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ABSTRACT
A Chebyshev curve C(a, b, c, ϕ) has a parametrization of the
form x(t) = Ta(t); y(t) = Tb(t); z(t) = Tc(t + ϕ), where
a, b, c are integers, Tn(t) is the Chebyshev polynomial of
degree n and ϕ ∈ R. When C(a, b, c, ϕ) has no double points,
it defines a polynomial knot. We determine all possible knots
when a, b and c are given.
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1. INTRODUCTION
It is known that every knot may be obtained from a poly-

nomial embedding R → R3 ⊂ 3, where 3 is the one-point
compactification of R3 ([19, 5]).

In [10] we showed that any knot K ⊂ R3 ⊂ 3 is a Cheby-
shev knot, that is to say there exist positive integers a, b, c
and a real ϕ such K is isotopic to the curve

C(a, b, c, ϕ) : x = Ta(t), y = Tb(t), z = Tc(t+ ϕ)

where Tn is the Chebyshev polynomial of degree n. This is
our motivation for the study of curves C(a, b, c, ϕ), ϕ ∈ R.

• The projection of C(a, b, c, ϕ) on the (x, y)-plane is the
Chebyshev plane curve C(a, b) : x = Ta(t), y = Tb(t).

• The set Za,b,c of critical values ϕ such that C(a, b, c, ϕ)
is singular, is finite and |Za,b,c| ≤

1
2
(a−1)(b−1)(c−1).

• Let Za,b,c = {ϕ1, . . . , ϕn}. The knot C(a, b, c, ϕ) is
constant when ϕ ∈ (ϕi, ϕi+1).

• The type of C(a, b, c, ϕ) is given by its diagram, which
is the plane projection C(a, b), and the (under/over)
nature of the crossings over the double points.

From the algorithmic point of view, the description of the
knots is strongly connected to the resolution of the zero-
dimensional system:
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Va,b,c =

{

(s, t, ϕ);
Ta(t)− Ta(s)

t− s
= 0,

Tb(t)− Tb(s)

t− s
= 0,

Tc(t+ ϕ)− Tc(s+ ϕ)

t− s
= 0

}

(∗)

Here the set of critical values Za,b,c is πϕ(Va,b,c) = Z(Ra,b,c),
where Ra,b,c is some polynomial in Q[ϕ] we have to deter-
mine. When ϕ ∈ R−Za,b,c, the knot diagram of C(a, b, c, ϕ)
is deduced from the signs of Tc(t+ϕ)− Tc(s+ϕ) when the
parameters (t, s) correspond to a double point of C(a, b).

When a ≤ 4, the knots are rational (or two-bridge) knots.
They are classified by their Schubert fraction that can easily
be deduced from their diagram ([15]). When a ≥ 5, we
also get diagrams that can be used for the computations of
invariants. But the identification of the knot is a much more
difficult problem.

In [12], we proposed a method to get Ra,b,c, based on resul-
tant computations in Z[X,ϕ], where X is some indetermi-
nate, for a = 3 or a = 4. We have classified all knots for a
and b coprime integers (a ≤ 4, b ≤ 15) and c ≤ 300. This
method will not work for a ≥ 5 or higher values of b and c
because of the degrees of the system. We will give a direct
way to determine a set r0, . . . , rn of rational numbers such
that C(a, b, c, ϕ) is one of the C(a, b, c, ri).

In the present paper we decompose the system by working
on some (real cyclotomic) extension fields. We show that the
system (∗) is equivalent to the resolution of 1

2
(a−1)(b−1)⌊ c

2
⌋

second-degree polynomials in Z[cos π
a
, cos π

b
, cos π

c
]. We show

some properties of these extensions that allow to simplify the
computations. We can represent the coefficients of the poly-
nomials by intervals and certify the resolution. The main
difficulty becomes here to compare the roots of the polyno-
mials we obtain independently. More precisely

• We give an algorithm for the factorization of the Cheby-
shev polynomials Tn and Vn.

