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equations with super-quadratic growth in the gradient *
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Abstract

Viscosity solutions of fully nonlinear, local or non local, Hamilton-Jacobi equa-
tions with a super-quadratic growth in the gradient variable are proved to be Holder
continuous, with a modulus depending only on the growth of the Hamiltonian. The
proof involves some representation formula for nonlocal Hamilton-Jacobi equations
in terms of controlled jump processes and a weak reverse inequality.

Key words: Integro-Differential Hamilton-Jacobi equations, viscosity solutions, Holder
continuity, degenerate parabolic equations, reverse Holder inequalities.
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1 Introduction

In a previous paper [9], the first author investigated the regularity of solutions to the
Hamilton-Jacobi equation

u(z,t) — Tr (a(z,t)D*u(z,t)) + H(z,t, Du(z,t)) =0 in RY x (0,7) (1)

under a super-quadratic growth condition on the Hamiltonian H with respect to the
gradient variable:

1
5\z|q — 6 < H(w,t,2) <6219 +06  V(x,t,2) eRY x (0,T) x RY |

for some § > 1, ¢ > 2. Under this assumption, it is proved in [9] that any continuous,
bounded solution u of () is Holder continuous on RY x [r,T] (for any 7 € (0,T)), with
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Holder exponent and constant only depending on N, p, 0, ¢, 7 and ||u]|«. In particular,
such a modulus of continuity is independent of the regularity of a and of H with respect
to the variables (z,t). The result is somewhat surprizing since no uniform ellipticity on a
is required.

The aim of this paper is to extend this regularity result to solutions of fully nonlinear,
local or nonlocal, Hamilton-Jacobi equations which have a super-quadratic growth with
respect to the gradient variable. Beside its own interest, such a uniform estimate is im-
portant in homogenization theory where, for instance, it is used to prove the existence of
correctors.

Let us consider a fully nonlinear, nonlocal Hamilton-Jacobi equation of the form
ug + F(z,t, Du,[u]) =0  inRY x (0,7) . (2)

In the above equation we assume that the mapping F': RN x (0,7) x RY x CZ(RY) — R
is nonincreasing with respect to the nonlocal variable, i.e.,

[0 < ¢ and o(x) = ¥(2)] = F(a,t,&,[0]) = Fa,t, &, [¥])

for any function ¢, € CZ(RY). Let us recall (see [T}, 2, 4, 5, [16], 17, I8, 20] for instance)
that a subsolution (resp. a supersolution) of equation (2)) is a continuous map u : RY x
[0,7] — R such that, for any continuous, bounded test function ¢ : RN x (0,7) — R,
which has continuous second order derivatives and such that u — ¢ has a global maximum
(resp. global minimum) at some point (7, ), one has

&(Z, 1) + F(x,t, DO(T, 1), [0(-,1)]) <0 (resp. >0).

Our main assumption on F is the following structure condition, which roughly says
that F'is super-quadratic with respect to the gradient variable:

—5M+[¢](a:)+%|€|q—6 < Flx,t,6[9) < —0M7[¢)(z) +0lE"+06  (3)

for any (x,t,&,¢) € RY x (0,T) x RY x CZ2(RY), for some constants ¢ > 2 and § > 1,
where M~ and M™ are defined by

M~ [9](x) =

inf {‘f’(l’ + Ab) — d(x) — (Dp(x), \b) }
Ae(0,1], beB\{0} RE

and
M*[¢l(x)=  sup {¢($+>\b)—¢(|z‘)2 —(D¢(:c),)\b>}

A€(0,1], beB\{0}

and where B is the unit ball of RY. Let us note that, under the above assumption, a
solution of (2)) is a supersolution of

uy — SM~[u(-, t)](x) +6|Dul?+6 =0  inRY x (0,7) (4)



and a subsolution of
1
ut—5M+[u(-,t](:c)+5|Du|q—5:O in RY x (0,7) . (5)

We denote by p the conjugate exponent of q. We are interested in solutions which are
bounded by some constant M:

lu(z,t)| <M Y(z,t) € RN x [0,7]. (6)

In what follows, a (universal) constant is a positive number depending on the given data
q,0, N and M only. Universal constants will be typically labeled with C', but also with
different letters (e.g., 8, A,...). Dependence on extra quantities will be accounted for by
using parentheses (e.g., C'(r) denotes a constant depending also on 7). The constant C'
appearing in the proofs may change from line to line.

