2Γι is (yrc−1)(r,c)∈Γι×Γι . As the truncates yι of y are
uniformly bounded, it suffices to prove that

Id⊗ tr

#Γι
(ykι ) → Id⊗ τ(yk)

for every k. This is trivial if k = 0. If k = 1, then

Id⊗ tr

#Γι
(yι) =

1

#Γι

∑

c∈Γι

yc,c = Id⊗ τ(y)

as yc,c = ycc−1 = yǫ. If k > 2, the same formula holds with yk instead of y:

Id⊗ τ(yk) = Id⊗ tr

#Γι
(p̃ιy

kp̃∗ι ),

so that we wish to prove

Id⊗ tr(p̃ιy
kp̃∗ι − (p̃ιyp̃

∗
ι )
k
) = o(#Γι).

Note that
∥

∥Id⊗ tr
(

p̃ιy
kp̃∗ι − (p̃ιyp̃

∗
ι )
k)∥
∥

S1
n

6 ‖p̃ιykp̃∗ι − (p̃ιyp̃
∗
ι )
k‖S1(S1

n)
.

10



Lemma 5 in [2] provides the following estimate. As

p̃ιy
kp̃∗ι − (p̃ιyp̃

∗
ι )
k
= p̃ιy

k−1(yp̃∗ι − p̃∗ι p̃ιyp̃
∗
ι ) + (p̃ιy

k−1p̃∗ι − (p̃ιyp̃
∗
ι )
k−1

)p̃ιyp̃
∗
ι ,

an induction yields

‖p̃ιykp̃∗ι − (p̃ιyp̃
∗
ι )
k‖S1(S1

n)
6 (k − 1)‖y‖k−1

S∞

n ⊗L∞‖yp̃∗ι − p̃∗ι p̃ιyp̃
∗
ι ‖S1(S1

n)
.

It suffices to consider the very last norm for each term yγ ⊗ λγ of y: let h ∈ ℓ2n
and β ∈ Γ ; as

(

(yγ ⊗ λγ)p̃
∗
ι − p̃∗ι p̃ι(yγ ⊗ λγ)p̃

∗
ι

)

(h⊗ eβ) =

{

yγ(h)eγβ if β ∈ Γι and γβ /∈ Γι

0 otherwise,

the definition of a Følner averaging net yields

‖(yγ ⊗ λγ)p̃
∗
ι − p̃∗ι p̃ι(yγ ⊗ λγ)p̃

∗
ι ‖S1(S1

n)
6 #(Γι \ γ−1Γι)‖yγ‖S1

n
= o(#Γι).

An approximation argument as in the proof of [2, Proposition 4] permits us to
conclude for y ∈ S∞n ⊗ L∞.

Here is the promised strengthening of Lemma 2.4 together with three vari-
ants.

Theorem 2.7. Let Γ be a discrete amenable group. Let Λ ⊆ Γ and ϕ ∈ CΛ.
Consider the associated Toeplitz set Λ̋ = {(r, c) ∈ Γ × Γ : rc−1 ∈ Λ} and the
Toeplitz matrix defined by ϕ̋r,c = ϕrc−1 .

(a) Let ψ : R+ → R
+ be a continuous nondecreasing function vanishing only

at 0. The norm of the relative Fourier multiplier ϕ on LψΛ(tr⊗τ) and the

norm of the relative Schur multiplier ϕ̋ on Sψ
Λ̋
(Sψ) are equal.

(b) Let p > 1. The complete norm of the relative Fourier multiplier ϕ on LpΛ
and the complete norm of the relative Schur multiplier ϕ̋ on Sp

Λ̋
are equal:

‖ϕ‖Mcb(L
p
Λ)

= ‖ϕ̋‖Mcb(S
p

Λ̋
).

(c) The norm of the relative Fourier multiplier ϕ on CΛ, its complete norm,
the norm of the relative Schur multiplier ϕ̋ on S∞

Λ̋
, and its complete norm

are equal:

‖ϕ‖M(CΛ) = ‖ϕ‖Mcb(CΛ) = ‖ϕ̋‖Mcb(S∞

Λ̋
) = ‖ϕ̋‖M(S∞

Λ̋
).

(d) Suppose that Λ = Γ . The norm of the Fourier algebra multiplier ϕ,
its complete norm, the norm of the Schur multiplier ϕ̋ on S∞, and its
complete norm are equal:

‖ϕ‖M(A(Γ )) = ‖ϕ‖Mcb(A(Γ )) = ‖ϕ̋‖Mcb(S∞) = ‖ϕ̋‖M(S∞).

11



Proof. (a). Combine the argument in Theorem 2.1 with the matrix Szegő limit
theorem and apply Lemma 2.4.

(c). Recall that the complete norm of a Schur multiplier ϕ̋ on S∞
Λ̋

is equal
to its norm ([28, Theorem 3.2]). Recall also that the norm of a Fourier multi-
plier χ on C is equal to its complete norm, because Γ is amenable. Moreover,
it coincides with the norm of χ in A(Γ ) ([7, Corollary 1.8]). Let ϕ be a relative
contractive Fourier multiplier on CΛ; compose it with the trivial character of
Γ to obtain a contractive form on CΛ. Then, by the Hahn-Banach extension
theorem, ϕ is the restriction of a contractive element χ in A(Γ ). Now χ is a com-
pletely contractive Fourier multiplier on C, and so is ϕ on CΛ. The conclusion
follows from (a) and (b).

3 Local embeddings of Lp into Sp

The proof of Theorem 2.1 can be interpreted as an embedding of Lψ into an ul-
traproduct of finite-dimensional spaces Sψn that intertwines Fourier and Toeplitz
Schur multipliers. If we restrict ourselves to power functions ψ : t 7→ tp with
p > 1, such embeddings are well known and the proof of Theorem 2.7 does not
need the full strength of the matrix Szegő limit theorem but only the existence
of such embeddings. In this section, we explain two ways to obtain them by
interpolation.

