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Sensor-based trajectory deformation:

application to reactive navigation of

nonholonomic robots

Florent Lamiraux Olivier Lefebvre

Abstract In this chapter, we present a sensor-based trajectory deformation process

for nonholonomic robots. The method is based on infinitesimal perturbations of the

input functions of the current trajectory. Input perturbation is computed in such a

way that a an objective function decreases and that the trajectory initial and final

configurations are kept unchanged. The method is then extended to docking for

wheeled mobile robots. The final configuration of the deformation process is moved

to a configuration in order to make perception fit a docking pattern. The method is

demonstrated on mobile robot Hilare 2 towing a trailer.

1 Introduction

Navigating multi-body nonholonomic robots in cluttered environments has been a

difficult task for a long time, especially when the two following conditions are met:

1. the number of nonholonomic constraints is two or more and

2. the localization uncertainty is less than the clearance to obstacles.

Recent autonomous vehicles competing in the Darpa Urban Challenge [15] might

let the reader think that the problem of autonomous navigation for nonholonomic

systems is closed. However, beyond the remarkable work of integration these vehi-

cles are the result of, it should be noticed that these vehicles would not have reached

the goal without the recent advances in localization technology. Today, on-the-shelf

devices compute in real time the position of vehicles with an accuracy around the

meter. In this context, navigating with a margin of two meters makes the computa-

tions relative to motion planning and control much simpler. The Challenge is thus
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more in the field of perception and modelling than in the field of motion planning

and control.

In this chapter, we report on work aiming at addressing the navigation task for

systems meeting the two above mentioned conditions. Unlike classical visual ser-

voing methods where the state of the system is the configuration and velocity of the

robot, and the input visual perception, the state of our system is a trajectory exe-

cutable by the robot and the input is a flow of sensor images. This chapter is mostly

a compilation of [8] and [14].

To overcome the issue of local minima arising when implementing local control

laws, we initially plan an admissible trajectory from the initial configuration of the

robot to the goal configuration, using classical approaches of the state of the art in

motion planning [1, 11, 19, 3, 20, 12, 9, 13].

Servoing a trajectory instead of a robot state significantly reduces the issue of

local minima at the cost of heavy computational load.

Following a planned trajectory can lead to collisions if

• unexpected obstacles in the environment were not in the map used for planning

the motion,

• the map in inaccurate or

• the localization process is inaccurate.

To overcome these issues, [17] proposed a method that enables a robot to deform on

line the path to be followed in order to get away from obstacles detected along the

motion. This approach has been extended to the case of a unicycle-like mobile robot

in [6] and then to the case of a holonomic mobile manipulator in [2]. In both papers,

the geometry of the robot is approximated by a set of balls and no or only one very

simple nonholonomic constraint is treated. None of these methods is applicable to

more complex nonholonomic systems like car-like robots.

To plan and execute motions in dynamic environments, [5] developed the concept

of velocity obstacles, defining the set of forbidden velocities given the velocity of

the obstacles. This concept is used in [10] to perform local goal oriented obstacle

avoidance. This technique is particularly efficient in environments where a lot of

obstacles are moving since the velocity of the obstacles is taken into account in

the avoidance strategy. However, it is based on very simple models of robot and

obstacles: they all are spherical. This simplification forbids applications for multi-

body mobile robots moving in very cluttered environments where the robot needs to

pass very close to the obstacles.

In this chapter, we describe a generic approach of trajectory deformation applica-

ble to any nonholonomic system. We assume that a first collision-free trajectory has

been computed for the robot in the global frame. When the robot follows the trajec-

tory, on-board sensors, for instance laser scanners, detect surrounding obstacles and

map them in the global frame. If an obstacle not present in the map is detected, it

can be in collision with the initial trajectory. If the localization of the robot is inac-

curate, or if the map is inexact, obstacles of the map might be seen in collision with

the initial trajectory by the sensors. The method we describe in this paper enables

the robot to deform the initial trajectory in order to move it away from obstacles
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and make the current trajectory collision-free . The current trajectory thus changes

along time. As a trajectory is a mapping from an interval of real numbers into the

configuration space of the robot, we naturally model a trajectory deformation pro-

cess as a mapping of two real variables s and τ into the configuration space. τ can

be considered as time (or more generally as an increasing function of time), while s

is the abscissa along each trajectory.