Theorem 1.1 Letu € C(RYN x[0,T]) be a viscosity supersolution of (@) and a subsolution
of (@), such that |u| < M in RY x [0,T]. For any 7 € (0,T), there are constants
0 =005, M,N,q) >p and C(1) = (1,0, M, N,q) > 0 such that

|u(zy,t1) — u(xe, ta)| < C(71) “1131 — 2|02/ 0D gy — t2|(9—p)/9] (7)
for any (x1,11), (29, t2) € RY x [1,T7.

The main point of the above result is that (7)) holds true uniformly with respect to
F', as long as conditions (@) and the bound |u| < M are satisfied. In particular, 6 and
C(7) are independent of the continuity modulus of F'. In contrast to [7, [19], F' can also
be degenerate parabolic.

Let us note that the above result also applies to the solutions of the fully nonlinear,
local equation
u + F(x,t,Du, D*u) =0  in RN x (0,T) (8)

provided F : RN x (0,7) x RY x ¥ — R is nonincreasing with respect to the matrix
variable and satisfies the following structure condition:

~BACX) 4 HIEl? — 8 < Fla, 1,6, X) < ~5N(X) + 8¢l + 8 (9)

for any (z,t,£,X) € RY x (0,T) x RY x 8V, for some constants ¢ > 2 and § > 1, where

A(X) = max(Xz, z) and \(X) = min(Xz, z) VX e SV,

|z|<1 |z|<1
(SN being the set of N x N symmetric matrices). Indeed, since
M~[¢](z) < MD?*¢(x))  and  MT[g](x) > A(D*(x))

any solution of (8) is a supersolution of () and a subsolution of (B). Note that F' is
neither required to be concave nor convex with respect to the matrix variable.



Here are some examples of nonlinear, nonlocal Hamilton-Jacobi equations satisfying
the structure condition ([B]) (see [4] or [5] for instance): let us assume that

F(x,t,8,[¢]) = Z[¢](z,t) + H(z,t,)

where H is a first order term with superquadratic growth:

1

SIElT — 6 < Hz,t,6) < 3¢l + 6
and where the nonlocal term 7 can be of the form

Z[¢](x,t) = inf sup O+ Jap(z,t,e)) — d(x) — (Do(2), jas(z,t,€)) dv(e)

a€Agep JRN
where A, B are some sets, jo5: RY x (0,7) x RY — R is such that
ap(@, t,e)| < Clel A1) Y(z,t,e,a,8) €RY x (0,T) x RY x Ax B

and the measure v satisfies
le* Al dv(e) <C, (10)

]RN
or of the form

Z[¢](x,t) = inf sup o+ Jap(z,t.e)) — Pp(x) — (DP(x), o sz, t,e))1g(e) dv(e)

a€A gep JRN
where jo5: RY x (0,7) x RY — R" is now of linear growth
Jas(z,t,e)| < Cle|]  V(z,t,e,a,8) € RY x (0,T) x RN x Ax B

and the measure v again satisfies the integrability condition (I0). In this later case, the
part

/B O(x + Jap(2,t, €)) — d(x) = (DO(2), jos(x, 1, €))1B(€) dv(e)

can be estimated from above and below by M™[¢] and M~ [¢], while the part
[ ot daslotee)) = o) dile)
RN\B

is can be bounded—in equation ([2)—by C'M, where M = ||u|| and C' is universal.

Some comments on the proof of Theorm [[I] are now in order. As in [9], the main in-
gredients are representation formulae for simplified Hamilton-Jacobi equations, existence
of “nearly optimal trajectories”, use of Brownian bridges and, finally, application of a re-
verse Holder inequality. However, since we work with fully nonlinear, nonlocal equations,
each step is technically more involved: the representation formulae (see Proposition 2] or
the proof of Proposition [3.1]) are inspired by a work on controlled structure equations by
the second author [6]. They involve controlled jump processes in a particular form. The
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estimates of the subsolutions in Proposition Bl which, in [9], are obtained by controls
issued from Brownian bridge techniques, have to be built here in a much more subtle
way: indeed the Hamiltonian of equation () being non convex, the naturally associated
control problem should actually be a differential game, which has never been investigated
in this framework. We overcome this difficulty by building explicit feedbacks. Finally, the
construction of optimal trajectories in Lemma [2.4] requires careful estimates because we
are dealing with jump processes.

Notations : Throughout the paper, B denotes the closed unit ball of RY, B(B\{0})
the set of Borel measurable subsets of B\{0}, C(R" x[0, T']) the set of continuous functions
on RY x [0, 7] and CZ(RY) the set of bounded continuous functions on RY with continuous
second order derivatives.

