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ABSTRACT

In [14][15] we introduced a new vector quantizer (VQ)
for the compression of digital image sequences. Qur
approach unifies both efficient coding methods : a fast
lattice encoding [3] and an unbalanced tree-structured
codebook design according to a distortion vs. rate trade-
off [2][16]. This tree-structured lattice VQ (TSLVQ) is
based on the hierarchical packing of embedded truncated
lattices. Now we investigate the determination of the
most efficient lattice respectively to this method. We
also describe a fast test which permits to detect the in-
put vectors whose norm is above than the mazimum al-
lowed by the TSLVQ. Finally we analyse experimental
results applied to image sequence with our V@ taking
place in a region-based coding scheme for a videophone
application.

1 Introduction

This paper deals with the design of a VQ for the com-
pression of digital image sequences and we consider a
differential or hybrid image vector source (i.e : vec-
tors of (transformed) motion-compensated prediction
errors). Such a source, whose distribution is commonly
modelized by a multivariate generalized gaussian func-
tion, is always a nonstationary signal. So a temporal
updating of the VQ codebook [8][11] has to be designed
in order to fit the spatiotemporal statistics of the im-
age source. A training procedure, for the VQ codebook
design from source representative training sequences,
performs this temporal replenishment. But the code-
book design and the corresponding encoding-decoding
algorithm have to be very fast.

The computation complexity of usual classification
methods [9][7] presents a limitation on their applica-
bility. A lattice VQ [6][1], for which encoding is fastest,
is adapted only for a stationary signal whose distribu-
tion permits to truncate the lattice.

2 Summary of the previous study

To overcome these drawbacks, we proposed a new lat-
tice VQ based on the hierarchical packing of embedded
lattices and, considering the lattices for which Conway

and Sloane determined fast quantizing and decoding
algorithms [3] (i.e : Z"/n > 1,Dn/n > 2, Es, A1), we
described in [14][15] :

e the lattice truncating method in order to embed it
(by contracting it) in its voronof cell ;

o the hierarchical set organization of truncated lattices,
by suitably shifting their scales in order that a lower
scale lattice is embedded into the next higher scale one ;
e the corresponding multistage quantization proce-
dure ;

e the tree pruning or a greedy tree growing approach
used in order to design, by training, an unbalanced tree-
structured codebook according to a distorsion vs. rate
criterion [2][16].

However the greedy tree growing approach is more suit-
able when the vector dimension, and consequently the
tree airies number, is high : for each iterative process
loop, only a single splitted leaf is added to the tree (only
one new truncated lattice is embedded). But this later
method, which explored the short term effect of ex-
tending the tree, is suboptimal considering a tree prun-
ing approach where, after a complete tree design, some
branches are successively removed.

In practice the lattice truncation energy is chosen min-
imal in order to restrict the number of embedded lat-
tice points. So the TSLVQ codebook design achieves a
progressive vector space partition involving an efficient
entropy coding of the tree leaves.

3 Optimal lattice determination

This optimal lattice is choosen again among the lat-
tices for which Conway and Sloane determined fast
quantizing and decoding algorithms [3] (note that
D4, FEg, and Ajg are the best quantizing lattices [4] re-
spectively to their dimension and considering the high-
resolution theory).

Figure 1 shows experimental codebook entropy vs. dis-
torsion curves and we compare Z* with Dy, Z® with
L : it appears that Z™ performs better than the oth-
ers : lower distorsion and rate are obtained. Of course,
a low rate is achieved with higher vector dimensions.
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Figure 1: TSLVQ using a tree growing approach :
experimental distorsion vs. rate curves for an t.1.d
synthetic gaussian source (source variance : o’ =
1).  The training sequence size is adapted to the
vector dimension in order to reach a training ratio

higher than 150.

Z"™ 1s optimal for the TSLVQ because it is the only
lattice which realises an optimal packing : the cubic
truncated lattice, when we embed it (by contracting
it), recovers exactly the cubic voronol cell.

Figure 2 illustrates the optimal packing advantage :
suppose that the source vectors are uniformly displayed
into the shaded region. For the truncated cubic lattice,
the decrease in distorsion and the increase in rate are
equably shared between all the points. For the trun-
cated hexagonal lattice, the six peripheral points are
less probable, it induces an increase in rate and a less
decrease in distorsion.

Using Z" implies that the resulting TSLVQ hasn’t a
space-filling advantage [10], but in practice this gain is
very low [10]. On the other hand, Z" is the least dense
lattice, so the truncated lattice points number (the tree
airies number) is reduced and the vector space partition
1S more progressive.

Figure 2: An optimal packing with the cubic lattice,
a nearly optimal packing with the hexagonal lattice.

4 Input vectors norm test

A training procedure is used in order to design the co-
debook. Since the input vectors, to be quantized, don’t

come exactly from the training sequence (TS), it’s nec-
essary to verify that their norm is below the maximal
allowed. We hence introduce a fast test whose aim is
to sort the input vectors.