The chapter is organized as follows. Section 2 defines trajectory deformation as

an infinite-dimensional dynamic control system the state of which is a trajectory.

In section 3, we describe an iterative algorithm controlling the deformation process

to make an optimization criterion decrease. In section 4, the trajectory deformation

algorithm is applied to mobile robot Hilare 2 towing a trailer. In Section 5, the

method is extended to perform docking for nonholonomic robots.

2 Nonholonomic trajectory deformation as a dynamic control

system

A trajectory for a robotic system is usually represented by a mapping from an inter-

val of R into the configuration space of the system. In this section, we introduce the

notion of trajectory deformation as a mapping from an interval of R into the set of

trajectories. Equivalently a trajectory deformation is a mapping from two intervals

into the configuration space as explained later in this section.

2.1 Admissible trajectories

A nonholonomic system of dimension n is characterized by a set of k < n vector

fields X1(q), ...,Xk(q), where q ∈ C = R
n is the configuration of the system. For

each configuration q, the set admissible velocities of the system is the set of linear

combinations of the Xi(q). A trajectory q(s) is a smooth curve in the configuration

space defined over an interval [0,S]. A trajectory is said to be admissible if and

only if there exists a k-dimensional smooth vector valued mapping u = (u1, ...,uk)
defined over [0,S] and such that:

∀ ∈ [0,S] q′(s) =
k

∑
i=1

ui(s)Xi(q(s)) (1)

where from now on, ′ denotes the derivative with respect to s.
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Controller sensors

Current

trajectory

v ∈C∞([0,S],Rk)

q ∈C∞([0,S],Rn)

η0 ∈ R
n

Fig. 1 A trajectory deformation process can be modelled as a dynamic control system of time τ .

At each time, the state is a feasible trajectory q, the input is a pair (η0,v) that uniquely defines the

time derivative of the state. The trajectory deformation algorithm we describe in this chapter can

be considered as a closed-loop controller that computes the input of the dynamic control system

with respect to the current trajectory and a task to achieve, for instance avoiding obstacles, based

on perceptual data.

2.2 Admissible trajectory deformation

We call trajectory deformation a mapping from a subset [0,S]× [0,∞) of R
2 to the

configuration space of the system.

(s,τ)→ q(s,τ)

For each value of τ , s→ q(s,τ) is a trajectory. s→ q(s,0) is called the initial tra-

jectory. In order to keep notation light and intuitive, we use the same notation q to

denote configurations, trajectories and trajectory deformations. We are interested in

deformations q(s,τ) composed of only admissible trajectories. Such deformations

satisfy the following constraint: there exists a k-dimensional vector valued smooth

mapping u = (u1, ...,uk) defined over [0,S]× [0,∞) such that ∀(s,τ) ∈ [0,S]× [0,∞)

∂q

∂ s
(s,τ) =

k

∑
i=1

ui(s,τ)Xi(q(s,τ)) (2)

For each value of τ , s→ u(s,τ) is the input function of trajectory s→ q(s,τ). The

above equation simply expresses constraint (1) for each trajectory of the deforma-

tion. As well as a trajectory is uniquely defined by the initial configuration and the

input function, a trajectory deformation is uniquely defined by the initial configura-

tion q(0,τ) of each trajectory and by input functions ui(s,τ).
By differentiating (2), we get a relation between the input variation ∂u

∂τ
and the

infinitesimal trajectory deformation when the deformation parameter τ increases:
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∂ 2q

∂ s∂τ
(s,τ) =

k

∑
i=1

(

∂ui

∂τ
(s,τ)Xi(q(s,τ))+ui(s,τ)

∂Xi

∂q
(q(s,τ))

∂q

∂τ
(s,τ)

)

We call respectively input perturbations and direction of deformation the following

vector valued functions:

v(s,τ) ,
∂u

∂τ
(s,τ)

η(s,τ) ,
∂q

∂τ
(s,τ)

With this notation, the above equation becomes :

η ′(s,τ) = A(s,τ)η(s,τ)+B(s,τ)v(s,τ) (3)

where A(s,τ) is the following n×n matrix:

A(s,τ) =
k

∑
i=1

ui(s,τ)
∂ Xi

∂q
(q(s,τ))

and B(s,τ) is the n× k matrix the columns of which are the control vector fields:

B(s,τ) =
(

X1(q(s,τ)) · · · Xk(q(s,τ))
)

According to (3), the derivative w.r.t. τ of the trajectory of parameter τ is related

to the input perturbation through a linear dynamic system. This system is in fact

the linearized system of (1) about the trajectory of parameter τ: s→ q(s,τ). For a

given trajectory q(s,τ) of input u(s,τ) and for any input perturbation v(s,τ), and

any initial condition η0 = η(0,τ) we can integrate Equation (3) w.r.t. s to get the

corresponding direction of deformation η(s,τ).
A trajectory deformation process for nonholonomic systems can thus be consid-

ered as a dynamic control system where

• τ is the time,

• s→ q(s,τ) is the state and

• (η0,s→ v(s,τ) is the input.

2.3 Potential field and inner product

The trajectory deformation method produces at each time τ a vector η0 and a func-

tion s→ v(s,τ) over [0,S] in such a way that the deformation process achieves a

specified goal. This goal is expressed in terms of a scalar value to minimize over the

set of feasible trajectories. The scalar value associated to a trajectory is defined by

integration of a potential field U over the configuration space. We denote by V (τ)
the potential value of trajectory s→ q(s,τ):
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V (τ) ,

∫ S

0
U(q(s,τ))ds

If the goal to achieve is to avoid obstacles, as in [18, 7, 1], the configuration space

potential field is defined in such a way that the value is high for configurations

close to obstacles and low for configuration far from obstacles. Thus trajectories

going close to obstacles have a high scalar value and trajectories staying far from

obstacles have a low scalar value.

The variation of the trajectory scalar value with respect to τ is related to η(s,τ)
by the following expression:

dV

dτ
(τ) =

∫ S

0

∂U

∂q
(q(s,τ))T η(s,τ)ds

The principle of the trajectory deformation method consists in choosing (η0,v(s,τ))
in such a way that dV

dτ (τ) is negative. Let us notice that the space of vector-valued

functions defined over interval [0, S] is a Hilbert space, the inner product of which

is defined by:

( f |g)L2 ,

∫ S

0
f (s)T g(s)ds (4)

With this definition, the variation of the trajectory scalar value along a direction of

deformation can be rewritten:

dV

dτ
(τ) =

(

∂U

∂q
◦q|η

)

where ◦ denotes the composition operator. Let us notice that integration is performed

over variable s only. According to this expression, η = −( ∂U
∂q
◦q) is at equivalent

L2-norm the direction of deformation that minimizes dV
dτ . Unfortunately, this value

of η is not an admissible direction of deformation (i.e. a solution of system (3)).

A solution could be obtained by orthogonally projecting −( ∂U
∂q
◦q) over the linear-

subspace of admissible directions of deformation. However, the projection of a vec-

tor over an infinite-dimensional subspace does not necessarily exist.

To overcome this problem, we will restrict the input perturbation to a finite-

dimensional subspace in the following section.

3 Nonholonomic trajectory deformation algorithm

Based on the theoretical framework established in the previous section, we build in

this section the trajectory deformation algorithm for nonholonomic systems. Start-

ing from an initial admissible trajectory q(s,0), the algorithm iteratively computes a

sequence of admissible trajectories s→ q(s,τ j) for discretized values τ j of τ where

j is an integer. At each iteration of the algorithm, a direction of deformation η(s,τ j)
is generated based on the configuration space potential field U and a new trajectory
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q(s,τ j+1) is computed as follows:

q(s,τ j+1) = q(s,τ j)+∆τ j η(s,τ j) (5)

τ j+1 = τ j +∆τ j (6)

where ∆τ j is the discretization step. Let us notice that the above formula is a first-

order approximation in τ . In the rest of this section, we describe the different steps

of the algorithm. In Section 3.1, we compute η(s,τ j) by restricting input pertur-

bation to a finite-dimensional subspace of functions. This restriction enables us in

Section 3.2 to take into account boundary conditions that force the initial and final

configuration of the deformation interval to remain unchanged. In Section 3.3, we

explain how to compute the direction of deformation that minimizes the variation of

the trajectory scalar value under constant L2-norm. The first order approximation 5

induces deviations of the nonholonomic constraints. Section 3.4 addresses this issue

and proposes a correction of this deviation.