2 Analysis of supersolutions

Let u be as in Theorem [T Throughout the proof of Theorem [L1] it will be more
convenient to work with wu(z,T — t) instead of u(z,t). We note that u(z,T —t) is a
supersolution of

— v — SM " [v(-,)](z) +5|Dv|"+6 =0  inRY x (0,7) (11)
and a subsolution of

vy — SM* ol 1) () + %umq ~5=0 mR¥x(0,T). (12)
To simplify the notation we will write u(x,t) instead of u(z, T — t).

In this part we are concerned with some monotonity property along particular trajec-
tories of supersolution of equation (III). For this we have to give a representation formula
for solutions of this equation in terms of controlled jump processes.

Let (2, F,P) be a complete probability space on which is defined a N—dimensional
Poisson random measure . We assume that the Levy measure of u, denoted by v, is
supported in B, has no atom and satisfies the conditions

/B le|? dv(e) < +oo and v(B) =400 . (13)

We denote by fi(de, dt) = p(de, dt) — v(de)dt the compensated Poisson measure. For all
t € [0, 7], (Fis,s € [t,T]) will denote the filtration generated by u on the interval [t, T,
iLe. Frs =c{u(t,r] x A),t <r <s, A€ B(RY)} completed by all null sets of P.

Let A(t) be the set of (F;,)-adapted controls (as) = (s, bs) @ [t,T] — (0,1] x B\{0}
and let L? ([t,T]) be the set of (F;)-adapted controls (¢;) : [t,7] — RY such that

E [ff \gs|pds} < +00.



To all control (as) = (s, bs) € A(t) we associate a (F;s)-martingale M* in the following
way':
First we set

= inf {r >0; v(B\B(0,7)) < |b1|2} , s €[t,T].

By the assumptions ([I3]) on the measure v, the process (ps) is well defined. It takes its
values in [0, 1] and is adapted to the filtration (F; ;).

Then we introduce A; = Az(a) = B\B(0, ps). For all s € [0,71], the set A; belongs to
B(B\{0}) ® F; s and, since v has no atoms, it satisfies

0
|bs[>
We finally denote by M® the controlled martingale

/ / Aebe1 4, (€)fi(de, dr) . (15)

Let us precise [t0’s formula satisfied by M®: for any smooth function ¢ € CZ,

Elp(M
w-%U/JWHMMWWM%WWMMWWWW

wwmu (M- + Aby) — G(ME) — (DH(ME), Ab)) -

v(Ag) = for almost all s € [t T], P—a.s. (14)

|b: |2
Now we consider the controlled system

dY, = (s + dM | s € [t,T),
- -

where ¢ € L2 ([t,T]) and a € A(t). The system (I0) is related to equation (LI by the
following proposition:

Proposition 2.1 Let v : RY x [0,T] be a continuous viscosity solution to (I1). Then

T
vz, t) = inf E| o(Y2" T)+ C / (Spds—éT—t]
wo= it Elapene, [ apdas-or-o
where (Y245%) is the solution to (10) and C, > 0 is the universal constant given by
§—Pla
C,= pgp/a” (17)

Proof : The proof relies on two arguments: first the map

T
w(z,t) = inf E[va’t’C’“,T +C / Cspds—éT—t]
(1) Ccoer (Yr )Gl (T —1)
is a viscosity solution of ([[1). This result has been proved—in a slightly different framework—
in [6], and we omit the proof, which is very close to that of [6]. Second, in order to conclude
that w = v, we need a uniqueness argument for the solution of (I]) with terminal condition
v(+,T). This is a direct consequence of the following comparison principle. O



Lemma 2.2 (Comparison) Letu be a continuous, bounded subsolution of (1) on RN x
[0, 7] and v be a continuous, bounded supersolution of (11). Ifu(-,T) < v(-,T), thenu < v
on RY x [0,T].