• We show that affine Chebyshev curves Tn(x)−Tm(y) =

0 has ⌊ (n,m)
2

⌋ + 1 irreducible components.
• This allows us:

– To express Ra,b,c as the product of second-degree
polynomials in Z[cos π

a
, cos π

b
, cos π

c
][ϕ].

– To get easily the minimal polynomials of cos π
n
.

We then easily and independently obtain the roots of the
second-order polynomials but we need to make sure that
they are distinct roots. A formal method would consist to
compute their minimal polynomials over Q, which is equiv-
alent to the resolution of (∗). We use interval arithmetic for
coding the algebraic numbers cos kπ

n
as well as the solutions

ϕ we get. If the two intervals are disjoint, the roots are



distinct. If not, we can certify whether the resultant of the
two second-order polynomials equals 0 or not by Euclidean
division.

In section 2, we first describe the Chebyshev polynomials
and the link between their factorizations and the minimal
polynomials of cos kπ

n
. In section 3 we study the affine im-

plicit Chebyshev curves Tn(x) = Tm(y) and show that they

have ⌊ (n,m)
2

⌋+1 irreducible components. ⌊ (n,m)−1
2

⌋ are Lis-
sajous curves. Lissajous curves admit a parametrization:
x = cos at, y = cos(bt+ ϕ), where sinϕ 6= 0.

In section 4, we give a formula for Ra,b,c as the product of
second-degree polynomials Pα,β,γ . We show how to get the
roots of Ra,b,c with their multiplicities in order to choose
a rational number r in each component of R − Za,b,c. In
section 6, we explain how to deduce the diagrams of the
knots C(a, b, c, ϕ). This allows us to find an exhaustive and
complete list of the minimal parametrization for the first 95
rational knots.

2. CHEBYSHEV POLYNOMIALS
Chebyshev polynomials and their algebraic properties play

a central role here. The curves we will study are defined by
Chebyshev polynomials. The algebraic extensions we will
consider are spanned by their roots and we need to know
their factors. In this section we recall some classical proper-
ties of Chebyshev polynomials. We will show also the link
between their effective factorization in Q[t] and the minimal
polynomial of cos kπ

n
.

The Chebyshev polynomials of the first kind are defined by
the second-order linear recurrence

T0 = 1, T1 = t, Tn+1 = 2tTn − Tn−1. (1)

Tn ∈ Z[t] and satisfies the identity Tn(cos θ) = cosnθ, and
more generally Tn ◦ Tm = Tnm. We have the decomposition

Tn = 2n−1
n−1
∏

k=0

(t− cos (2k+1)π
2n

).

Let Vn be the Chebyshev polynomials of the second kind
defined by the second-order linear recurrence (the same as
in (1))

V0 = 0, V1 = 1, Vn+1 = 2tVn − Vn−1.

Vn ∈ Z[t] and satisfies Vn(cos θ) =
sinnθ

sin θ
. We have easily

Vn = 2n−1
n−1
∏

k=1

(t− cos kπ
n
).

Let us summarize some useful results in the following

Lemma 1. We have the following properties:

• T ′
n(t) = 0 ⇒ Tn(t) = ±1

• Tn(t) = ±1 ⇒ T ′
n(t) = 0 or t = ±1.

• Tn(t) = y has one real solution iff |y| > 1.
• Tn(t) = y has n real solutions iff |y| < 1.
• Tn(t) = 1 has ⌊n

2
⌋ real solutions.

• Tn(t) = −1 has ⌊n−1
2

⌋ real solutions.

Proof. From T ′
n = nVn, we deduce that t 7→ Tn(t) is

monotonic when |t| ≥ cos π
n
, that Tn has n−1 local extrema

for tk = cos kπ
n

and Tn(tk) = (−1)k.

Minimal Polynomial of cos kπ
n

Let us define ψ1 = 1, ψn = 2ϕ(n)
∏

(k,n)=1

(t − cos kπ
n
), where

ϕ is the Euler function. We have

Vn =
∏

d|n

ψd, (2)

and we deduce by induction that ψd ∈ Z[t]. As ψ2 = 2t
and Vn(−t) = (−1)n−1Vn(t), we deduce that ψd is an even
polynomial for d ≥ 2.

