
HAL Id: hal-00451266
https://hal.science/hal-00451266

Submitted on 28 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Greedy Algorithms for the Minimum Sum Coloring
Problem

Yu Li, Corinne Lucet, Aziz Moukrim, Kaoutar Sghiouer

To cite this version:
Yu Li, Corinne Lucet, Aziz Moukrim, Kaoutar Sghiouer. Greedy Algorithms for the Minimum Sum
Coloring Problem. Logistique et transports, Mar 2009, Sousse, Tunisia. pp.LT-027. �hal-00451266�

https://hal.science/hal-00451266
https://hal.archives-ouvertes.fr

Greedy Algorithms for the Minimum Sum Coloring Problem

Yu Li Corinne Lucet Aziz Moukrim Kaoutar Sghiouer

Abstract— In this paper we present our study of greedy
algorithms for solving the minimum sum coloring problem
(MSCP). We propose two families of greedy algorithms for
solving MSCP, and suggest improvements to the two greedy
algorithms most often referred to in the literature for solving
the graph coloring problem (GCP): DSATUR [1] and RLF [2].

I. INTRODUCTION

Greedy algorithms play an important role in the practical
resolution of NP-hard problems. A greedy algorithm is a
basic heuristic that builds a solution by iteratively adding
the locally best element into the solution according to certain
criteria. A greedy algorithm can either be used on its own
to obtain a “good” solution, or it can be integrated into
global optimization methods, for example, to limit the search
space in branch and bound algorithms, or to generate initial
solutions in metaheuristics.

In this paper we are interested in greedy algorithms for
the Minimum Sum Coloring Problem (MSCP). Since MSCP
is closely related to the basic Graph Coloring Problem
(GCP), we start our study with GCP and then turn to MSCP.
Concerning GCP, although a lot of work has been reported
in the literature, little of it concerns greedy algorithms. The
most widely used greedy algorithms remain DSATUR and
RLF, proposed respectively by Brélaz [1] and Leighton [2].
We provide a comprehensive overview of greedy algorithms
for MSCP as well as GCP, and propose two new families
of greedy algorithms to solve these problems. The proposed
algorithms not only produce good solutions for MSCP, but
also improve the results obtained by DSATUR and RLF for
GCP. We hope this study will help to design more efficient
global optimization algorithms for MSCP in the future.

The paper is organized as follows. In the next section
we give a formal definition for GCP and MSCP. In Section
3 we study the existing heuristics DSATUR and RLF, we
propose two families of greedy algorithms and analyze their
behavior and complexity. In Section 4 we present and analyze
experimental results. In Section 5 we conclude the paper.

II. MINIMUM SUM COLORING PROBLEM (MSCP)

In this study we address two related graph problems,
the Graph Coloring Problem (GCP) and the Minimum Sum
Coloring Problem (MSCP). We consider an undirected graph

Y. Li and C. Lucet, Laboratoire MIS, Université de Picardie Jules Vernes,
33 rue St Leu, 80000 Amiens, France Yu.Li@u-picardie.fr,
Corinne.Lucet@u-picardie.fr

A. Moukrim and K. Sghiouer, Université de Technologie
de Compiègne, Laboratoire Heudiasyc UMR CNRS 6599, BP
20529, 60205 Compiègne, France Aziz.Moukrim@utc.fr,
Kaoutar.Sghiouer@utc.fr

G = (V, E), where V is the set of |V | = n vertices and E
the set of edges defined on V × V .

A coloring of G is a function c : v �→ c(v) that assigns to
each vertex v a color c(v). A coloring is said to be feasible
if for any pair of vertices u, v ∈ V such that [u, v] ∈ E we
have c(u) �= c(v). When [u, v] ∈ E and c(u) = c(v) we say
that u and v are in conflict. If k colors are used in a feasible
coloring, then this coloring of G is called a k − coloring.
The minimum value of k over all the feasible colorings is
called the chromatic number of the graph, denoted χ(G).
GCP is finding this minimum number of colors. In our study
the k colors are represented by the k consecutive integers
1, 2, . . . , k.