Proof :  We use ideas of [5] for the treatment of the nonlocal term and of [11]
for the treatment of the super-linear growth with respect to the gradient variable. Let
M = max{||u|lco; |V]|oc}. Our aim is to show that, for any p € (0,1),

iz, t) = pu(z,t) — (1 — )M — (1 — p)8(T —t) < v(z,t) in RY x [0,7] . (18)

Note that this inequality holds at ¢ = T". One also easily checks that « is a subsolution of
equation

—wy — M~ [w(-,t)](z) + sp' I Dw|? + 5 =0 in RY x (0,7) . (19)

For any € > 0, let ¢ be the space-time sup-convolution of % and v, be the space-time
inf-convolution of v (see [10]):

u(z,t) = su ] s—lx —(y,9)]?
wwn = mp Sl = 20 - 98

(y,8)ERN x

and

R SR (VR BRI

(y,8)ERN x[0,T

It is known that @ is still a subsolution of ([d) in RY x ((2Me€)2, T — (2Me)z) while v, a
supersolution of (I and that u¢ is semiconvex while v¢ is semiconcave RY x ((2Me)z, T'—

(2M e)%). In particular, u¢ and v, have almost everywhere a second order expansion and
at such a point (z,t) € RY x ((2Me)z, T — (2Me)z) one has

— 5 (z,t) — SM ™ [a (-, )] (z) + Sp' 4| Dz, t) |7+ 6 < 0
and
—vg(x,t) — M~ [v(-, t)|(z) + 0| Dv(z, )7+ > 0.

As usual we prove (I8)) by contradiction and assume that sup, , @(x,t) —v(z,t) > 0. Then,
for any a > 0, ¢ > 0 sufficiently small, one can choose ¢ > 0 sufficiently small such that
the map (z,t) — a(x,t) — v (z,t) — a|z|? + ot reaches its maximum on RY x [0, 7] at
some point (zZ,1) € RN x ((2Me)z, T — (2Me)2). For any n > 0, the point (z,7) is a
strict maximum of the map (z,t) — a(z,t) — ve(z,t) — a|z]* + ot —n(|lz — Z|* + (t — 1)?).
Jensen’s Lemma (see [10]) then states that one can find p™ = (p?, p?) € R¥*! such that
p" — 0 and the map

(2,) = (2, 1) —ve(w,t) — ala* + ot —n(le — 2" + (t = 1)) — (P, @) — pi't

has a maximum at some point (z,,t,) where @¢ and v, have a second order expansion.
Note that (x,,t,) — (Z,t). At the point (x,,t,) we have

Uy (Tp, tn) = 05 (Tp, tn) — 0 + 20(t, — ) + D},

7



Duf(zy, t,) = Dv(xp, t,) + 202, + 2n(x, — Z) + po |
— A (2, ty) — SM [T (-, tn)](20) + S~ D (2, 1) |9+ 6 <0, (20)

and
— Vi (X, tn) — OM ™ [0°(-, tn)| () + 0| Dv(zp, tn)|T+ 6 > 0. (21)

For the optimality conditions, we have, for any z € RY,
U (2, tn) < ve(w, ) +U (T, tn) —Ve(Tn, tn)+a(|ﬂf|2—|$n|2)+77(|95—!f|2—|93n—53|2)—(p2, T—Tn)

so that
M™[as (-, tn)|(zn) < M [0°(, )] (20) + 200+ 277 .

Let us set &, = Dv®(z,,t,) and estimate the difference between (20) and ([2II): we get
o= 2n(t, — 1) = pf —2a =20+ (u' & + 2@, + 2n(z, — T) + Pi|? — [€.]7) <O

When n — 400, &, remains bounded since v° is semi-concave. So we can assume that
&n — &a,e With
o—2a— 277 + 0 (:ul_q|€a,s + 2af|q - |§o¢,e|q) S 0.

Since, % and v are bounded, so is a|Z|?>. So az is bounded (in fact az — 0 as a — 0).
Then the above inequality implies that &, . is bounded, because since ¢ < 1 and ¢ > 1.
So, letting 1, ¢ — 0 and then a — 0, we get that ¢ < 0, which contradicts our assumption
on o. 0

Lemma 2.3 Let u € C(RY x [0,T]) be a supersolution of (I1) satisfying |u| < M in
RN x (0,T). Then, for all (z,t) € RN x[0,T], n € N, R > 0 large and o > 0 small, there
ezxist a (Fis)-adapted cadlag process Y™ and a control (" € L, ([t,T]) such that

u(j,f)ZE{U(Y;",t)—l—0+/t\§§|pds—(5+T)(t—f)—cn(a,R)} vt e [f,T], (22)

where
TPl

cu(o,R) =C <R‘P + +w(o) + (6 + T)T) ;

oP

with w the modulus of continuity of v in Br(Z) x [0,T], and C an universal constant.

Proof: For any (y,t) € RN x[0,7T), ¢ € L24([t,T]), a € A(t), let us denote by Y% the

solution to
dYy = (ds +dM?, t < s <T,
Y, =z,

where the martingale M is defined by (IH]).
Let us now fix an initial condition (Z,%) € RN x [0,T]. For a large n € N, we set

r=(T-1t)/n and ty=t+kr forke{0,...,n}.