3.1 Finite-dimensional sub-space of input perturbations

As explained in Section 2, the control variables of a trajectory deformation process

are the input perturbation v and the initial condition η0. s→ v(s,τ j) belongs to the

infinite-dimensional space of smooth vector-valued functions defined over [0,S]. To

simplify the control of the trajectory deformation, we choose to restrict v to a finite-

dimensional subspace of functions. This restriction will make the boundary condi-

tions introduced later in section 3.2 easier to deal with. Let p be a positive integer.

We define e1, ...,ep, a set of smooth linearly independant vector-valued functions of

dimension k, defined over [0,S]:

ei : [0,S]→ R
k

Various choices are possible for the ei’s (e.g. truncated Fourier series, polynomi-

als,...) [16, 4, 3]. For each of these functions, we define Ei(s,τ j) as the solution of

system (3) with initial condition η0 = 0 and with ei(s) as input:

E′i(s,τ j) = A(s,τ j)Ei(s,τ j)+B(s,τ j)ei(s) (7)

Ei(0,τ j) = 0 (8)

where matrices A and B are defined in Section 2.2. Let us notice that unlike ei, Ei

depends on τ j since system (3) depends on the current trajectory.

If we restrict v(s,τ j) in the set of functions spanned by the ei’s, that is for any

vector λ = (λ1, ...,λp):

v(s,τ j) =
p

∑
i=1

λiei(s) (9)



8 Florent Lamiraux Olivier Lefebvre

as (3) is linear, the direction of deformation η corresponding to v is the same linear

combination of solutions Ei

η(s,τ j) =
p

∑
i=1

λiEi(s,τ j) (10)

Using this restriction, the input perturbation v is uniquely defined by vector λ .

3.2 Boundary conditions

We wish the deformation process not to modify the initial and goal configurations

of the trajectory. We thus impose the following boundary conditions:

∀ j > 0, q(0,τ j) = q(0,0)

q(S,τ j) = q(S,0)

These constraints are equivalent to:

∀ j > 0, η(0,τ j) = 0 (11)

η(S,τ j) = 0 (12)

Equation (8) and Expression (10) ensure us that the first constraint (11) is satis-

fied. The second constraint (12) together with Expression (10) becomes a linear

constraint over vector λ :

Lλ = 0 (13)

where L is a n× p-matrix the columns of which are the Ei(S,τ j)’s:

L =
(

E1(S,τ j) · · · Ep(S,τ j)
)

Let us notice that in general, the dimension of the subspace of solutions of the above

linear system is equal to p−n and therefore p must be bigger than n. The problem is

now to choose a vector λ satisfying the above linear constraint and generating a di-

rection of deformation that makes the current trajectory move away from obstacles.

We address this issue in the following section.

3.3 Direction of deformation that makes trajectory scalar value

decrease

As explained in Section 2.3, a potential field U is defined over the configuration

space. This potential field defines by integration a scalar valued function V over the

space of trajectories.
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Given a vector λ ∈ R
p, the variation of the trajectory scalar value induced by

direction of deformation η defined by Equation (10) is given by the following ex-

pression:

dV

dτ
(τ j) =

∫ S

0

∂U

∂q
(q(s,τ j))

T η(s,τ j)ds (14)

=
p

∑
i=1

λi

∫ S

0

∂U

∂q
(q(s,τ j))

T Ei(s,τ j)ds (15)

Let us define the following coefficients:

µi ,

∫ S

0

∂U

∂q
(q(s,τ j))

T Ei(s,τ j)ds

These coefficients represent the variation of the trajectory scalar value induced by

each direction of deformation Ei. With these coefficients, Expression (15) can be

rewritten as follows:
dV

dτ
(τ j) =

p

∑
i=1

λiµi (16)

Thus, if we choose

λi =−µi (17)

we get a trajectory deformation η(.,τ j) that keeps the kinematic constraints satisfied

and that makes the trajectory scalar value decrease. Indeed:

dV

dτ
(τ j) =−

p

∑
i=1

µ2
i ≤ 0

We denote by λ 0 this value of vector λ . Of course, nothing ensures us that λ 0

satisfies the boundary conditions (13).