Let F be the scaling factor used in order to project the
source vectors into the first truncated lattice [14] [15] :

with

gma.r:mgx g(x):[&(x)zzl'? /XETS

=1

where p is the lattice packing radius [4] (p = 1/2 for
Z") and &Emar 18 the maximum energy for the source
to be coded. The Z™ voronoi cells totally or partially
within the multidimensional sphere of radius (3 x p)
constitute the basic truncated lattice conserved for the
packing, because :

n

Z (Fxx)’ = Bxe) 0’

gma:r
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i=1
This truncated sub-space is a cube and a vector u,
which lies into it, is such as (figure 2 illustrates it) :
Le(u)= max |u| < (3%p)
1 =1,...,n

Consequently, the source vectors which can be quan-
tized by the TSLVQ have to verify (before projection) :

LOO(X) = ‘H1134X |-Tz| S \/gma.r
i=1,...,n
This test using the Lo, metric is obviously faster than
one with the L> metric.

5 Experimental results

Figure 3 shows the region-based coder where the
TSLVQ takes place. We describe the modules of this
coding scheme :

e the motion information (module E), performed di-
rectly using the original image sequence, is obtained in
two steps. A first motion estimation is achieved by
a coarse-to-fine multiresolution technique [12]. This
primilary motion information (segmentation maps,
affine-model motion parameters) is processed by a min-
imisation algorithm based on a minimum description
length criterion in order to reduce the contour segments
cost [13]. The resulting regions have polygonal shapes
(see figure 7) and the average cost is about 500 bits per
segmentation map with 900 control points ;

o for a given input image, the prediction image is made
by module C which achieves a motion compensation
of the previous decoded image using the corresponding
motion information (in order to initialize the experi-
mental coding process, the first sequence image is not

coded) ;



¢ a dyadic wavelet transform (module T) is applied to
the prediction error images (a two levels decomposition
using Daubechies orthonormal compact wavelets [5])
and then wavelet coefficients are vector quantized
(module TSLVQ). In fact a multiresolution codebook
is designed, figure 4 displays the vector dimension and
the maximal codebook entropy allowed for each sub-
band such as the maximal multiresolution codebook
entropy is about 0.27 [bit/sample or bpp] (the training
sequences are obtained by the open loop coder). The
non-coded source vectors, whose norm are too high, are
directly duplicated into the quantized subband.

The simulations are made using the QCIF image se-
quence “miss america” (108 images, image size 176 by
144, 8 bpp). The computer is a SPARCStation 20 (75
Mhz).

Images extracted from the sequences are shown on fig-
ure 7. They illustrate how the TSLVQ approach is
adapted to hybrid image source coding since, for a given
rate, the high-density vector space region (associated
with the homogeneous areas of the differential image)
is coarsely quantized in order to permit a finer coding
of the low-density vector space region (associated with
the inhomogeneous areas).

The table displays global numerical results correspond-
ing to the multiresolution codebook design and to the
image sequence coding (note that the final multireso-
lution codebook entropy is about 0.16 bpp). The cpu
time for an image encoding is about 0.7 s.

Figures 5 and 6 show results for images 60 up to 90.
The gains formulae (in [dB]) are given by :

PSNR = 101 255 1ol vet
= 0g1g ———= og
10 %26? ST ——

- =Gp+Gq
where N is the image size, e; the prediction errors and
eiq the vector quantized prediction errors.

6 Conclusion

The experimental results, obtained with this region-
based coding scheme, demonstrate the TSLVQ effi-
ciency for a very low bit rate compression of videophone
image sequences.

For high vector dimension the training sequence, re-
quired for the codebook design, becomes considerable
and the set of code-vectors (the tree leaves) used to
quantize the images is not stable. The solution could
consist in designing the TSLVQ codebook in two parts :
a tree-structure “stump” using several image sequences,
the branches added with respect to the sequence to be
coded.
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Figure 3: Predictive coder scheme for image
sequences compression (E : motion estimation,
C' : motion compensation, T : wavelet transform,
B : buffer, e : prediction errors image, e, : vector
quantized prediction errors image).
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Figure 4: Multiresolution codebook for the QCIF
wmages sequence coding : vector shape and mazximal
codebook entropy [bpp] with respect to the subbands.
Fach subband is labelled by a letter.
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Figure 5: Image sequence coding, gain results for
the tmages 60 up to 80.
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Figure 7: Images extracted from the sequences : the original image and its segmentation map, the corre-
sponding prediction errors image and the vector quantized prediction errors image (differential images are

centered and scaled 5 times).

codebook design sequence coding
subband | cpu time number of codebook | training | number of used | number of non-coded | entropy
label code-vectors entropy ratio code-vectors source vectors
A 0.30 s 9 | 0.56 bpp 352 9 32 | 0.60 bpp
B 0.47 s 23 | 0.10 bpp 206 23 28 | 0.19 bpp
C 0.59 s 28 | 0.11 bpp 311 28 31 | 0.22 bpp
D 0.70 5 33 | 0.16 bpp 264 33 43 | 0.30 bpp
E 16.64 s 803 0.07 bpp 140 616 0 | 0.10 bpp
F 2.94 s 52 | 0.01 bpp 639 52 1 | 0.02 bpp
G 21.49 s 1179 | 0.10 bpp 122 857 0 | 0.18 bpp
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