Equivalently, a coloring can be seen as a partition X
of the set of vertices into k subsets, called color classes:
X1, . . . , Xk, where the vertices in the Xi are colored with
color i. We denote xi the number of vertices in Xi.

The assignment perspective and the partition perspective
are two alternative viewpoints in the coloring of a graph.

GCP has been the subject of a number of studies in
the literature, and many good results have been published.
There are different approaches to solving this problem. Exact
methods such as branching methods [7] or decomposition
methods [9], give an optimal solution, but only for very small
graphs or specific graph families, because generally their
runtime complexity is exponential with respect to the graph
size. The second approach involves metaheuristic methods:
tabu methods [3], evolutionary methods [6], hybrids of
different methods, and so on. The fastest methods are the
greedy heuristics that provide a feasible solution for very
large graphs in a very short time, but the solution obtained
is not necessarily optimal.

In MSCP the goal is to compute a feasible coloring of the
graph as described above, such that the sum of the colors
is minimum. This problem was introduced by Kubicka and
Schwenk [4], who proved that it is NP-hard. If a feasible
coloring of G is denoted X , with respective color classes
X1, . . . , Xk, the associated sum can be written as follows:

Sum(X) = 1.x1 + 2.x2 + · · · + k.xk

with x1 ≥ · · ·xi · · · ≥ xk.

The optimal value for MSCP is called the chromatic sum
of G and is denoted Σ(G).

Σ(G) = min{Sum(X)|X is a feasible coloring of G}
For any such optimal solution the associated number of

required colors is termed the strength of the graph, and
denoted s(G). The strength of G can be greater than its
chromatic number. For example, graph T in Fig. 1 is a tree,

so χ(T) = 2, but the optimal solution for MSCP requires 3
colors. We have Σ(T) = 11 and s(T) = 3.

1 6 1 6

2 4 5 7 2 4 5 7

3 8 3 8 1

1

1

32

1

1

1

2

2

2

12

1

1

1

Sum(S) = 12

χ(G) = 2

∑
(T) = 11

s(G) = 3

Fig. 1. Tree MSCP

MSCP has been less intensively studied in the literature
than GCP. Some theoretical studies exist, but very few
numerical results have been presented [10]. The main results
are related to particular graph families such as trees for which
there exist efficient algorithms for computing an optimal
sum coloring. Kroon [5] developed a linear algorithm that
computes the optimal solution for tree MSCP. Some works
deal with theoretical upper or/and lower bounds of the
optimal sum or the strength for some specific graphs. A split-
graph is a graph in which the vertices can be partitioned into
a clique and an independent set. If we consider the split-
graph family, each graph G is composed of two specific
vertex sets C and I , such that C is a clique and I is an
independent vertex set. If nc =| C | and ni =| I | then we
have the following relations [8]:

• nc ≤ s(G) ≤ nc + 1

• ni + nc(nc+1)
2 ≤ ∑

(G) ≤ nc + ni + nc(nc+1)
2

Although finding a maximal independent set appears to be a
good strategy for the tree in Fig. 1, we can see that this is not
true as regards optimal coloring for the split-graph (Fig. 2).
Finding good features in order to develop a good heuristic
algorithm is thus not simple.

1 1

6 5 6 5

2 4 2 4

7 8 7 8

3 3

1

1

1

2

2

2

3

4

1

1

2

4

1

1

3

5

Sum(X) = 18, χ(G) = 5
∑

(G) = 16, s(G) = 4

Fig. 2. Split-graph MSCP

III. GREEDY ALGORITHMS FOR MSCP

In this section we first give a general presentation of a
greedy algorithm for coloring arbitrary graphs. Then, using
this framework, we analyze DSATUR and RLF, before

proposing two families of greedy algorithms for MSCP
as well as GCP. Finally, we discuss the similarities and
differences between the two families of algorithms.

A. A general presentation of a greedy algorithm

In general, a greedy algorithm comprises four basic ele-
ments: an objective function f, a configuration C, a candidate
set Lc, and a greedy rule r. A formal presentation is outlined
below.