The first way is to extend the classical result that the reduced C∗-algebra C
of a discrete group Γ has the completely positive approximation property if Γ
is amenable. We follow the approach of [6, Theorem 2.6.8]. Let Γ be a discrete
amenable group and let Γι be a Følner averaging net of sets. As above, we denote
by pι the orthogonal projection from ℓ2Γ to ℓ2Γι . Define the compression φι and
the embedding ψι by

φι : C → B(ℓ2Γι)

x 7→ pιxp
∗
ι

and ψι : B(ℓ
2
Γι) → C

er,c 7→ (1/#Γι)λrλc−1 .

(3.1)

If we endow B(ℓ2Γι) with the normalised trace, these maps are unital completely
positive, trace preserving (and normal), and the net (ψιφι) converges point-
wise to the identity of C. One can therefore extend them by interpolation to
completely positive contractions on the respective noncommutative Lebesgue
spaces. Recall that Lp(B(ℓ2Γι), (1/#Γι) tr) is (#Γι)

−1/pSp#Γι
. We get a net of

complete contractions

φ̃ι : L
p → (#Γι)

−1/p
Sp#Γι

and ψ̃ι : (#Γι)
−1/p

Sp#Γι
→ Lp

such that (ψ̃ιφ̃ι) converges pointwise to the identity of Lp. Moreover, the def-
initions (3.1) show that these maps also intertwine Fourier and Toeplitz Schur
multipliers.

This approach is more canonical, as it allows us to extend the transfer to
vector-valued spaces in the sense of [31, Chapter 3]. Recall that for any hyper-
finite semifinite von Neumann algebra M and any operator space E, one can

12



define Lp(M,E). For p = ∞, this space is defined as M ⊗min E; for p = 1,
this space is defined as Mop

∗ ⊗̂E; these spaces form an interpolation scale for the
complex method when 1 6 p 6 ∞. For us, M will be B(ℓ2) or the group von
Neumann algebra L∞. As the maps ψι and φι are unital completely positive
and trace preserving and normal, they define simultaneously complete contrac-
tions on M and M∗. By interpolation, the maps ψι ⊗ IdE and φι ⊗ IdE are still
complete contractions on the spaces Lp(E) and Sp[E]. Let ϕ ∈ CΓ ; the transfer
shows that the norm of IdE⊗Mϕ on Lp(E) is bounded by the norm of IdE⊗Mϕ̋

on Sp[E] and that their complete norms coincide. In formulas,

‖IdE ⊗Mϕ‖B(Lp(E)) 6 ‖IdE ⊗Mϕ̋‖B(Sp[E]),

‖IdE ⊗Mϕ‖cb(Lp(E)) = ‖IdE ⊗Mϕ̋‖cb(Sp[E]).

The compression φι provides a two-sided approximation of an element x,
whereas the proof of Theorem 2.1 uses only a one-sided approximation. This
subtlety makes a difference in our second way to obtain embeddings, a direct
proof by complex interpolation.

Proposition 3.1. Let Γ be a discrete amenable group and let (µι) be a Reiter
net of means for Γ :

• each µι is a positive sequence summing to 1 with finite support Γι ⊆ Γ
and viewed as a diagonal operator from ℓ2Γι to ℓ2Γ , so that

‖µι‖S1 =
∑

γ∈Γι

(µι)γ = 1;

• the net (µι) satisfies, for each γ ∈ Γ , Reiter’s Property P1:

∑

β∈Γ

∣

∣(µι)γ−1β − (µι)β
∣

∣ → 0.

Let x ∈ S∞n ⊗ L∞ = L∞(tr⊗τ) and p > 1. Then

lim sup ‖xµ1/p
ι ‖Sp(Spn) = ‖x‖Lp(tr⊗τ).

Proof. Consider x =
∑

γ∈Γ xγ ⊗ λγ with only a finite number of the xγ ∈ S∞n
nonzero. As

∑

β∈Γ

∣

∣(µι)
1/2
γ−1β − (µι)

1/2
β

∣

∣

2
6

∑

β∈Γ

∣

∣(µι)γ−1β − (µι)β
∣

∣,

Property P1 implies Property P2:

‖λγµ1/2
ι − µ1/2

ι λγ‖S2 → 0,

so that
‖xµ1/2

ι − µ1/2
ι x‖S2(S2

n)
→ 0.
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As the S∞n -valued matrix of x for the canonical basis of ℓ2Γ is (xrc−1)(r,c)∈Γ×Γ ,

‖xµ1/2
ι ‖2S2(S2

n)
=

∑

(r,c)∈Γ×Γ

‖xrc−1‖2Sn2 (µι)c

=
∑

c∈Γ

(µι)c

∑

r∈Γ

‖xrc−1‖2Sn2

=
∑

c∈Γ

(µι)c‖x‖2L2(tr⊗τ) = ‖x‖2L2(tr⊗τ).

By density and continuity, the result extends to all x ∈ L2(tr⊗τ).
Let us prove now that for x ∈ L∞(tr⊗τ),

lim sup ‖xµι‖S1(S1
n)

6 ‖x‖L1(tr⊗τ).

The polar decomposition x = u|x| yields a factorisation x = ab with a = u|x|1/2
and b = |x|1/2 in L∞(tr⊗τ) such that

‖a‖L2(tr⊗τ) = ‖b‖L2(tr⊗τ) = ‖x‖1/2L1(tr⊗τ)

‖a‖L∞(tr⊗τ) = ‖x‖1/2L∞(tr⊗τ).

Then xµι = a(bµ
1/2
ι − µ

1/2
ι b)µ

1/2
ι + aµ

1/2
ι bµ

1/2
ι , so that the Cauchy-Schwarz

inequality yields

‖xµι‖S1(S1
n)

6 ‖a‖L∞(tr⊗τ)‖(bµ1/2
ι − µ1/2

ι b)µ1/2
ι ‖S1(S1

n)
+ ‖aµ1/2

ι bµ1/2
ι ‖S1(S1

n)

6 ‖a‖L∞(tr⊗τ)‖bµ1/2
ι − µ1/2

ι b‖S2(S2
n)

+ ‖a‖L2(tr⊗τ)‖b‖L2(tr⊗τ)

and therefore our claim. Now complex interpolation yields

lim sup ‖xµ1/p
ι ‖Sp(Spn) 6 ‖x‖Lp(tr⊗τ)

for x ∈ L∞(tr⊗τ) and p ∈ [1,∞]. In fact, consider the function f(z) = u|x|pzµzι
analytic in the strip 0 < ℑz < 1 and continuous on its closure; then f(it) is a
product of unitaries for t ∈ R, so that ‖f(it)‖L∞(tr⊗τ) = 1. Also

‖f(1 + it)‖S1(S1
n)

= ‖|x|pµι‖S1(S1
n)
.

