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Trajectory Estimation for Ultrashort Baseline Acoustic Positioning Systems

The purpose of the paper is to describe an automatic estimation method of an underwater vehicle trajectory from ultrashort baseline system measurements. The standard Viterbi algorithm is then used to find the most likely trajectory of the dynamic system observed through the noisy measurements with a model of nonconstant speed as state variable. A decoupled trajectory is achieved by considering separately each coordinate of the point. Aberrant measurements are automatically discarded. For very long trajectory, a temporal window is shifted along the data set, and an automatic adjustment of the algorithm parameter is performed.

I. INTRODUCTION

The French research institute for exploitation of the sea (IFREMER) has developed a new deep-sea positioning system (POSIDONIA) for its underwater vehicles (UV). This ultrashort baseline system (USBL) is composed by an acoustic vessel-born localization system and sensors measuring vessel position, heading and attitude. The latter are used to transform the acoustic UV position into earth related coordinates. The UV is localized down to 6000m. Because of the different sources of measurement error that contribute to the overall positioning error, the accuracy is about 30m and false alarms occur [START_REF] Opderbecke | At-sea calibration of a usbl underwater vehicule positioning system[END_REF] (see figure 7). Our research is then focused on the automatic estimation of the UV trajectory from the prerecorded USBL measurements. 

II. METHOD

The standard Viterbi algorithm [START_REF] Forney | The viterbi algorithm[END_REF] allows us to find the most likely trajectory of the dynamic system observed through the noisy measurements. The problem of optimum estimation [START_REF] Larson | A dynamic programming approach to trajectory estimations[END_REF] is briefly formulated with reference to figure 1 as follows; the system state x k at k th sampling instant is such as:

x k = f (x k-1 , η k ).
x k depends on the state at the previous sampling instant and on a state noise η k . The relationship between the measurement and the system state is given by:

m k = h(x k , n k ),
where m k is the measurement at k th sampling instant corrupted by the noise n k . At the initialization, the measurement set M k = {m 0 , m 1 , . . . , m k } and p(x 0 ) the a priori probability density function (pdf) of the initial state are given. The problem is to find the sequence of states or trajectory X k = {x 0 , x 1 , . . . , x k } that maximizes the a posteriori conditional pdf p(X k |M k ). The solution or modal trajectory is such as:

X k arg max X k p(X k |M k ) .
Dynamic programming allows us to construct a wise algorithm. Starting from the fact that:

X k = arg max x k arg max X k-1 p(X k |M k ) ,
and introducing for each possible value of x k the quantity:

I(x k ) = max X k-1 p(X k |M k ) ,
we end up with the classic recursion:

I(x k ) = max x k-1 p(m k |x k )p(x k |x k-1 )I(x k-1 ) . ( 1 
)
Let xk-1 (x k ) the value of x k-1 that maximizes [START_REF] Opderbecke | At-sea calibration of a usbl underwater vehicule positioning system[END_REF]. The resulting algorithm proceeds in three steps:

• an initialization by defining I(x 0 ) = p(x 0 );

• a forward procedure with, at each sampling instant i, the calculation of I(x i ) from m i , equation (1) and xi-1 (x i ) obtained at the previous iteration. The iterative procedure is repeated until the kth instant is reached;

• the modal trajectory is found by tracing backward a stage at a time using the function xi (x i+1 ). 

III. STATISTICAL MODELING

A. Monodimensional model

Each position measurement is a three dimensional point, at the k th sampling instant:

m k = [m k,x , m k,y , m k,z ]
T .