Algorithm 1: Greedy algorithm

begin
Generate the initial configuration C;
Generate the list of candidates Lc;
while there are candidates in Lc do

select a candidate c from Lc according to some
selection rule r;
modify C by adding c into C;
modify Lc by removing the candidate c and
computing new candidates;

return C;
end

We define and discuss these elements in the context of
coloring a graph.

1) Objective function: For GCP, the objective function
is to minimize the number of colors, and for MSCP, the
objective function is to minimize the sum of colors.

2) Configuration: From the assignment perspective, a
configuration C represents a partial or complete coloring,
where t vertices have been colored without any conflict and
there remain n − t uncolored vertices; from the partition
perspective, a configuration can be also considered as a
partial or complete partition X : X1, . . . , X i, where Xi is
in construction and all vertices in Xi are colored with color
i.

At the outset of a greedy algorithm, the initial config-
uration represents a partial coloring where zero or more
vertices are colored. During the execution of the algorithm,
the configuration changes and represents a partial coloring
in which more and more vertices are colored; finally, at
the termination of the algorithm, the final configuration
represents a complete coloring.

The initial configuration will influence the result of the
algorithm. In order to minimize this impact and focus on
the algorithm’s behavior, we start from an empty initial
configuration and let the algorithm choose the first vertex
to be colored.

3) Candidate set: A candidate is an uncolored vertex.
In all the existing greedy algorithms for solving GCP, only
the smallest available color, noted cmin, is considered as a
candidate for coloring a vertex v. We follow this convention
in order to simplify our analysis and comparison.

The viewpoint is significant: from the assignment perspec-
tive the candidate set may contain all uncolored vertices,

whereas from the partition perspective the candidate set is
composed only of the uncolored vertices whose cmin is equal
to i, given the current subset Xi.

4) Greedy rule: A greedy rule is a rule for choosing the
locally best candidate vertex according to certain criteria.
A criterion is an information or property about candidate
vertices. The effectiveness of the greedy rule greatly depends
on the quality of the criteria. A good criterion comes from
an insight into the problem.

A tie appears when there exist several candidates having
the same criterion values, making it necessary to apply a
tie-breaking rule to choose only one candidate. A tie can
be broken in a random or deterministic way. The random
way consists in choosing a candidate arbitrarily, while the
deterministic way involves choosing a candidate according
to some rule, for example, always choosing the last one.
The random tie break is often used in practice, but it
increases the difficulty of studying an algorithm, since it can
produce different results each time with the same instance.
So we adopt a deterministic tie break which chooses the last
candidate encountered from among those that have the same
criterion values.

Obviously, the key part of a greedy algorithm is to design
a good greedy rule, which is our focus in the following
discussion.

B. Greedy algorithms from the assignment perspective

1) DSATUR: DSATUR is the most widely-used greedy
algorithm for solving GCP. The idea behind DSATUR is to
color a vertex having the largest number of colors used by its
adjacent vertices, with the aim of making the total number of
colors used as small as possible. DSATUR iteratively colors
vertices from the assignment perspective.

Given a configuration C and an uncolored vertex v, the
adjacent vertices of v can be divided into two parts: the
colored vertices, Γ+(v), and the uncolored vertices, Γ−(v).
In DSATUR, the number of different colors assigned to the
vertices in Γ+(v) is called the saturation degree of v, denoted
dsat(v).

DSATUR uses dsat as the principal selection criterion. The
corresponding greedy rule consists in choosing an uncolored
vertex v with the greatest dsat(v). Ties are broken when
there exist several vertices having the same saturation degree,
by preferring a vertex with the greatest number of uncolored
adjacent vertices, denoted nbVoisinNC(v); if ties still remain,
they are broken by choosing the last vertex. The complexity
of DSATUR is O(n2).

The greedy rule of DSATUR can be formally expressed
by: [max(dsat), max(nbV oisinNC)]

2) New criteria nbDsatC and nbDsatNC: DSATUR
is a classical greedy algorithm in the sense that it makes
decisions on the basis of information without worrying
about the impact these decisions may have for the current
configuration.