As Sp(Spn) is the complex interpolation space (S∞(S∞n ), S1(S1n))1/p,

‖xµ1/p
ι ‖Sp(Spn) = ‖f(1/p)‖Sp(Spn) 6 ‖|x|pµι‖1/pS1(S1

n)
.

Then, taking the upper limit and using the estimate on S1(S1n),

lim sup ‖xµ1/p
ι ‖Sp(Spn) 6 lim sup ‖|x|pµι‖1/pS1(S1

n)

6 ‖|x|p‖1/pL1(tr⊗τ) = ‖x‖Lp(tr⊗τ).
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The reverse inequality is obtained by duality; first note that for y ∈ L∞(tr⊗τ),

lim tr⊗ tr(yµι) = tr⊗τ(y).

With the above notation and the inequality for p′,

‖x‖pLp(tr⊗τ) = τ(|x|p) = lim tr |x|pµι = lim trµ1−1/p
ι |x|p−1u∗xµ1/p

ι

6 lim sup ‖µ1−1/p
ι |x|p−1‖

Sp
′

(Sp
′

n )
‖xµ1/p

ι ‖Sp(Spn)
= lim sup ‖|x|p−1µ1−1/p

ι ‖
Sp

′

(Sp
′

n )
‖xµ1/p

ι ‖Sp(Spn)
6 ‖|x|p−1‖Lp′(tr⊗τ) lim sup ‖xµ1/p

ι ‖Sp(Spn),

so that
lim sup ‖xµ1/p

ι ‖Sp(Spn) = ‖x‖pLp(tr⊗τ).

Remark 3.2. Let µ be any positive diagonal operator with trµ = 1 and p > 2;
then ‖xµ1/p‖Sp(Spn) 6 ‖x‖Lp for all x ∈ L∞(tr⊗τ). The Reiter condition is only
necessary to go below exponent 2.

We could also have used interpolation with a two-sided approximation by
Reiter means. We would have obtained

lim sup ‖µ1/2p
ι xµ1/2p

ι ‖Sp(Spn) = ‖x‖Lp(tr⊗τ).

This formula is in the spirit of the first approach of this section.

4 Transfer of lacunary sets into lacunary matrix

patterns

As a first application of Theorem 2.7, let us mention that it provides a shortcut
for some arguments in [12], as it permits us to transfer lacunary subsets of a
discrete group Γ into lacunary matrix patterns in Γ × Γ . Let us first introduce
the following terminology.

Definition 4.1. Let Γ be a discrete group and Λ ⊆ Γ . Let X be the reduced
C∗-algebra C of Γ or its noncommutative Lebesgue space Lp for p ∈ [1,∞[.

(a) The set Λ is unconditional in X if the Fourier series of every x ∈ XΛ

converges unconditionally; i.e., there is a constant D such that
∥

∥

∥

∥

∑

γ∈Λ′

xγεγλγ

∥

∥

∥

∥

X

6 D‖x‖X

for finite Λ′ ⊆ Λ and εγ ∈ T. The minimal constant D is the unconditional
constant of Λ in X .
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(b) If X = C, let X̃ = S∞ ⊗ C; if X = Lp, let X̃ = Lp(tr⊗τ). The set Λ
is completely unconditional in X if the Fourier series of every x ∈ X̃Λ

converges unconditionally; i.e., there is a constant D such that
∥

∥

∥

∥

∑

γ∈Λ′

xγ ⊗ εγλγ

∥

∥

∥

∥

X̃

6 D‖x‖X̃

for finite Λ′ ⊆ Λ and εγ ∈ T. The minimal constant D is the complete
unconditional constant of Λ in X .

Unconditional sets in Lp have been introduced as “Λ(p) sets” in [12, Defini-
tion 1.1] for p > 2. If Γ is abelian, they are Walter Rudin’s Λ(p) sets if p > 2 and
his Λ(2) sets if p < 2 (see [36, 3]). Asma Harcharras ([12, Definition 1.5, Com-
ments 1.9]) called completely unconditional sets in Lp “Λ(p)cb sets” if p ∈ ]2,
∞[, and “K(p)cb sets” if p ∈ ]1, 2]; her definitions are equivalent to ours by the
noncommutative Khinchin inequality.

Sets that are unconditional in C have been introduced as “unconditional
Sidon sets” in [4]. If Γ is amenable, Fourier multipliers are automatically c.b.
on CΛ, so that such sets are automatically completely unconditional in C, and
there are at least three more equivalent definitions for the counterpart of Sidon
sets in an abelian group. If Γ is nonamenable, these definitions are no longer all
equivalent, and our notion of completely unconditional sets in C corresponds to
Marek Bożejko’s “c.b. Sidon sets.”

Definition 4.2. Let 1 6 p 6 ∞ and I be a subset of the product R×C of two
index sets.

(a) The set I is unconditional in the Schatten-von-Neumann class Sp associ-
ated with B(ℓ2C , ℓ

2
R) if the matrix representation of every x ∈ SpI converges

unconditionally; i.e., there is a constant D such that
∥

∥

∥

∑

q∈I′

xqεqeq

∥

∥

∥

p
6 D‖x‖p

for finite I ′ ⊆ I and εq ∈ T. The minimal constant D is the unconditional
constant of I in Sp.

(b) The set I is completely unconditional in Sp if the matrix representation
of every x ∈ SpI(S

p) converges unconditionally; i.e., there is a constant D
such that ∥

∥

∥

∑

q∈I′

xq ⊗ εqeq

∥

∥

∥

p
6 D‖x‖p

for finite I ′ ⊆ I and εq ∈ T. The minimal constant D is the complete
unconditional constant of I in Sp.