We will build some controls ¢" € L%,([t,T]) and a™ € A(t) such that the process Y =
Yy &he"a® gatisfies the relation

u<f,azE{“<m::,tk>+C+ /tkwcmpds—(éw)(tk—f) ke {L...,n}, (23)

and then deduce from (23)) that (Y™, (™) also satisfy ([22). We follow closely the construc-
tion in [9].

For any k € {1,...,n}, let v* be the solution of (], defined on the time interval [0, ],
with terminal condition u(+, t). From the representation formula given in Proposition 2]
we have, for all z € RV,

v (r ) = inf E
(¢,a)eL®  ([t—1,tk]) x A(tk—1)

tr
u(ﬁi’t’“l’c’a, ty) +C. / |Cs|Pds — 57‘] )

th—1

Since the filtration (F;, | ;) is generated by a random Poisson measure, the set L, ([tx—1, tx]) ¥
A(tx_1) is a complete separable space. Moreover u(-, t;) is continuous. Therefore, thanks
to the measurable selection theorem (see [3]), one can build Borel measurable maps
r— Z%F and x — AF from RY to LP ([tx—1,tx]) and A(tx_;) respectively, such that

Ve e RV .

ty

k x.t VAILEY. ER tk k
vz, thr) > E ju(Y, T 07 ) +C / |ZPFPds — (6 + )7
th—1

(24)
We now construct ¢", a" and Y™ by induction on the time intervals [t;_1,x):
On [f,t;) we set (f = Z', a® = AP and Y™ = Y®6¢"" . Agsume that ¢, Y and a”
have been built on [¢,¢;_1). Then we set

n 1
"= ZY'fkfl’k7 a® = Aytchl’k’

and yn = yBhidhae” on [tp_1,t) .

(The process Y#4¢"" is P-a.s. continuous on each fixed ¢, so we have o o =Y
P-a.s., which means that (" and A" are defined P-as surely. )

We remark that, on [ty_1,tx), we have Y™ = y Ykttt

Let us fix now some k € {1,...,n}. Since the processes A%* and Z** are (F, ., )-

adapted and therefore independent of F7;, ,, the same holds also for Mg;‘z’k and finally

Tt 1,20k ATE
for Y, 7" , while Y;”

4 18 Fgy,_ -measurable. It follows that

E

tg

T, x, tk
w(YP A e, / |Z;"”k|pds] —E
=Y

tr
w0+ C, [ s | f]

te—1 teo—

te—1

Using (24]), the fact that u is a supersolution of (II]) and the comparison Lemma [2.2] this
leads to the relation

u(Y”

th—1

) tk—l) Z E

7%
U(Y;gzatk)‘FCJr/ |C§‘pd5’— (5-'-7’)7’ ‘ ft,tkll P—a.s..
te—1



Taking the expectation on both sides of the above inequality and summing up gives (23)).

We now extend this inequality to the full interval [, T] and prove (22). Let ¢ € [t,T] and
k be such that t € [ti_1, ). From (23], we have

u(@, 1) 2 E [u(y,0) + C. [ 1P ds = 3+ 7)(t = D)
E [u(Yy ) —u(¥ 6] - 6+ )7

th—1

(25)

Let us fix R > 0 and ¢ > 0. Since u is bounded by M and from the definition of the
modulus w, we have
E[u(vy )= u(70)| < w@P [V -3l <R, |V —3| < R, V7 =Y < 0]

F2M (P [|[Y — 2| > R + P[|Y" — 2| > R+ P[|Y" = Y["| > o)

(26)
To estimate the right hand side term of (26)), we first note that, for any 0 < s < ¢, it holds

that .
[ quar

T
Eu |§f|”d¢} <M+ G+ < C (27)

P
E[Y" - YoP] < 2 {E [ } LE[M - Msnm}

But, thanks to (23] again, we have

so that, by Holder’s inequality,

|/

Also by Holder we have E [|M{™ — M

) = &[]
=R [/tAids] < 6(t—s) =

s

P < (B [|Mf — M2 [?])"” where, by Tto,

E[|M — M-

To summarize
E[Yy = YI"] < C(t =9+ (t—5)?) < Ot —s)
since p < 2. Therefore we get