The new criteria consider the impact on configuration of
coloring a candidate vertex v with its cmin(v). After v is col-
ored with its cmin(v), the dsat of some vertices in Γ−(v) will
be modified and incremented by one, and the dsat of the other
vertices in Γ−(v) will remain the same. So we can divide
the vertices in Γ−(v) into two sets: the vertices which dsat
would change, denoted Γ−

dsatC(v), and the vertices which
dsat would not change, denoted Γ−

dsatNC(v). The cardinality
of Γ−

dsatC(v) is denoted as nbDsatC(v), and the cardinality
of Γ−

dsatNC(v) as nbDsatNC(v). We take as an example the
configuration shown in Fig.3, where v5 and v7 are colored
with 1, v4 and v6 with 2, and v9 with 3. Then, dsat and
cmin for v1, v2, v3 and v8 are respectively: dsat(v1) = 2,
cmin(v1) = 3; dsat(v2) = 0, cmin(v2) = 1; dsat(v3) = 3,
cmin(v3) = 4; dsat(v8) = 1, cmin(v8) = 2. So if v1 is
colored with 3 , dsat(v2) and dsat(v8) will be modified, so
we have Γ−

dsatC(v1) = {v2, v8} with nbDsatC(v1) = 2;
but there exist no vertices whose dsat will not change, so
we have, Γ−

dsatNC(v1) = φ with nbDsatNC(v1) = 0.
Similarly, if v2, v3 and v8 are colored with 1, 4 and 2, we
have respectively: Γ−

dsatC(v2) = φ with nbDsatC(v2) = 0
and Γ−

dsatNC(v2) = {v1, v3, v8} with nbDsatNC(v2) =
3; Γ−

dsatC(v3) = {2, 8} with nbDsatC(v3) = 2 and
Γ−

dsatNC(v3) = φ with nbDsatNC(v3) = 0; Γ−
dsatC(v8) =

{2} with nbDsatC(v8) = 1 and Γ−
dsatNC(v8) = {1, 3} with

nbDsatC(v8) = 2.

8

1 7

2 9 6

3 4 5 1

2

1

2

3

Fig. 3. Example of configuration

We see intuitively that the smaller the value of nbDsatC(v),
the smaller its impact on the configuration C. Likewise,
the larger the value of nbDsatNC(v), the smaller its impact
on C. The results in Tables I and III show that nbDsatC
and nbDsatNC contribute to MSCP and GCP in different

ways, [min(nbDsatC)] being more correlated to MSCP and
[max(nbDsatNC)] more correlated to GCP.

3) New greedy rules: From a global point of view, a
good decision should influence the current configuration as
little as possible, and so we propose the following greedy
rules with the aim of minimizing the impact on the current
configuration:

• Examine sequentially nbDsatNC and nbDsatC. There
are two cases to be considered:

– [max(nbDsatNC), min(nbDsatC)]: The algo-
rithm consists in choosing an uncolored vertex v
with maximum nbDsatNC(v). If there exist several
candidates having the same value, it selects the
one with the smallest nbDsatC. We denote this
algorithm MDSAT(1).

– [min(nbDsatC), max(nbDsatNC)]: The algo-
rithm consists in choosing an uncolored vertex v
with minimum nbDsatC(v). If there exist several
candidates having the same value, it selects the
one with the largest nbDsatNC. We denote this
algorithm MDSAT(2).

• Examine in parallel nbDsatC and nbDsatNC. We have:

– [min(nbDsatC/nbDsatNC)]: The algorithm
consists in choosing an uncolored vertex v with
minimum nbDsatC(v)/nbDsatNC(v). We denote
this algorithm MDSAT(3).

– [min(nbDsatC/nbDsatNC), min(nbDsatC)]:
The algorithm consists in choosing an uncolored
vertex v with minimum nbDsatC(v)/nbDsatNC(v).
If there exist several candidates having the same
value, it selects the one with the smallest nbDsatC.
We denote this algorithm MDSAT(4).