Harcharras called unconditional and completely unconditional sets in Sp

“σ(p) sets” and “σ(p)cb sets”, respectively ([12, Definitions 4.1 and 4.4, Re-
marks 4.6 (iv)]); she supposed p < ∞, so that her definitions are equivalent to
ours by the noncommutative Khinchin inequality.
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Proposition 4.3. Let Γ be a discrete group. Let Λ ⊆ Γ and consider the
associated Toeplitz set Λ̋ = {(r, c) ∈ Γ × Γ : rc−1 ∈ Λ}. Let p ∈ [1,∞[.

(a) If Γ is amenable, then Λ is unconditional in Lp if Λ̋ is unconditional in
Sp.

(b) If Λ is completely unconditional in Lp, then Λ̋ is completely unconditional
in Sp. The converse holds if Γ is amenable.

Proof. The first part of (b) follows by the argument of the proof of [12, Proposi-
tion 4.7]; let us sketch it. Consider the isometric embedding of the space Sp

Λ̋
(Sp)

in LpΛ(tr⊗ tr⊗τ) that is given in the proof of Lemma 2.4 and apply the equiv-
alent Definition 1.5 in [12] of the complete unconditionality of Λ: this gives the
complete unconditionality of Λ̋ in the equivalent Definition 4.4 in [12].

Unconditionality in Lp expresses the uniform boundedness of relative uni-
modular Fourier multipliers on LpΛ; complete unconditionality expresses their
uniform complete boundedness. Unconditionality in Sp expresses the uniform
boundedness of relative unimodular Schur multipliers on Sp

Λ̋
; complete uncondi-

tionality expresses their uniform complete boundedness. The second part of (b)
follows therefore from Theorem 2.7 (b) and (a) follows from Theorem 2.1.

Remark 4.4. This transfer does not pass to the limit p = ∞ in (b) and is void
in (a). Nicholas Varopoulos proved that unconditional sets in S∞ are finite
unions of patterns whose rows or whose columns contain at most one element,
and this excludes sets of the form Λ̋ for any infinite Λ ([37, Theorem 4.2], see
[22, § 5] for a reader’s guide).

Remark 4.5. See [22, Remark 11.3] for an illustration of Proposition 4.3 (b) in
a particular context.

Remark 4.6. Let p be an even integer greater than or equal to 4. The existence
of a σ(p)cb set that is not a σ(q) set for any q > p ([12, Theorem 4.9]) becomes a
direct consequence of Walter Rudin’s construction ([36, Theorem 4.8]) of a Λ(p)
set that is not a Λ(q) set for any q > p, because this set has property B(p/2)
([12, Definition 2.4]) and is therefore Λ(p)cb by [12, Theorem 1.13] (in fact, it is
even “1-unconditional” in Lp because B(p/2) is “p/2-independence” ([22, § 11])).

Remark 4.7. In the same way, [12, Theorem 5.2] becomes a mere reformulation
of [12, Proposition 3.6] if one remembers that the Toeplitz Schur multipliers are
1-complemented in the Schur multipliers for an amenable discrete group and for
all classical norms. Basically, results on Λ(p)cb sets produce results on σ(p)cb
sets.

Let us now estimate the complete unconditional constant of sumsets. In the
case Γ = Z, Harcharras ([12, Prop. 2.8]) proved that a completely unconditional
set in Lp cannot contain the sumset of characters A+A for arbitrary large finite
sets A. In particular, if Λ ⊇ A+ A with A infinite, then Λ is not a completely
unconditional set in Lp. Thus, her proof provided examples of Λ(p) sets that
are not Λ(p)cb sets.

We generalise Harcharras’ result in two directions. Compare [18, § 1.4].
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Proposition 4.8. Let Γ be a discrete group and p 6= 2. A completely uncon-
ditional set in Lp cannot contain the sumset of two arbitrarily large sets. More
precisely, let R and C be subsets of Γ with #R > n and #C > n3. Then, for
any p > 1, the complete unconditional constant of the sumset RC in Lp is at
least n|1/2−1/p|.

Proof. Let r1, . . . , rn be pairwise distinct elements in R. We shall select induc-
tively elements c1, . . . , cn in C such that the ricj are pairwise distinct. Assume
there are c1, . . . , cm−1 such that the induction hypothesis

∀ i, k 6 n ∀ j, l 6 m− 1 (i, j) 6= (k, l) ⇒ ricj 6= rkcl.

holds. We are looking for an element cm ∈ C such that

∀ i, k 6 n ∀ l 6 m− 1 ricm 6= rkcl.

Such an element exists as long as m 6 n, because the set {r−1
i rkcl : i, k 6 n,

l 6 m− 1} has at most
(

n(n− 1) + 1
)

(m− 1) < n3 elements.
The end of the proof is the same as Harcharras’. The unconditional constant

of the canonical basis of elementary matrices in Spn is n|1/2−1/p|; in particular,
there is an unimodular Schur multiplier ϕ̆ on Spn of norm n|1/2−1/p| (which is
also its complete norm, by the way; see [31, Lemma 8.1.5]). Let Λ be the
sumset {ricj : i, j 6 n}; as the ricj are pairwise distinct, we may define a
sequence ϕ ∈ CΛ by ϕricj = ϕ̆i,j . By Remark 2.5, the complete norm of the
Fourier multiplier ϕ on LpΛ is bounded below by the complete norm of the Schur
multiplier ϕ̆ on SpI .

Example 4.9. Λ = {2i − 2j : i > j} does not form a complete Λ(p) set for
any p 6= 2. Indeed, {2i − 2j} = Λ ∪ −Λ does not, and if Λ did, then so would
−Λ and Λ ∪ −Λ.

5 Toeplitz Schur multipliers on Sp for p < 1

When 0 < p < 1, a complete characterisation of bounded Schur multipliers of
Toeplitz type has been obtained by Alexey Alexandrov and Vladimir Peller in
[1, Theorem 5.1]. This result was an easy consequence of their deep results on
Hankel Schur multipliers. The transfer approach provides a direct proof.

Corollary 5.1. Let 0 < p < 1. Let Γ be a discrete abelian group with dual
group G. Let ϕ be a sequence indexed by Γ and define the associated Toeplitz

matrix ϕ̋ ∈ CΛ̋ by ϕ̋(r, c) = ϕ(rc−1) for (r, c) ∈ Γ × Γ . Then the following are
equivalent:

(a) the sequence ϕ is the Fourier transform of an atomic measure µ =
∑

agδg
on G with

∑|ag|p 6 1;

(b) the Fourier multiplier ϕ is contractive on Lp;
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(c) the Fourier multiplier ϕ is contractive on Lp(Sp);

(d) the Schur multiplier ϕ̋ is contractive on Sp;

(e) the Schur multiplier ϕ̋ is contractive on Sp(Sp).