Considering only one dimension, a model with nonconstant speed as state variable is used:

x k r k,x v k,x ,
where r k,x indicates the position and v k,x the nonconstant speed. It obeys the following state equation:

x k = 1 ∆t k 0 1 x k-1 + 0 ξ η k,x ,
where ∆t k is the non constant time interval between the two successive measurements m k-1 and k , ξ is a constant, and η k,x the Gaussian state noise such as:

E η k,x = 0, V ar η k,x = σ 2 1 .
The choice of speed depends on ∆t k : 1. if ∆t k ≤ 5s, a choice among nine values is done:

η x = [-4, . . . , -1, 0, 1, . . . , 4] T ;
2. if ∆t k > 5s, fifteen values are available:

η x = [-7, . . . , -1, 0, 1, . . . , 7] T .
At the initialization ∆t 0 is supposed to be equal to 5s and we choose:

x 0 = 1 5 0 1 m 0,x -5 1 + 0 ξ η 0,x .

B. Transition probabilities

The transition pdf from the x k-1 state to the x k state is defined as follows:

p x k |x k-1 = Kδ r k,x -r k-1,x -∆t k v k-1,x × exp - 1 2 v k,x -v k-1,x ξσ 1 2 , ( 2 
)
where K is a normalization constant and δ() the Kronecker symbol. We denote:

p v k |v k-1 = K exp - 1 2 v k,x -v k-1,x ξσ 1 2 . ( 3 
)
The most probable transitions give an advantage to small accelerations or decelerations, because the expected trajectory must be smooth. At the initialization:

p x 0 = 1 9 .

C. Measurement likelihood

This pdf can be written as the uniform-Gaussian mixture [START_REF] Jauffret | Target motion analysis in the presence of false alarms[END_REF] defined as:

p m k,x |x k = p m k,x |r k,x = 1 -P c u x + P c 1 √ 2πσ x exp - (m k,x -r k,x ) 2 2σ 2 x , (4) 
where σ x is the standard deviation of the measurement noise, u x the measurement domain and P c denotes the probability for a measurement to be correct (typically P c = 0.7).

When the gap between the measurement m k,x and the position r k,x is small, the likelihood is high (see figure 2). If |m k,x -r k,x | is greater than half of the domain u x , the likelihood equals zero so the aberrant measurement m k,x is kept away. It implies two consequences:

• a jump appears in the trajectory at the k th instant (see figure 3);

• the sum (∆t k + ∆t k+1 ) will be used to determinate the next state. The algorithm manages with consecutive jumps. In such a case the time interval to determinate the current state is the sum of the successive time intervals from the first aberrant measurement.

D. Viterbi recursive equation

Note that because of equations ( 2), ( 3) and (4), equation ( 1) is equivalent to recursively define I(x k ) by:

I(x k ) = max x k-1 p m k,x |r k,x p v k,x |v k-1,x I(x k-1 ) . ( 5 
)
In practice we use:

p v k = ξi|v k-1 = ξj = K exp - 1 2 i -j ξσ 1 2 ,
with ξ = 0.125 and σ 1 = 0.125 -1 . When handling with a very large set of data, the calculation of equation ( 5) suffers The measurements at the (k -3) and (k -2) sampling states are aberrant and a jump is done.

from underflow numerical problem. A solution consists in scaling I(x k ) [START_REF] Paris | Extraction automatique de pistes fréquentielles en sonar passif par chaînes de Markov cachées[END_REF]:

I S (x k ) = I(x k ) Σ x k I(x k ) ,
where:

I(x k ) = max x k-1 p m k,x |r k,x p v k,x |v k-1,x I S (x k-1
) .

E. Tridimensional model

The equation of the 3D state model is:

x k [r k,x , r k,y , r k,z , v k,x , v k,y , v k,z ] T .
The state equation follows:

x k =       1 0 0 ∆t k 0 0 0 1 0 0 ∆t k 0 0 0 1 0 0 ∆t k 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1       x k-1 +       0 0 0 ξ ξ ξ       η k ,
and the Gaussian state noise:

η k = G   0 0 0 ,   σ 2 1 0 0 0 σ 2 2 0 0 0 σ 2 3     .
At the initialization we have:

x 0 =      
1 0 0 5 0 0 0 1 0 0 5 0 0 0 1 0 0 5 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

            m 0,x -5 m 0,y -5 m 0,z -1.25 1 1 0.25       +       0 0 0 ξ ξ ξ       η 0,x .
A decoupled 3D trajectory is achieved: namely at each sampling time the three coordinates of the point r k are estimated separately using for each of them the monodimensional model described previously. Nevertheless, if a jump occurs when estimating a coordinate, this jump is forced on the two other point coordinates. The algorithm parameter set to adjust is finally:

S = {σ x , σ y , σ z , u x , u y , u z } .