3.3.1 Projection over the sub-space of boundary conditions

Equation (13) states that the set of vectors λ satisfying the boundary conditions is a

linear subspace of R
p. To get such a vector that we denote by λ̄ , we project λ 0 over

this subspace:

λ̄ = (Ip−L+L)λ 0

where Ip is the identity matrix of size p and L+ is the Moore-Penrose pseudo-inverse

of matrix L.

It can be easily verified that λ̄ satisfies the following property:

1. Lλ̄ = 0 and

2. η = ∑
p
i=1 λ̄iEi makes the trajectory scalar value decrease.
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3.3.2 A better direction of deformation

Let us recall that Equation (5) is an approximation of order 1 with respect to τ . For

this reason, ∆τ j‖η‖∞ with ‖η‖∞ , maxs∈[0,S] ‖η(s,τ j)‖ needs to be small. ∆τ j is

thus chosen in such a way that ∆τ j
‖η‖∞ is upper bounded by a positive given value

ηmax. The way the λi’s are chosen in (17) is not optimal in this respect. Indeed, the

goal we aim at at each iteration is to make the trajectory scalar value V decrease

at most for constant ‖η‖∞. Therefore the optimal value of λ realizes the following

minimum:

min
‖η‖∞=1

dV

dτ
(τ j) = min

‖∑
p
i=1 λiEi‖∞=1

p

∑
i=1

µiλi

Unfortunately, this value of vector λ is very difficult to determine since ‖.‖∞ is not

a Euclidean norm. Instead, we compute:

min
‖∑

p
i=1 λiEi‖L2 =1

p

∑
i=1

µiλi

This is a better approximation than (17).

The idea of the computation is to express η in an L2-orthonormal basis in such

a way that the above sum becomes the inner product between two vectors. Let us

build from (E1, · · · ,Ep) an orthonormal basis (F1, · · · ,Fp) using Gramm Schmidt

orthonormalization procedure. Let P be the corresponding p× p matrix of change

of coordinates (the j-th column of P is the vector of coordinates of F j expressed in

(E1, · · · ,Ep)). If we express η in (F1, · · · ,Fp) instead of (E1, · · · ,Ep), Equation (10)

becomes:

η(s,τ j) =
p

∑
i=1

λ⊥i F(s,τ j)

and Equation (16) becomes:

dV

dτ
(τ j) =

p

∑
i=1

λ⊥i µ⊥i =
(

µ⊥|η
)

L2
(18)

with

µ⊥i ,

∫ S

0

∂U

∂q
(q(s,τ j))

T Fi(s,τ j)ds

and µ⊥ = ∑
p
i=1 µ⊥i Fi. The second equality in (18) holds since (F1, · · · ,Fp) is L2-

orthonormal. At equivalent L2-norm, η = −µ⊥ (i.e. λi = −µ⊥i ) is the direction of

deformation that minimzes dV
dτ (τ j). In fact we do not evaluate functions Fl’s, but

only matrix P. The expression of η in basis (E1, · · · ,Ep) is given by vector

λ = Pλ⊥ = PPT λ 0 (19)

Using expression of η in the orthonormal basis (F1, · · · ,Fp), the expression in

(E1, · · · ,Ep) of the orthogonal projection of the above η over the sub-space of vec-
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tors satisfying the boundary conditions (12) becomes

λ̄ = (Ip−P(LP)+L)PPT λ 0

Using the above optimal direction of deformation makes the trajectory deformation

algorithm behave much better. It can be explained by the fact that this choice makes

the trajectory scalar value decrease faster and thus is more efficient to get away from

obstacles.

3.4 Nonholonomic constraint deviation

Approximation (5) induces a side effect: after a few iterations, the nonholonomic

constraints are not satisfied anymore and the trajectory becomes non admissible.

We call this effect the nonholonomic constraint deviation. The goal of this section

is to correct this deviation. If a trajectory is not admissible, the velocity along this

trajectory is not contained in the linear subspace spanned by the k control vector

fields and condition (1) does not hold.