– [min(nbDsatC/nbDsatNC), max(nbDsatNC)]:
The algorithm consists in choosing an uncolored
vertex v with minimum nbDsatC(v)/nbDsatNC(v).
If there exist several candidates having the same
value, it selects the one with the largest nbDsatNC.
We denote this algorithm MDSAT(5).

The tie-breaking rule is to select the vertex having the
maximum label number. The complexity of each MDSAT(n)
is O(n3).

C. Greedy algorithms from the partition perspective

1) RLF: RLF is the next best-known greedy algorithm for
solving GCP. The idea of RLF is to color as many vertices as
possible with one color before going to another color from
the partition perspective.

Take a partition X1, . . . , X i where the color class Xi

is under construction, and the candidates are the uncolored
vertices whose cmin is equal to i. For such a candidate v, its
uncolored adjacent vertices in Γ−(v) can be divided into two
sets: the vertices (denoted Γ−

cminC(v),) whose cmin are equal
to i, and the vertices (denoted Γ−

cminNC(v)) whose cmin are
not equal to i, . The cmin for any vertex in Γ−

cminC(v), would
change if v is colored with the color i, while the cmin for any
vertex in Γ−

cminNC(v) would remain the same. We denote the
cardinality of Γ−

cminC(v) as nbCminC(v) and the cardinality
of Γ−

cminNC(v) as nbCminNC(v).
RLF uses nbCminNC as the principal criterion and

nbCminC as the second one. The corresponding greedy
rule involves selecting the candidate vertex with the
greatest nbCminNC, and if several such vertices ex-
ist, it chooses the vertex with the minimum nbCminC.
The greedy rule of RLF can be formally expressed as:
[min(cmin), max(nbCminNC), min(nbCminC)]

2) MRLF: It can be seen intuitively that coloring a
candidate vertex v with the greatest nbCminNC(v) means
reducing to a minimum the probability of using a new color
next. And coloring a candidate vertex v with the smallest
nbCminC(v) means keeping the size of the current class color
Xi as large as possible. Thus, the two criteria should all be
related to MSCP as well as GCP, which is confirmed by the
experimental results in Tables II and IV, where we test the
greedy rules [max(nbCminNC)] and [min(nbCminC)] on the
instances in the literature.

So as to minimize the impact on the current configuration
like we do for MDSAT(n), we extend RLF by combining
two criteria in different ways and propose different greedy
rules:

• Examine sequentially nbCminC and nbCminC. We
have:

– [min(cmin), max(nbCminNC), min(nbCminC)],
denoted MRLF(1), which corresponds to RLF.

– [min(cmin), min(nbCminC), max(nbCminNC)]:
The algorithm consists in choosing a candidate
vertex v with minimum nbCminC(v). If there exist
several candidates having the same value, it selects
the one with the largest nbCminNC. We denote
this algorithm MRLF(2).

• Examine in parallel nbCminC and nbCminNC. We have:

– [min(cmin), min(nbCminC/nbCminNC)]:
The algorithm consists in choosing a candidate
vertex v with minimum nbCminC(v)/nbCminNC(v).
We denote this algorithm MRLF(3).

– [min(cmin), min(nbCminC/nbCminNC),
min(nbCminC)]: The algorithm consists in

choosing a candidate vertex v with minimum
nbCminC(v)/nbCminNC(v). If there exist several
candidates having the same value, it selects the
one with the smallest nbCminC. We denote this
algorithm MRLF(4).

– [min(cmin), min(nbCminC/nbCminNC),
max(nbCminNC)]: The algorithm consists in
choosing an uncolored vertex v with minimum
nbCminC(v)/nbCminNC(v). If there exist several
candidates having the same such value, it selects
the one with the largest nbCminNC. We denote this
algorithm MRLF(5).

The tie-breaking rule is to select the vertex with the largest
label number. The complexity of MRLF(n) is O(n3).

D. Comparison of the two types of greedy algorithms

We compare MDSAT(n) and MRLF(n) with respect to
three aspects: the computation time required to obtain a
solution, the quality of the solution, and the way the solution
is constructed. MDSAT(n) and MRLF(n) have the same
complexity, O(n3).