These relations were already known and also their relations
with the minimal polynomial of cos 2π

n
(see [20, 7, 17]). Note

that the Relation (2) gives an effective way to compute the
factors ψn (see algorithm 4). We will see that we deduce an
effective way to compute the minimal polynomial of cos π

n
.

Let ζn = e
2iπ
n . We know that the minimal polynomial of

ζn over Q is of degree ϕ(n). Let k be coprime with n.
From ζ2kn − 2 cos 2kπ

n
ζkn + 1 = 0 we deduce that [Q(ζkn) :

Q(cos 2kπ
n

)] = 2 because ζkn 6∈ R when n > 1. We have

[Q(cos 2kπ
n

) : Q] = 1
2
ϕ(n), when n > 1. From cos kπ

n
=

cos 2kπ
2n

we deduce that [Q(cos kπ
n
) : Q] = 1

2
ϕ(2n) when

(k, 2n) = 1 and n > 1. Consequently, the minimal polyno-
mial Mn of cos π

n
has degree 1

2
ϕ(2n) when n > 1.

Corollary 2. We haveM2n+1 = ψ2n+1(
√

1
2
− 1

2
t),M2n =

ψ2n, and ψ2n+1 =M2n+1(t)M2n+1(−t).

Proof. Mn|ψn, degψ2n = degM2n, and degψ2n+1 =
2degM2n+1. We deduce that ψ2n = M2n and ψ2n+1 =
M2n+1N2n+1 where degN2n+1 = degM2n+1.

Let P (t) = ψ2n+1(
√

1
2
(1 + t)) ∈ Q[t]. We have P (cos 2kπ

2n+1
) =

ψ2n+1(±cos kπ
2n+1

) = 0 when (k, 2n+1) = 0. We thus deduce
that

P (t) = 2ϕ(2n+1)/2
∏

(k,2n+1)=1

(t− cos 2kπ
2n+1

).

As cos π
2n+1

= − cos 2nπ
2n+1

, we deduce that

M2n+1(t) = P (−t) = ψ2n+1(
√

1
2
(1− t)).

We thus have ψ2n+1(t) =M2n+1(t)M2n+1(−t).

Remark. The roots of Mn are cos kπ
n

where (k, n) = 1 and

k is odd. Mn(−t) is the minimal polynomial of cos 2π
n
. The

leading coefficient of Mn is 2ϕ(2n)/2.

Remark. cos kπ
n

∈ Q iff 1
2
ϕ(2n) = 1, that is n = 1, 2, 3. In

this case we get 2 cos kπ
n

∈ Z.

We thus deduce the factorization of Tn and Vn in irreducible
factors in Z[t].

Proposition 3. Factorization of Tn and Vn.
We have

Vn(t) =
∏

2d|n

M2d(t)
∏

2d+1|n

M2d+1(t)M2d+1(−t),

T2k(2m+1)(t) =
1

2

∏

d|2m+1

M2k+1d(t).

where Mn is the minimal polynomial of cos π
n
.



Proof. The factorization of Vn is already proved. Let d
be an odd divisor of n. We write n = 2k · d1 · d, where d1 is
odd. cos d1π

2n
= cos π

2k+1d
is a root of Tn soM2k+1d|Tn. Using

the Euler formula and the fact that ϕ(2k+1d) = 2kϕ(d), we
deduce the factorization.

Algorithm 4. Minimal polynomial of cos π
n
.

The minimal polynomial Mn of cos π
n
can be computed recur-

sively by Euclidean division.

Proof. It is given by the following

Algorithm Minimal Polynomial

Input: n

Output: Mn

Let ψ1 = 1.

Suppose we know ψ1, . . . , ψn−1.

Let ψn = Vn ÷
∏

d|n,d 6=n

ψd.