Proof. The implication (d) ⇒ (b) follows from Theorem 2.1. The equiva-
lence (c) ⇔ (e) follows from Theorem 2.7 (a). The characterisation (a) ⇔ (b)
is an old result of Daniel Oberlin ([23]). It is plain that (e) ⇒ (d). At last,
(a) ⇒ (c) is obvious by the p-triangular inequality.

Remark 5.2. As a consequence, we get that the norm of a Toeplitz Schur mul-
tiplier on Sp(Sp) coincides with its norm on Sp when p < 1. If p ∈ {1, 2,∞},
this holds for every Schur multiplier. Let p ∈ ]1, 2[ ∪ ]2,∞[. Then we still do
not know whether Schur multipliers are automatically c.b. on Sp. But from [31,
Proposition 8.1.3], we know that (b) and (c) are not equivalent: if Γ is an infinite
abelian group, there is a bounded Fourier multiplier on Lp that is not c.b. This
counterexample is easy to describe: if an infinite set A ⊆ Γ is lacunary enough,
the sumset A+A is unconditional in Lp (see [18, Theorem 5.13]). By Proposi-
tion 4.8, it cannot be completely unconditional. In particular, this shows that
in Remark 2.3 we cannot remove the restriction to truncated Toeplitz matrices
in the computation of the Schur multiplier norm; that is, (b) ⇒ (d) does not
hold.

Remark 5.3. Our questions may also be addressed in the case of a compact
group like T. A measurable function ϕ on T defines

• the Fourier multiplier on measurable functions on T by x 7→ ϕx;

• the Schur multiplier on integral operators on L2(T) with kernel a measur-
able function x on T× T by x 7→ ϕ̋x, where ϕ̋(z, w) = ϕ(zw−1).

Victor Olevskii ([25]) constructed a continuous function ϕ that defines a boun-
ded Fourier multiplier on the space of functions with p-summable Fourier series

endowed with the norm given by ‖x‖ =
(
∑|x̂(n)|p

)1/p
for every p ∈ ]1,∞[,

while the corresponding Schur multiplier is not bounded on the Schatten-von-
Neumann class Sp of operators on L2(T) for any p ∈ ]1, 2[ ∪ ]2,∞[.

6 The Riesz projection and the Hilbert transform

In this section, we concentrate on Γ = Z, the dual group of T.

Proposition 6.1. Let ̺ be a linear combination of the identity and the upper
triangular projection of N×N; i.e., there are z, w ∈ C so that ̺i,j = z if i 6 j
and ̺i,j = w if i > j. Then the norm of the Schur multiplier ̺ on Sψ coincides
with the norm of the Schur multiplier ̺ on Sψ(Sψ).
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Proof. Let a ∈ Sψm(Sψn ); a may be considered as an m×m matrix (aij) whose
entries aij are n× n matrices, and may be identified with the block matrix

ã =















0 a11 0 a12 · · ·
0 0 0 0 · · ·
0 a21 0 a22 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .















.

In this identification, IdSψn ⊗M̺(a) is M̺(ã).

The Hilbert transform H is the Schur multiplier obtained by choosing
z = −1 and w = 1. The upper triangular operators in Sp can be seen as a
noncommutative Hp space, and H corresponds exactly to the Hilbert trans-
form in this setting (see [33, 19]). Using classical results on Hp spaces, all
Hilbert transforms are c.b. for 1 < p <∞ (see [38, 33, 19]).

On the circle T, the classical Hilbert transform H corresponds to the Fourier
multiplier given by the sign function (with the convention sgn(0) = 1), and its
norm on Lp is cot (π/2max(p, p′)) = csc(π/p) + cot(π/p) for 1 < p < ∞. The
story of the computation of this norm starts with a paper by Israel Gohberg
and Naum Krupnik ([10]) for p a power of 2. The remaining cases were han-
dled by Stylianos Pichorides ([30]) and Brian Cole (see [8]) independently. The
best results in this subject are those of Brian Hollenbeck, Nigel Kalton, and
Igor Verbitsky ([13]), but they rely on complex variable methods that are not
available in the operator-valued case. When p is a power of 2 (or its conjugate),
a combination of arguments of Gohberg and Krupnik ([9]) with some of László
Zsidó ([38]) yields the following result.

Theorem 6.2. Let p ∈ ]1,∞[. The norm and the complete norm of the Hilbert
transform H on Sp coincide with the complete norm of the Hilbert transform H
on Lp: if ˝sgn(i, j) = sgn(i − j) for i, j > 1,

‖ ˝sgn ‖M(Sp) = ‖ ˝sgn ‖Mcb(Sp) = ‖ sgn ‖Mcb(Lp).

If p is a power of 2, then these norms coincide with the norm of H on Lp:

‖ ˝sgn ‖M(Sp) = ‖ ˝sgn ‖Mcb(Sp) = ‖ sgn‖Mcb(Lp) = ‖ sgn‖M(Lp) = cot(π/2p).

Proof. Let p > 2. The norm of H on Lp is cot(π/2p) and the three other norms
are equal by the transfer theorem 2.7 and the above proposition. We only
need to compute the complete norm of H . Let H̃ = IdSp ⊗ H be the Hilbert
transform on Lp(tr⊗τ). We shall use Mischa Cotlar’s trick to go from Lp to L2p:
the equality (sgn i sgn j) + 1 = sgn(i+ j)(sgn i+ sgn j) shows that

(H̃f)(H̃g) + fg = H̃
(

(H̃f)g + f(H̃g)
)

. (6.1)

Step 1. The function sgn is not odd, because of its value in 0; this can be fixed
in the following way. Let Λ = 2Z+ 1. The norm of H̃ on Lp(tr⊗τ) is equal to
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its norm on LpΛ(tr⊗τ). In fact, let D be defined by Df(z) = zf(z2); D is a
complete isometry on Lp with range LpΛ that commutes with H .
Step 2. Let S be the real subspace of LpΛ(tr⊗τ) consisting of functions with
values in Sp so that f(z) is selfadjoint for almost all z ∈ T. Let us apply Vern
Paulsen’s off-diagonal trick ([27, Lemma 8.1]) to show that the norm of H̃ on Lp

is equal to its norm on S. Let f ∈ LpΛ(tr⊗τ). Identifying Sp2(S
p) with Sp,

g(z) =

(

0 f(z)
f(z)∗ 0

)

defines an element of S. As the adjoint operation is isometric on Sp,

‖g‖S = 21/p‖f‖Lp(tr⊗τ).