Concerning the quality of the solution, MDSAT(n) and
MRLF(n) have similar behaviors. They produce nearly the
same solutions as GCP and MSCP for the uniform random
graphs DSJC [11]. This similarity can be partially explained
by their similar strategies for creating greedy rules, which
are all based on the principle of minimizing the impact on
the current configuration.

As regards the third aspect, they are quite different.
MDSAT(n) colors vertex by vertex and, unlike MRLF(n),
does not necessarily color class by color class. It is our
intention to probe this difference further in future work.

IV. EXPERIMENTAL COMPARISON OF MDSAT(N) AND

MRLF(N)

In this section, we give the experimental results for MD-
SAT(n) and MRLF(n) on some DIMACS instances [11]. The
instances used include those that have been recognized as
being among the most difficult to solve, including uniform
DSJC random graphs.

Each of the algorithms MDSAT(n) and MRLF(n) was
programmed in C and run on an Intel Dual Core T5450-
1.66-1.67 (without parallelization of the program), with 2GB
of RAM, running under Windows Vista Home Premium.

For GCP we compare the results obtained by MDSAT(n)
and MRLF(n) and those obtained by DSATUR and RLF.

For MSCP, since there exist no numerical results, we look
at the best result obtained by either MDSAT(n) or MRLF(n),
which we denote nbBest.

The comparison between different criteria is then based
on nbBest.

A. Experimental results for GCP

Tables I and II show the number of GCP colors obtained
by each of the algorithms MDSAT(n) and MRLF(n).
MDSAT(3) and MDSAT(4) give the best overall solutions,
and these are equivalent respectively to MRLF(3) and
MRLF(4), as we mentioned in Section III.

Instances DSATUR MDSAT(1) MDSAT(2) MDSAT(3) MDSAT(4) MDSAT(5)

dsjc125.1 7 6 7 6 6 7

dsjc125.5 21 21 22 21 21 21

dsjc125.9 50 52 50 50 50 50

dsjc250.1 10 10 12 10 10 10

dsjc250.5 36 35 37 34 34 36

dsjc250.9 90 86 84 83 83 84

dsjc500.1 15 15 18 16 15 16

dsjc500.5 66 61 61 59 59 60

dsjc500.9 163 159 148 148 148 149

dsjc1000.1 26 24 27 25 25 25

dsjc1000.5 114 109 107 103 103 104

dsjc1000.9 305 286 272 265 265 268

nbBest 4 5 2 10 11 3

TABLE I

RESULTS OF MDSAT(N) FOR GCP

Instances MRLF(1) MRLF(2) MRLF(3) MRLF(4) MRLF(5)

dsjc125.1 6 8 6 6 7

dsjc125.5 21 22 21 21 21

dsjc125.9 52 50 50 50 50

dsjc250.1 10 11 10 10 10

dsjc250.5 35 37 34 34 36

dsjc250.9 86 84 83 83 84

dsjc500.1 15 18 16 15 16

dsjc500.5 61 61 59 59 60

dsjc500.9 159 148 148 148 149

dsjc1000.1 24 27 25 25 25

dsjc1000.5 109 107 103 103 104

dsjc1000.9 286 272 265 265 268

nbBest 5 2 10 11 3

TABLE II

RESULTS OF MRLF(N) FOR GCP

B. Experimental results for MSCP

Tables III and IV show the minimum sum of colors for
MSCP obtained by each of the algorithms MDSAT(n) and
MRLF(n). MDSAT(4) and MDSAT(5) give the best overall
solutions, and these are equivalent respectively to MRLF(4)
and MRLF(5).