[t —tp Pt
oP )

which, coming back to (25) and (26), proves claim (22]). O

PIIYy —z[ > BRI+ PY," — 2| > R + P[[Y}" = V| > o] <C(R™" +

10



Lemma 2.4 Let u € C(RY x [0,T]) be a supersolution of (L) satisfying |u| < M in
RN x (0,T). Then, for any (%,t) € RN x (0,T) there is a stochastic basis (Q, F,P), a
filtration (Fy)eg, a cadlag process (Y;) adapted to (F;)i>¢ and a process ( € LP([t,T))
such that

m%azmﬂmﬁﬁ+fa[ﬂgw%—au—a vt e (£,T), (29)

where C, > 0 is the universal constant given by (17), and
t T
E [ Y, — 7 — / C_sds
t

Proof: This Lemma will follow from Lemma by passing to the limit as n — +o0 in
([22). For this we set

} <ot -1 Wtell,T) (30)

for any r € (0, 2].

t
AP= / ("ds Ve LT
t

From (27)), the sequence of probability measures (Py») on C([£, T], RY) is tight. Let D()
be the set of cadlag functions from [t, T] to RY, endowed with the Meyer-Zheng topology
(see [15]). Since E[|M7"|] is uniformly bounded (thanks to (28])), Theorem 4 of [15] states
that the sequence of martingale measures (Pyjax ) is tight on D(Z). Then, from Prohorov’s
Theorem (Theorem 4.7 of [I4]), we can find a subsequence of (Y™, A"), again labeled
(Y™, A"), and a measure m on C([£, T],R") x D(f) such that (Py=, an)) weakly converges
to m. Skorokhod’s embedding Theorem (Theorem 2.4 of [12]) implies that we can find
random variables (Y™, A") and (Y, A) defined on a new probability space (2, A, P), such
that (Y™, A") has the same law as (Y™, A") for any n, the law of (Y, A) is m and, P—almost
surely, the sequence (A") converges to (A) in C([t, T],RY) while, for any ¢ belonging to
some set I C [t,T] of full measure in [, T], the sequence (Y;*) converges to Y; (Theorem
5 of [15]).

Since ¢t — A is absolutely continuous P—a.s. and since A" has the same law as
A", t — AP is absolutely continuous P—a.s.. Let us set (? = df\" Then, by (1),

ft }C"}p ds] < C for all n > 0. Therefore, up to a subsequence again labeled in the
same way, (C™) converges weakly in LP([t,T]) to some limit, ¢, which, P—a.s., satisfies
= [ (ds for all t € [£,T).
Note that M=Y;* — 7 — A" has the same law as M, so that by Hélder and (28],

E[[ap[] < o2(t— 1)
for all » € (0,2] and for all t € [¢,T]. Passing to the limit in the above inequality gives
E(|Yi—z— A ] <o2t—0)"* Vtel, vre(0,2].

We get the above inequality for all ¢ € [, T) thanks to the cadag property of the trajec-
tories of Y. Recalling (22)), a classical lower semicontinuity argument yields

t
u(f,f)ZfElu(K,t)+C+/ CfPds—ot—p| weer,
t

and we conclude the proof by using again the cadag property of the trajectories of Y. [
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3 Analysis of subsolutions
In this section we investigate properties of subsolution of equation (I2J).

Proposition 3.1 For any fized (z,t) € RY x (0,T], there is a continuous supersolution
w of (12) in RN x [0,t) such that

é(t =) e =yl = Ot —9)'"? <wl(y,s) < Ot —s)' o~y + Ot — )" (31)

or an ,5) € RN x [0,t) and for some universal constant C.
y\y

Proof : It relies on control interpretation of equation (I2) as well as the construction
of some Brownian bridges (see [13]). Let us assume, without loss of generality, that z = 0.
Having fixed o € (1—1/p,1/2), (y,s) € RN x[0,¢) and a € A(s), let Y¥*% be the solution
to

dY, = —a Y= dr + dM?
Y=y

Then one easily checks that
Y,=@{t—s)*(t—7) Y+ ({t—1) /T(t—a)_adMg : (32)
Let us set
Z¥t = —aY,/(t —71) and J(y,s,a) =E {/t|Z$’s’“|pd7'] :

We claim that there is a universal constant C' > 0 such that

é(t—S)l_p\x—y\p—C(t—S)l_m < J(y,s,a) < Ct—s)'Ple—yl +O(t—s)' 7. (33)

Indeed
t
Jy.s,a) = E[ / \vas’“\pdf]

t
< lap(t — syl / (t— 7Pl gy

t T
P g / (t — 7y DE “ / (t — o) “dM?

p
] dr
where, by Holder and Ito,

E U /:(t — o) dM?