Let us now consider

H̃g =

(

0 H̃f

H̃(f∗) 0

)

.

As 0 /∈ Λ by Step 1, the equality sgn(−i) = − sgn i holds for i ∈ Λ: this yields
that H̃(f∗) = −(H̃f)∗. Therefore

‖H̃g‖S = 21/p‖H̃f‖Lp(tr⊗τ).

Step 3. Let up be the norm of H̃ on Lp(tr⊗τ); then u2p 6 up +
√

1 + up. It
suffices to prove this estimate for f ∈ S, and by approximation we may suppose
that f is a finite linear combination of terms ai ⊗ zi + a∗i ⊗ z−i with ai finite
matrices. Note that H̃f = −(H̃f)∗. Formula (6.1) with f = g combined with
Hölder’s inequality yields

‖(H̃f)2‖Lp(tr⊗τ) 6 ‖f2‖Lp(tr⊗τ) + 2up‖f‖L2p(tr⊗τ)‖H̃f‖L2p(tr⊗τ).

Since f and H̃f take normal values,

‖f2‖Lp(tr⊗τ) = ‖f‖2L2p(tr⊗τ)

‖(H̃f)2‖Lp(tr⊗τ) = ‖H̃f‖2L2p(tr⊗τ).

Therefore, if ‖f‖L2p(tr⊗τ) = 1, ‖H̃f‖L2p(tr⊗τ) must be smaller than the bigger
root of t2 − 2upt− 1; that is,

‖H̃f‖2L2p(tr⊗τ) 6 up +
√

u2p + 1 and u2p 6 up +
√

u2p + 1.

Step 4. The multiplierH is an isometry on L2(tr⊗τ), so that u2 = 1 = cot(π/4).
As cot(ϑ/2) = cotϑ+

√
cot2 ϑ+ 1 for ϑ ∈ ]0, π[, we conclude by induction.

Unfortunately, we cannot deal with other values of p > 2 by this method.
The Riesz projection T is the Schur multiplier obtained by choosing z = 0

and w = 1 in Proposition 6.1. It is the projection on the upper triangular
part. On the circle, the classical Riesz projection T , that is the projection onto
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the analytic part, corresponds to the Fourier multiplier given by the indicator
function χZ+ of nonnegative integers; its norm on Lp, as computed by Hollenbeck
and Verbitsky ([14]), is csc(π/p). As for the Hilbert transform, we know that
the norm and the complete norm of T on Sp are equal and coincide with the
complete norm of T on Lp, but, to the best of our knowledge, there is no simple
formula like (6.1) to go from exponent p to 2p. We only obtained the following
computation.

Proposition 6.3. Let p ∈ ]1,∞[. The norm and the complete norm of the Riesz
projection T on Sp coincide with the complete norm of the Riesz projection T
on Lp: if χ̋Z+(i, j) = χZ+(i− j) for i, j > 1,

‖χ̋Z+‖M(Sp) = ‖χ̋Z+‖Mcb(Sp) = ‖χZ+‖Mcb(Lp).

If p = 4, then these norms coincide with the norm of T on Lp:

‖χ̋Z+‖M(S4) = ‖χ̋Z+‖Mcb(S4) = ‖χZ+‖Mcb(L4) = ‖χZ+‖M(L4) =
√
2.

Proof. We shall compute the norm of T on S4. Let x be a finite upper triangular
matrix and let y be a finite strictly lower triangular matrix. We have to prove
that √

2‖x+ y‖S4 > ‖x‖S4.

Let us make the obvious estimates on S2 and use the fact that the adjoint
operation is isometric:

‖T (xx∗)‖S2 = ‖T ((x+ y)x∗)‖S2 6 ‖x+ y‖S4‖x‖S4,

and similarly,

‖(Id− T )(xx∗)‖S2 = ‖(Id− T )(x(x + y)∗)‖S2 6 ‖x‖S4‖x+ y‖S4.

As T and Id− T have orthogonal ranges,

‖x‖4S4 = ‖xx∗‖2S2 = ‖(Id− T )(xx∗)‖2S2 + ‖T (xx∗)‖2S2 6 2‖x‖2S4‖x+ y‖2S4.

7 Unconditional approximating sequences

The following definition makes sense for general operator spaces, but we choose
to state it only in our specific context.

Definition 7.1. Let Γ be a discrete group and Λ ⊆ Γ . Let X be the reduced
C∗-algebra of Γ or its noncommutative Lebesgue space Lp for p ∈ [1,∞[.

(a) A sequence (Tk) of operators onXΛ is an approximating sequence if each Tk
has finite rank and Tkx → x for every x ∈ XΛ. It is a complete approx-
imating sequence if the Tk are uniformly c.b. If XΛ admits a complete
approximating sequence, then XΛ enjoys the c.b. approximation property.
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(b) The difference sequence (∆Tk) of a sequence (Tk) is given by ∆T1 = T1
and ∆Tk = Tk − Tk−1 for k > 2. An approximating sequence (Tk) is
unconditional if the operators

n
∑

k=1

εk∆Tk with n > 1 and εk ∈ {−1, 1} (7.1)

are uniformly bounded on XΛ; then XΛ enjoys the unconditional approx-
imation property.

(c) An approximating sequence (Tk) is completely unconditional if the op-
erators in (7.1) are uniformly c.b. on XΛ; then XΛ enjoys the complete
unconditional approximation property. The minimal uniform bound of
these operators is the complete unconditional constant of XΛ.

We may always suppose that a complete approximating sequence on CΛ is a
Fourier multiplier sequence (see [11, Theorem 2.1]). We may also do so on LpΛ
if L∞ has the so-called QWEP (see [15, Theorem 4.4]). More precisely, the
following proposition holds.