IV. TEMPORAL WINDOWS AND OVERLAPPING

Because of the very large amount of data and in order to reduce the computing cost, it is preferable to estimate a piece-wise trajectory instead of process straight one only long track [START_REF] Kriouile | Some improvements in speech recognition algorithms based on hmm[END_REF]. Figure [START_REF] Jauffret | Target motion analysis in the presence of false alarms[END_REF] shows how a window of T measurements is shifted along the data set (typically T = 50). As figure [START_REF] Paris | Extraction automatique de pistes fréquentielles en sonar passif par chaînes de Markov cachées[END_REF] illustrates it, after the backtracking stage of the Viterbi algorithm, the possible tracks differ only in the last sampling instants of a temporal window. We take advantage of this propriety to overlap the trajectories, considering a window:

• the point, from which the 3D trajectory is split, is detected; • all of the possible tracks from this point are stored;

• the next trajectory estimation is initialized using this group of tracks. 

V. AUTOMATIC ADJUSTMENT OF THE

PARAMETERS

The result of figures ( 5) and ( 8), where the measurements are very noisy, shows the robustness of our method but the estimated tracks are short. When processing a very large set of data, it is necessary to adjust locally the parameter set S of each window in order to avoid any break in the track. To overcome this drawback an heuristic process is designed that aims to adjust automatically the parameter set S l of each lth window. Figure 6 illustrates the algorithm principles: 1. at the beginning a set S * of typical parameters is chosen and:

S l = S * , ∀l.

2. when estimating sequentially the trajectory, a break occurs in the lth window (namely all the measurements of the window are aberrant), considering the previous (l -1)th window: (a) the number of jumps for each dimension is counted; (b) S l-1 is modified by reducing σ x or/and σ y or/and σ z corresponding to the coordinate(s) with the jump maximum number. The goal is to penalize the measurements spread.

(c) the trajectory of the (l -1)th window is estimated again with the new set of parameters S l-1 . 3. the trajectory estimation of the lth window is achieved with S l . If a break occurs again, go to 2 and continue to modify S l-1 . This algorithm for the automatic parameter adjustment is not expensive because in practice a break occurs rarely and, in this case, each iteration implies the new trajectory estimation for only two temporal windows.

The experimental result shown on figure 7 illustrates the efficiency and robustness of our algorithm: the measurement set contains 1600 samples, and the whole trajectory is automatically estimated for different choices of the temporal window size T (for instance T = 30, 50 or 100 measurements). We used: S * = {σ x = σ y = 2, σ z = 2.5, u x = u y = 60, u z = 30}. 

VI. CONCLUSION

The work presented in this paper concerns the problem of estimating of an underwater vehicle trajectory from ultrashort baseline system measurements. Using the Viterbi algorithm, we have constructed an original
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 1 Fig. 1 Optimum estimation problem formulation.
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 2 Fig. 2 Measurement probability with the typical values u x = 65, σ x = 1 and P c = 0.7
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 4 Fig. 4 Temporal windows and overlapping.
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 5 Fig. 5 Trajectory estimation in one dimension with 200 measurements (S = {σ x = 2, u x = 60}). A zoom in the end of the trajectory is shown. The estimated track is thick.

Fig. 6

 6 Fig. 6Process for an automatic adjustment of the parameters.
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method with a nonconstant speed state model, a jump possibility in the track, a scaled metric, temporal windows with overlapping, and an automatic adjustment of the parameters. The algorithm is robust w.r.t false alarms and the amount of calculus is real time compatible.
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Fig. 7

The data from the underwater vehicle. The estimated track is thick. Two temporal windows of T = 50 measurements are used. The estimated track is thick.