J(y,s,a) < C(t—s)"PlylP + Ot — S)l—p/2 )

P:| S C(t_s)g(l—Qa)

So

12



In the same way,
t
J(y,s,a) = E [/ \ZE’S’“P(ZT}
’ t
> 21PaP(t — s)_ap|y|p/ (t — T)p(a_l)dT

—a? / (1 — DR U / "t — o) edMe
> (1/C)(t— )" Pyl — Ot — )72,

Whence (33)).
Next we introduce the value function w of the optimal control problem

p
}d’T

w(y,s)=C_ sup J(y,s,a) —d(t—s),
acA(s)

where C = ;;p/fq. Let us first show that w is continuous on RY x [0,¢). The map y —
J(y, s, a) being convex (since the map y — Y»** is affine and p > 1) and locally uniformly
bounded (thanks to ([B3)), it is has a modulus of continuity which is locally uniform with
respect to s and a. The map s — J(y,s,a) being locally Holder continuous on |0, 1),
locally uniformly with respect to y and a, this implies that the map (y, s) — J(y, s, a) has
a modulus of continuity which is uniform with respect to a. Therefore w is continuous on
RY x [0, ).

Using the fact that w is continuous and arguments similar to the ones in [6] one can
prove that w satisfies the Hamilton-Jacobi equation

y y |
—wy + inf {—(—a —— Dwy+C_ |-«
Ae(0,1], beB\{0} t—s t—s
'LU(y + )‘ba S) B w(y> S) B <Dw(y> S), )‘b> } —5=0

0 R

Since

) w(y + Ab, s) —w(y,s) — (Dw(y, s), Ab) | N
Ae(o,ul,rifeB\{o} {_ ]2 } = —M"[w(-,s)|(y)

while "
Y Y
—(—a——,D C |~ > —|Dw|?
(D) + 0 |-a | 2 par,
w is a supersolution of (I2). We finally note that w satisfies (B1I) because the inequalities
([B3) are uniform with respect to a. O

Lemma 3.2 Let u € C(RY x [0,T]) be a subsolution of (I2) satisfying |u| < M. Then,
for all (z,t) € RN x (0,T) and all (y,s) € RY x [0,1),

u(y,s) <wu(z,t)+C {\y —z|P(t —s)"P 4 (t — s)l_p/2} (34)

for some universal constant C' > 0.
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Remark 3.3 In particular, if u = u(z) is a subsolution of the stationary equation
1
—5M+[u(-,t](:c)—l—g\Du\q—é:O in RY,

then inequality (34]) implies that, for any z,y € RY and any 7 > 0,
u(z) <uly)+C{ly — P77+ Tl_p/z} ,

for some universal constant C'. Thus, choosing 7 = |z—y|? yields u(z) < u(y)+C |y—z|*7?,
that is, u is Holder continuous. This extends to nonlocal equations one of the results of
[3].

Proof: According to Proposition Bl there is a supersolution w of (I2]) which satisfies

1
Glt=9) e =yl = Clt =) <w(y,s) <Ot =) Pz — gyl + Ct —5)" 7"

for any (y,s) € RY x [0,¢) and for some universal constant C. Since u is continuous and
bounded and u(y,t) < lim,_; w(y, s) + u(z,t) for any y € RV, we get u < w + u(z,t) on
RN x [0,¢) by comparison (Lemma 2.2)). Whence the result. O

Lemma 3.4 Let u € C(RY x [0,T]) be a subsolution of (I2) satisfying |u] < M. Fiz
(z,t) e RV x (0,T), ¢ € LE,([t, T]) and let (X4, () be stochastic processes satisfying (30).
Then, for any x € RY and t € (t,T),
u(z, 1) — Elu(Xy, 1))
p
<c{e—or (B[(f16ls) | + 1z = alr) + ¢ - )12}

for some constant C' > 0.

(35)

Proof: Fix t € (t,T) and apply Lemma B2 to (x,t) and (X;(w),t). Then, for almost all
w € €,

u(z,t) < u(Xt(w),t)—l—C{|Xt(w)—z|p(t—ﬂ1_p+(t—ﬂl_p/2} .
Hence,
u(x,t) < Efu(Xy, )]+ C{B[|X, — 2] + |z —2[")(t — D)7+ (t - )"} .