Proposition 7.2. Let Γ be a discrete group and Λ ⊆ Γ . Let X either be
its reduced C∗-algebra or its noncommutative Lebesgue space Lp, where p ∈
[1,∞[ and L∞ has the QWEP. If XΛ enjoys the completely unconditional
approximation property with constant D, then for every D′ > D there is a
complete approximating sequence of Fourier multipliers (ϕk) that realises the
completely unconditional approximation property with constant D′: the Fourier
multipliers

∑n
k=1 εk∆ϕk are uniformly completely bounded by D′ on XΛ.

Let us now describe how to skip blocks in an approximating sequence in
order to construct an operator that acts like the Riesz projection on the sumset
of two infinite sets. The following trick will be used in the induction below
(compare with the proof of [20, Theorem 4.2]):





1 1 0
0 1 0
0 0 0



−





1 1 0
1 1 0
1 1 0



+





1 1 1
1 1 1
1 1 1



 =





1 1 1
0 1 1
0 0 1



 .

Lemma 7.3. Let Γ be a discrete group and Λ ⊆ Γ . Suppose that Λ contains
the sumset RC of two infinite sets R and C. Let (Tk) be either an approximat-
ing sequence on LpΛ with p ∈ [1,∞[, or an approximating sequence of Fourier
multipliers on CΛ. Let ε > 0. There is a sequence (ri) in R, a sequence (ci)
in C, and there are indices l1 < k2 < l2 < k3 < . . . such that, for every n, the
skipped block sum

Un = Tl1 + (Tl2 − Tk2) + · · ·+ (Tln − Tkn) (7.2)

acts, up to ε, as the Riesz projection on the sumset {ricj}i,j6n:
{

‖Un(λricj)− λricj‖ < ε if i 6 j 6 n,

‖Un(λricj)‖ < ε if j < i 6 n.
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Proof. Let us construct the sequences and indices by induction. If n = 1, let
r1 and c1 be arbitrary; there is l1 such that ‖Tl1(λr1c1) − λr1c1‖ < ε. Sup-
pose that r1, . . . , rn, c1, . . . , cn, l1, . . . , ln, and k2, . . . , kn have been constructed.
Let δ > 0 be chosen later.

• The operator Un defined by Equation (7.2) has finite rank. If it is a Fourier
multiplier, one can choose an element rn+1 ∈ R such that Un(λrn+1cj ) = 0
for j 6 n. If it acts on LpΛ with p ∈ [1,∞[, one can choose an ele-
ment rn+1 ∈ R such that ‖Un(λrn+1cj )‖ < δ for j 6 n because (λγ)γ∈Γ is
weakly null in Lp.

• There is kn+1 > ln such that ‖Tkn+1
(λγ)− λγ‖ < δ for γ ∈ {ricj : 1 6 i 6

n+ 1, 1 6 j 6 n}.

• Again, choose cn+1 ∈ C such that ‖(Un−Tkn+1
)(λricn+1

)‖ < δ for i 6 n+1.

• Again, choose ln+1 > kn+1 such that ‖Tln+1
(λγ)− λγ‖ < δ for γ ∈ {ricj :

1 6 i, j 6 n+ 1}.

Let Un+1 = Un + (Tln+1
− Tkn+1

). If i 6 n+ 1 and j 6 n, then

‖∆Un+1(λricj )‖ 6 ‖Tln+1
(λricj )− λricj‖+ ‖λricj − Tkn+1

(λricj )‖ < 2δ,

so that

‖Un+1(λricj )− λricj‖ < ε+ 2δ if i 6 j 6 n

‖Un+1(λricj )‖ < ε+ 2δ if j < i 6 n

‖Un+1(λrn+1cj )‖ < 3δ if j 6 n.

If i 6 n+ 1, then

‖Un+1(λricn+1
)− λricn+1

‖
6 ‖(Un − Tkn+1

)(λricn+1
)‖+ ‖Tln+1

(λricn+1
)− λricn+1

‖ < 2δ.

This shows that our choice of rn+1, cn+1, kn+1 and ln+1 is adequate if δ is small
enough.

This construction will provide an obstacle to the unconditionality of sumsets.

Theorem 7.4. Let Γ be a discrete group and Λ ⊆ Γ . Suppose that Λ contains
the sumset RC of two infinite sets R and C.

(a) Let 1 < p <∞. The complete unconditional constant of any approximat-
ing sequence for Lp is bounded below by the norm of the Riesz projection
on Sp, and thus by cscπ/p.

(b) The spaces L1
Λ and CΛ do not enjoy the complete unconditional approxi-

mation property.
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(c) If Γ is amenable, then the space CΛ does not enjoy the unconditional
approximation property.

Proof. Let (Tk) be an approximating sequence on LpΛ. By Lemma 7.3, for ev-
ery ε > 0 and every n, there are elements r1, . . . , rn ∈ R, c1, . . . , cn ∈ C such
that the Fourier multiplier ϕ given by the indicator function of {ricj}i6j is near
to a skipped block sum Un of (Tk) in the sense that ‖Un(λricj )−ϕricjλricj‖ < ε.
But Un is the mean of two operators of the form (7.1): its complete norm will
provide a lower bound for the complete unconditional constant of XΛ. Let us
repeat the argument of Lemma 2.4 with x ∈ Spn. As

∥

∥

∥

n
∑

i,j=1

xi,j ei,j

∥

∥

∥

Spn

=
∥

∥

∥

(

n
∑

i=1

ei,i ⊗ λri

)(

n
∑

i,j=1

xi,j ei,j ⊗ λǫ

)(

n
∑

j=1

ej,j ⊗ λcj

)∥

∥

∥

Lp(tr⊗τ)

=
∥

∥

∥

n
∑

i=1

xi,j ei,j ⊗ λricj

∥

∥

∥

Lp(tr⊗τ)

and
∥

∥

∥

n
∑

i=1

xi,j ei,j ⊗ (Un(λricj )− ϕricjλricj )
∥

∥

∥

Lp(tr⊗τ)
< n2ε‖x‖Spn,

the complete norm of Un is nearly bounded below by the norm of the Riesz
projection on Spn:

∥

∥

∥

n
∑

i=1

xi,j ei,j ⊗ Un(λricj )
∥

∥

∥

Lp(tr⊗τ)
>

∥

∥

∥

∑

i6j

xi,j ei,j ⊗ λricj

∥

∥

∥

Lp(tr⊗τ)
− n2ε‖x‖Spn

= ‖T (x)‖Spn − n2ε‖x‖Spn .