3.4.1 Extended dynamic system

To take into account this issue, for each configuration q, we add n− k vector fields

Xk+1(q), · · · ,Xn(q) to the k control vector fields of the system in such a way that

X1(q), · · · ,Xn(q) span R
n. We define the extended system as the system controlled

by all these vector fields:

q′ =
n

∑
i=1

uiXi(q) (20)

System (20) is not subject to any kinematic constraint. A trajectory q(s) of system

(20) is admissible for system (1) if and only if for any j ∈ {k + 1, · · · ,n} and any

s ∈ [0,S],u j(s) = 0.

In Section 2, we deformed a given trajectory, admissible for (1) by perturbing the

input functions u1(s,τ), · · · ,uk(s,τ) of this trajectory in order to avoid obstacles. In

this section, we consider an initial trajectory not necessarily admissible and we com-

pute input perturbations that make uk+1(s,τ), · · · ,un(s,τ) uniformly tend toward 0

as τ grows.

From now on, we denote by ū(s,τ) = (u1(s,τ), · · · ,un(s,τ)) the input function of

system (20) and by v̄(s,τ) = (v1(s,τ), · · · ,vn(s,τ)) the perturbation of these input

functions:

∀i ∈ {1, · · · ,n}, vi(s,τ) =
∂ui

∂τ
(s,τ)

The relation between the input perturbation v̄ and the direction of deformation η is

similar as in Section 2:
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η ′(s,τ) = Ā(s,τ)η(s,τ)+ B̄(s,τ)v̄(s,τ) (21)

but now, Ā(s,τ) and B̄(s,τ) are both n×n matrices:

Ā =
n

∑
i=1

ui

∂Xi

∂q
(q) and B̄ = (BB⊥) (22)

where B⊥ = (Xk+1(q) · · ·Xn(q)) is the matrix the column of which are the addtional

vector fields. With this notation, (21) can be rewritten as follows:

η ′(s,τ) = Ā(s,τ)η(s,τ)+B(s,τ)v(s,τ)+B⊥(s,τ)v⊥(s,τ) (23)

where v⊥(s,τ) = (vk+1(s,τ), · · · ,vn(s,τ)).

3.4.2 Correction of nonholonomic deviation

In order to make ui+1(s,τ), · · · ,un(s,τ) tend toward 0 as τ increases, we apply the

following linear control:

∀i ∈ {k +1, · · · ,n},∀s ∈ [0,S], vi(s,τ) =−αui(s,τ)

where α is a positive constraint. We denote by η1 the corresponding direction of

deformation for τ = τ j:

η ′1(s,τ j) = Ā(s,τ j)η1(s,τ j)+B⊥(s,τ j)v
⊥(s,τ j) (24)

η1(0,τ j) = 0 (25)

3.4.3 Deformation due to obstacles

Following the procedure described in sections 3.1 and 3.3, we restrict input func-

tions (v1, · · · ,vk) to the finite dimensional subspace of functions spanned by (e1, · · · ,ep)
and we compute λ = (λ1, · · · ,λp) according to Equation (19). We denote by η2 the

direction of deformation obtained with these coefficients:

η2(s,τ j) =
p

∑
i=1

λiEi(s,τ j)

where the Ei are now solution of system:

E′i(s,τ j) = Ā(s,τ j)Ei(s,τ j)+B(s,τ j)e(s) (26)

Ei(0,τ j) = 0 (27)
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Fig. 2 Mobile robot Hilare 2

towing a trailer.

3.4.4 Boundary conditions

We wish the sum of η1 and η2 satisfies boundary conditions (13) and (14). Again,

(13) is trivially satisfied. (14) is an affine constraint over vector λ :

η2(S,τ j) = Lλ =−η1(S,τ j) (28)

where L is the matrix defined in Section 3.2. Following the same idea as in Sec-

tion 3.2, we project vector λ over the affine sub-space satisfying (28):

λ̄ =−P(LP)+η1(S,τ j)+(Ip−P(LP)+L)λ

We then get a direction of deformation satisfying the boundary conditions and mak-

ing the component of the velocity along additional vector fields converge toward

0:

η(s,τ j) =
p

∑
i=1

λ̄iEi(s,τ j)+η1(s,τ j)

Table 1 summarizes an iteration of the trajectory deformation algorithm for non-

holonomic systems.

4 Application to mobile robot Hilare 2 towing a trailer

In this section, we briefly illustrate the developments of the previous section by

applying them to mobile robot Hilare 2 towing a trailer (see Figure 2). We refer the

reader to [8] for more details.