Since, on account of ([30),

six-ap <o {e]( [ i) ]+ e-nt},

the conclusion follows. O

In order to proceed, we need to recall the following weak reverse Holder inequality:
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Lemma 3.5 ([9]) Let (2, A, P) be a probability space. Let p € (1,2) and assume that the
function & € LP((a,b); RY) satisfies the inequality

B Clerds| < AR L “eds)'] + L view@y o)
t—a/, <t af, ) (t—a)z

for some positive constants A and B. Then there are constants 0 € (p,2) and C > 0,
depending only on p and A, such that

e|(/ t i)' | < 0t -ap s {o- 0 el + BO-0FF) e (.

Thanks to this inequality, we can estimate the LP norm of the process ( appearing in
Lemma [2.4]

Lemma 3.6 Let u € C(RY x [0,T]) be a subsolution of ([I2)) such that |u| < M and let
T € (0,T). Then there is a universal constant 6 € (p,2) and a constant C(1,6) > 0 such
that, for every (z,t) € RN x (0,T — 7), and every stochastic processes (Xy,(;) satisfying

(29) and (30), we have
t p ,
. K/ 'CS'dS> } <O —IpF Ve (ET).
7
Proof: First, observe that, by Lemma 3.4 applied to z = Z,
t P
u(z, B) < Blu(X,. 1) + C ((t —BE [( / |Cs|ds> ] - al—m)
f
for all t € [¢,T). Moreover, in view of (29)),
t
E [u(Xt, t)]) < u(z,t) —C.E {/ \§s|pds] +0(t—1) Vie[t,T) .
7
Hence, taking into account that t — < C(t — #)'77/2,
t t P
E U ICsl”ds} <C(t—1H)"PE K/ Icslds) } +CO(t-0)"P? Ve[t T).
7 f

Then, owing to Lemma 3.5 there are universal constants 6 € (p,2) and C' > 0 such that

E t|cs\dspgc(||q|g+1)“‘_7ﬂi vt e @ T).
([ i) | =

Since u is bounded by M, assumption (29) implies that ||C||, < C. So, we finally get

=[(f |<S|dsﬂ <oE-rE Ve BT),

because t < T — 1. 0
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4 Proof of Theorem [1.7]

Let u : RN x [0,T] — R be a continuous supersolution of ([[Il), a subsolution of (I2)) and
such that |u| < M.

Space regularity: Fix (z,t) € RN x (0,7 — 1) and let z € RY. By Lemma 24 there is a
control ¢ € L? ([t,T]) and an adapted process X such that (29) and (30) hold. So,

W@, B) > Elu(X,t)] — 6t —1) Ve[, T). (37)

Also, Lemma ensures that

E K[Ks\ds)p] <CMt—DrF Ve \T) (38)

for some universal constant 6 € (p, 2) and some constant C'(7) > 0. Furthermore, applying
Lemma 3.4 for any ¢ € (¢,T) we have

U(%ﬂ - E[U(Xt>t)]
<c{t—0R[(f |Glds)"| + 17— ap = P+t - 0172}
Plugging ([B7) and (B8] into the above inequality leads to
u(z, ) <u(@ )+ 5t -0+ 0t - PPy Clz —afp(t — D) P+ C(t — 1) /2

for any t € (¢, 7).
Since 1 > 1—p/2 > (0 —p)/0 (recall that 0 < 2),

u(z,t) <u(z,t) +C(r)(t — )P L Clz — zfP(t — 1) 7.
Then, for |z — Z| sufficiently small, choose t = £ + |z — Z|%/®~Y to obtain
u(z,t) < u(z,1)+ C(7)|z — z|0-P/6-1),
Time regularity : Let now t € (0,7 — 7). Then, in light of (37]),
w(z, t) > Eu(X, t)] —o(t —1).
Now, applying the space regularity result we have just proved, we obtain
E [u(X,,1)] = u(#,t) - C(TE || X, - 3|71 .

Moreover, since (# —p)/(0 —1) < 1, by B0) we get

9=-p

0—p

E [|Xt—5;|m} < CE {([t|gs|ds) “} L Ot — )

Also, by Hélder’s inequality and (38]),

0—p

<[ k)] < ([ ) <o
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Notice that (§ —p)/(2(0 — 1)) > (# — p)/0 since § < 2. So,

w(@, ) > u(z,t) — C(r)(t — 1) .

To derive the reverse inequality, one just needs to apply Lemma with y = x = 7 to

get
u(z,t) < u(z,t) +Ct—1) 72,
This leads to the desired result since 1 —p/2 > (6 —p)/6. O
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