This proves (a) as well as the first assertion in (b), because the Riesz projection is
unbounded on S1. Let (Tk) be an approximating sequence on CΛ; by Lemma 7.2,
we may suppose that (Tk) is a sequence of Fourier multipliers. Thus the second
assertion in (b) follows from Lemma 7.3 combined with the preceding argument
(where Spn is replaced by S∞n and Lp(tr⊗τ) by S∞n ⊗C) and the unboundedness
of the Riesz projection on S∞. For (c), note that the Fourier multipliers Tk are
automatically c.b. on CΛ if Γ is amenable (proof of Theorem 2.7 (c)).

Theorem 7.4 (b) was originally devised to prove that the Hardy space H1,
corresponding to the case Λ = N ⊆ Z and p = 1, admits no completely uncon-
ditional basis (see [34, 35]). Theorem 7.4 (c) both generalises the fact that a
sumset cannot be a Sidon set (see [18, §§ 1.4, 6.6] for two proofs and historical
remarks, or [17, Proposition IV.7]) and Daniel Li’s result [16, Corollary 13] that
the space CΛ does not have the “metric” unconditional approximation property
if Γ is abelian and Λ contains a sumset. Li ([16, Theorem 10]) also constructed
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a set Λ ⊆ Z such that CΛ has this property, while Λ contains the sumset of
arbitrarily large sets. This theorem also provides a new proof that the disc
algebra has no unconditional basis and answers [21, Question 6.1.6].

Example 7.5. Neither the span of products {rirj} of two Rademacher functions
in the space of continuous functions on {−1, 1}∞ nor the span of products {sisj}
of two Steinhaus functions in the space of continuous functions on T∞ has an
unconditional basis.

8 Relative Schur multipliers of rank one

Let ̺ be an elementary Schur multiplier on S∞, that is,

̺ = x⊗ y = (xryc)(r,c)∈R×C .

Then its norm is supr∈R|xr | supc∈C |yc|. How is this norm affected if ̺ is only
partially specified, that is, if the action of ̺ is restricted to matrices with a given
support?

Theorem 8.1. Let I ⊆ R×C and consider (xr)r∈R and (yc)c∈C. The relative
Schur multiplier on S∞I given by (xryc)(r,c)∈I has norm sup(r,c)∈I |xryc|.

Note that the norm of the Schur multiplier (xryc)(r,c)∈I is bounded by
supr∈R|xr| supc∈C |yc| because the matrix (xryc)(r,c)∈R×C is a trivial extension
of (xryc)(r,c)∈I ; the proof below provides a constructive nontrivial extension of
this Schur multiplier that is a composition of ampliations of the Schur multiplier
in the following lemma.

Lemma 8.2. The Schur multiplier

(

z w
w z

)

has norm max(|z|, |w|) on S∞2 .

Proof. This follows from the decomposition
(

z w
w z

)

=
|z|+ |w|

2

(

t̄u
tū

)

⊗
(

tu tu
)

+
|z| − |w|

2

(

t̄u
−tū

)

⊗
(

tu −tu
)

,

where t, u ∈ T are chosen so that z = |z|t2 and w = |w|u2.

Proof of Theorem 8.1. We may suppose that C is the finite set {1, . . . ,m} and
that R is the finite set {1, . . . , n}, that each yc is nonzero, and that each row
in R contains an element of I. We may also suppose that (|xr |)r∈R and (|yc|)c∈C
are nonincreasing sequences. For each r ∈ R let cr be the least column index of
elements of I in or above row r; in other words,

cr = min
r′6r

min{c : (r′, c) ∈ I}.

The sequence (cr)r∈R is nonincreasing. Let us define its inverse (rc)c∈C in the
sense that rc 6 r ⇔ cr 6 c. For each c ∈ C, let rc = min{r : cr 6 c}.
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Given r, let r′ 6 r be such that (r′, cr) ∈ I; then |xrycr | 6 |xr′ycr |, so that
supr∈R|xrycr | 6 sup(r,c)∈I |xryc| and the rank 1 Schur multiplier

̺0 = (xrycr)(r,c)∈R×C

with pairwise equal columns is bounded by sup(r,c)∈I |xryc| on S∞n . We will
now “correct” ̺0 without increasing its norm so as to make it an extension
of (xryc)(r,c)∈I . Let r ∈ R and c′ > cr; then

xryc′ = xrycr
ycr+1

ycr
· · · yc′

yc′−1
= xrycr

∏

cr6c6c′−1

yc+1

yc

= xrycr
∏

r>rc
c′>c+1

yc+1

yc
.

This shows that it suffices to compose the Schur multiplier ̺0 with the m − 1
rank 2 Schur multipliers with block matrix

̺c =



















1 ··· c c+1 ··· m

1

...

rc−1

(

yc+1

yc

)

1

rc
...

n

1
yc+1

yc



















,

each of which has norm 1 on S∞n by Lemma 8.2.

Remark 8.3. We learned after submitting this article that Timur Oikhberg
proved Theorem 8.1 independently and gave some applications to it; see [24].

Remark 8.4. As an illustration, let C = R = {1, . . . , n} and I = {(r, c) : r > c},
and let ai be an increasing sequence of positive numbers. Take xr = ar and yc =
1/ac. Then the relative Schur multiplier (ar/ac)r6c has norm 1. The above
proof actually constructs the norm 1 extension (min(ar/ac, ac/ar))(r,c). If we

put ai = exi , we recover that (e−|xr−xc|)(r,c) is positive definite, that is, |·| is a
conditionally negative function on R.

2010 Mathematics subject classification: Primary 47B49; Secondary 43A22,
43A46, 46B28.

Key words and phrases: Fourier multiplier, Toeplitz Schur multiplier, lacunary
set, unconditional approximation property, Hilbert transform, Riesz projection.
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