A configuration of this robot is represented by q = (x,y,θ ,ϕ) where (x,y) is the

position of the center of the robot, θ is the orientation of the robot and ϕ is the

orientation of the trailer with respect to the robot. The control vector fields are:



14 Florent Lamiraux Olivier Lefebvre

Algorithm : Trajectory deformation for nonholonomic systems

/* current trajectory = initial trajectory */

j = 0; τ j = 0 while q(s,τ j) in collision {

compute Ā(s,τ j) and B̄(s,τ j) for s ∈ [0,S]
/* correction of nonholonomic deviation */

for k in {k +1, ...,n} {
compute ui(s,τ j)
compute vi(s,τ j) =−αui(s,τ j)

compute η1(s,τ j) using (24)

}

/* potential gradient in configuration space */

for i in {1, ..., p} {
compute Ei(s,τ j) by integrating (26)

}

compute ∂U
∂q

(q(s,τ j)) for s ∈ [0,S]

for i in {1, ..., p} {

compute λ 0
i =−

∫ S
0

∂U
∂q

(q(s,τ j))
T Ei(s,τ j)ds

}

/* orthonormalization*/

compute matrix P using Gram-schmidt procedure

/* projection of λ over boundary conditions */

compute λ̄ =−P(LP)+η1(S,τ j)+(Ip−P(LP)+L)λ

/* compute and apply deformation */

compute η(s,τ j) = ∑
p
i=1 λ̄iEi(s,τ j) for s ∈ [0,S]

q(s,τ j)← q(s,τ j)+∆τ η(s,τ j) for s ∈ [0,S]
}

Table 1 Trajectory deformation algorithm: at each step, the direction of deformation η(s,τ j) is

computed given the current trajectory q(s,τ j) and the potential field defined by obstacles.

X1 =









cosθ
sinθ

0

− 1
lt

sinϕ









X2 =









0

0

1

−1− lr
lt

cosϕ









where lr (resp. lt ) is the distance between the center of the robot (resp. the trailer)

and the trailer connection. The inputs of the system are u1 and u2 the linear and

angular velocities of the robot. To get a basis of R
4 at each configuration q, we

define two additional vector fields:

X3 =









−sinθ
cosθ

0

0









X4 =









−sin(θ +ϕ)
cos(θ +ϕ)
−lt − lr cosϕ
−lt








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Fig. 3 A backward trajectory computed and executed by the mobile robot Hilare 2 towing a trailer.

Grey dots are obstacles detected by a laser range finder mounted on the trailer. An unexpected box

lies on the trajectory planned by the robot. The robot deforms the trajectory while moving and

reach the goal.

The linearized system is thus defined by the following matrices:

Ā(s) =















0 0 −u1 sinθ −u3 cosθ −u4 cos(θ +ϕ) −u4 cos(θ +ϕ)

0 0 u1 cosθ −u3 sinθ −u4 sin(θ +ϕ) −u4 sin(θ +ϕ)

0 0 0 u4lrsϕ

0 0 0
−u1cϕ+u2lrsϕ

lt















B̄(s) =









cosθ 0 −sinθ −sin(θ +ϕ)
sinθ 0 cosθ cos(θ +ϕ)

0 1 0 −lt − lr cosϕ

− 1
lt

sinϕ −1− lr
lt

cosϕ 0 −lt









The input perturbation is defined by truncated Fourier series over inputs u1 and u2.

The configuration potential field is defined by a decreasing function of the distance

to obstacles in the workspace. We refer the reader to [8] for details.

4.1 Experimental results

Figure 3 shows an example where mobile robot Hilare 2 avoids an unexpected ob-

stacle detected by on-board sensors.
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5 Extension to docking

The method described in the previous chapter can be extended to docking of non-

holonomic mobile robots by changing the boundary condition relative to the end

configuration. This is the topic of this section.

5.1 Docking task

Fig. 4 Docking pattern. It

consists in a set of landmarks

defined relatively to a sensor.