Instances DSATUR MDSAT(1) MDSAT(2) MDSAT(3) MDSAT(4) MDSAT(5)

dsjc125.1 402 362 364 352 353 353

dsjc125.5 1257 1210 1141 1147 1147 1151

dsjc125.9 2782 2880 2653 2703 2703 2653

dsjc250.1 1191 1145 1095 1107 1068 1080

dsjc250.5 4284 4098 3829 3658 3658 3851

dsjc250.9 10350 9792 9002 9077 9077 8942

dsjc500.1 3668 3492 3328 3233 3234 3229

dsjc500.5 15140 13939 12845 12742 12742 12717

dsjc500.9 37973 35856 32967 32703 32703 33015

dsjc1000.1 12223 11623 10581 10325 10276 10416

dsjc1000.5 53139 50395 45702 45757 45757 45408

dsjc1000.9 139209 130105 121103 119111 119111 119671

nbBest 0 0 2 4 5 5

TABLE III

RESULTS OF MDSAT(N) FOR MSCP

Instances MRLF(1) MRLF(2) MRLF(3) MRLF(4) MRLF(5)

dsjc125.1 362 361 352 353 353

dsjc125.5 1210 1141 1147 1147 1151

dsjc125.9 2880 2653 2703 2703 2653

dsjc250.1 1145 1090 1107 1068 1080

dsjc250.5 4098 3829 3658 3658 3851

dsjc250.9 9792 9002 9077 9077 8942

dsjc500.1 3492 3328 3233 3234 3229

dsjc500.5 13939 12845 12742 12742 12717

dsjc500.9 33015 32967 32703 32703 33015

dsjc1000.1 10416 10582 10325 10276 10416

dsjc1000.5 50395 45702 45757 45757 45408

dsjc1000.9 130105 121103 119111 119111 119671

nbBest 0 2 4 5 5

TABLE IV

RESULTS OF MRLF(N) FOR MSCP

V. CONCLUSION

In this paper we investigated greedy algorithms for MSCP
as well as GCP. We began by studying the two greedy algo-
rithms DSATUR and RLF for GCP, and proposed a family of
greedy algorithms MDSAT(n) based on the criteria nbDsatC
and nbDsatNC, which is the improvement and extension of
DSATUR. The other family of greedy algorithms MRLF(n)
is based on nbCminC and nbCminNC, which correspond to
an extension of RLF.

The main idea behind the two families of greedy algo-
rithms is to examine the impact on the current configuration
produced by coloring a candidate vertex. They both choose a
candidate that causes the minimum impact. MDSAT(n) and
MRLF(n) not only produce good solutions for MSCP but
also improve the results obtained by DSATUR and RLF for
GCP.

REFERENCES

[1] D. Brélaz, ”New methods to color the vertices of a graph”, ACM,
1979, volume 22, number 4.

[2] FT, Leighton, ”A graph Coloring Algorithm for Large Scheduling
Problems”, Journal of research of the national institute of standards
and technology, 1979, volume 84, number 6.

[3] A. Hertz, D. De Werra, ”Using Tabu search techniques for graph
coloring”, Computing, 1987, 39, pp 345-351.

[4] E. Kubicka, A. J. Schwenk, ”An introduction to chromatic sum”, Proc.
17th Annual ACM Computer Science Conf, 1989.

[5] Leo G. Kroon, A. Sen, H. Deng, A. Roy, ”The Optimal Cost Chromatic
Partition Problem for Trees and Interval Graphs”, Graph-Theoretic
Concepts in Computer Science, 1997, pp 279-292.

[6] P. Galinier and J.K. Hao, ”hybrid evolutionnary algorithms for graph
coloring”, Journal of Combinatorial Optimization, 1999, pp 379-397.

[7] I. Mendez Diaz and P. Zabala, ”A branch-and-cut algorithm for
graphcoloring”, Computational Symposium on Graph Coloring and
its Generalizations (COLOR02), 2002, Ithaca, N-Y.

[8] M. R. Salavatipour, ”On sum coloring of graphs”, Discrete Appl. Math,
2003, volume 127, pp 200-203.

[9] C. Lucet, F. Mendes, A. Moukrim , ”An Exact Method for Graph
Coloring”, Computers and Operations Research, 2006, volume 33,
number 8, pp. 2189-2207.

[10] Z. Kokosinski and K. Kwarciany, ”On Sum Coloring of Graphs with
Parallel Genetic Algorithms”, ICANNGA, 2007, part I, LNCS 4431,
pp. 211-219.

[11] http://mat.gsia.cmu.edu/COLOR/instances.html.