In this example, the docking

pattern is defined relatively to

the laser sensor mounted on

the trailer of a robot.

laser sensor

docking pattern

A docking task is a mission given to a robot that consists in following a planned

trajectory and reaching a docking configuration. The docking configuration is not

defined beforehand as a known robot location, rather it is specified as a set of sensor

perceptions from this configuration. The set of landmarks to be perceived when the

robot is at the docking configuration is called a docking pattern. Figure 4 presents

such docking patterns. On each image, the docking configuration is represented

relatively to the docking pattern.

Thus a docking task takes as input:

- a collision free trajectory planned within a model of the environment

- a set of landmarks relative to the docking configuration: the docking patterns.

5.2 Computation of the docking configuration

In the absence of any additional information, the docking configuration is the last

configuration of the planned trajectory. Otherwise, the comparison between docking

patterns and sensor perceptions can be used to compute the docking configuration:

i.e. the robot configuration where sensor perceptions best match docking patterns.

We borrow ideas from localization and use a classical Extended Kalman filter ap-

proach to integrate this information.
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Fig. 5 Example of the dock-

ing configuration. The robot

scans the environment using

a 2D laser scanner, from the

current configuration along

the current trajectory. Ex-

tracted straight line segments

are matched with the docking

pattern to define the docking

configuration. The trajectory

is progressively deformed in

order to make the final con-

figuration tend toward the

docking configuration.

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
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5.2.1 Probabilistic framework

The main steps of the computation of the docking configuration are the following.

First, the robot extract features from sensor readings and predicts from the current

position of the robot how these features would be seen from the final configuration

of the current trajectory. We call those the predicted features.

Sensor readings are modelled as Gaussian variables centered on the perfect read-

ing for given robot and landmark positions. The predicted features are matched with

the features of the docking pattern using a criterion based on the Mahalanobis dis-

tance corresponding to the Gaussian noise associated to the sensors.

The docking pattern is built from a Gaussian random configuration centered on

the final configuration of the current trajectory qrand by evaluating the expected

valued conditionally to the predicted features.

Once the docking pattern has been computed, one step of the trajectory deforma-

tion algorithm described in Section 3 is applied by changing the right hand side of

boundary conditions (12) by a vector making the final configuration of the current

trajectory move toward the docking configuration.

6 Experimental results

We have implemented and tested this method on a real robot. We present the results

gathered after experiments in realistic scenarios.

A common scenario for a truck with a trailer is to park the trailer along an un-

loading platform. That is the final position of the trailer is defined relatively to the

unloading platform. We have reproduced this scenario with Hilare 2 towing a trailer.

The trailer is equipped with a laser range sensor. In this experiment the landmarks

are straight line segments. The docking pattern can be composed of any number of

segments.
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initq
dockq

laser perception

shift

docking
pattern

unloading 
platform

unloading 

map

laser sensor

initq

dockq

platform

Fig. 6 A docking task: the robot is required to reach the unloading platform the shape of which is

represented in bold: the docking pattern. The laser perception is shifted with respect to the map: it

means that the robot is poorly localized. However, the robot is able to detect the docking pattern

and to deform the reference trajectory in order to avoid obstacles and to dock at the unloading

platform. The docking task is executed with respect to the perception and not with respect to the

map.

6.1 Bad localization

Figure 6 represents this scenario. We see that the map does not perfectly match the

perception. This is due to a bad localization of the robot. The docking configuration

is anyway computed with respect to the sensor perception. The robot detects the

unloading platform. Then it deforms the trajectory in order to dock at the unloading

platform and to avoid obstacles. Let us notice that in this experiment the robot does

not need to stop to compute the docking configuration nor to deform the trajectory.

It is true as long as the docking configuration is close to the end of the trajectory.
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platform

dockq

dockq
docking

unloading platform
shifted and enlarged

initq

initq

unloading 
pattern

Fig. 7 The position and the shape of the unloading platform have been changed compared to

figure 6. The unloading platform has been shifted to the right and it has been enlarged by 0.2

meters. The docking configuration is computed as the configuration where the docking pattern

best fits the unloading platform.

6.2 The Unloading platform has been moved

Figure 7 illustrates the case where the unloading platform has been moved and

the map has not been updated. Moreover, the shape of the unloading platform has

changed: it is larger than the docking pattern. The matching between the perception

and the docking pattern is robust to these perturbations and the docking configura-

tion is still defined relatively to the unloading platform.
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