If n is even then Mn = ψn else

Mn = ψn(
√

1
2
(1− t)).

Note that ψn is odd when n ≥ 2, so ψn(
√

1
2
(1− t)) can be

evaluated only by t2 7→ t, t 7→ t
2
, t 7→ 1− t.

3. CHEBYSHEV AND LISSAJOUS CURVES
The following proposition will explain the notions of Lis-

sajous and Chebyshev curves.

Proposition 5. The parametric curve

C : x = cos(at), y = cos(bt+ ϕ), t ∈ C,

where a, b are coprime integers (a odd) and ϕ ∈ R admits
the equation

Tb(x)
2 + Ta(y)

2 − 2 cos(aϕ)Tb(x)Ta(y)− sin2(aϕ) = 0. (3)

1. If aϕ 6= kπ, this equation is irreducible. C is called a
Lissajous curve. Its real part is 1-1 parametrized for
t ∈ [0, 2π].

2. If aϕ = kπ, this equation is equivalent to Tb(x) =
(−1)kTa(y). C is called a Chebyshev curve. It can be
parametrized by x = Ta(t), y = (−1)kTb(t).

Proof. Let (x, y) ∈ C. We have Tb(x) = cos(bat), Ta(y) =
cos(bat + aϕ). Let λ = aϕ, θ = abt. We get Ta(y) =
cos(θ+λ) so (1− cos2 θ) sin2 λ = (cos θ cosλ−Ta(y))

2, that
is (1−Ta(x))

2 sin2 λ = (Ta(x) cosλ−Ta(y))
2, and we deduce

our Equation (3).

Conversely, suppose that (x, y) satisfies (3). Let x = cos(at)
where t ∈ C. We also have x = cos a(t + 2kπ

a
). We have

Tb(x) = cos θ. A = Ta(y) is solution of the second-degree
equation

A2 − 2 cos(aϕ) cos θA− sin2(aϕ) = 0.

Consequently, we get Ta(y) = cos(θ ± aϕ) = Ta(cos(±bt +
ϕ)). We deduce that y = cos(±bt+ϕ+ 2hπ

a
), h ∈ Z. Chang-

ing t by −t, we can suppose that

x = cos at, y = cos(bt+ ϕ+ 2hπ
a

).

By choosing k such that kb + h ≡ 0 (mod a), we get x =
cos at′, y = cos(bt′ + ϕ), where t′ = t+ 2kπ

a
.

If aϕ 6≡ 0 (mod π). Suppose that Equation (3) factors in
P (x, y)Q(x, y). We can suppose, for analyticity reasons,
that P (cos at, cos bt + ϕ) = 0, for t ∈ C. The curve C in-
tersects the line y = 0 in 2b distinct points so degx P ≥ 2b.
Similarly, degy P ≥ 2a so that Q is a constant which proves
that the equation is irreducible.

If cos aϕ = (−1)k, the equation becomes Tb(x)−(−1)kTa(y) =
0. In this case the curve admits the announced parametriza-
tion (see [6, 10] for more details).

Remark. If a = b = 1, we obtain the Lissajous ellipses.
They are the first curves studied by Lissajous ([14]). Let
µ 6≡ 0 (mod π). The curve

Eµ : x2 + y2 − 2 cos(µ)xy − sin2(µ) = 0

is an ellipse inscribed in the square [−1, 1]2. It admits the
parametrization x = cos t, y = cos(t+ µ).

The following notation will be useful. Let Eµ(x, y) = x2 +
y2 − 2 cos(µ)xy − sin2(µ) when µ 6≡ 0 (mod π) and E0 =
x − y, Eπ = x + y. The Equation (3) is equivalent to
Eaϕ(Tb(x), Ta(y)) = 0. That shows that the real part of
the Equation (3) is inscribed in the square [−1, 1]2. Using
Proposition 5 we recover the classical following result.

Corollary 6. The Lissajous curve x = cos(at), y =
cos(bt+ϕ), (aϕ 6≡ 0 (modπ)) has 2ab− a− b singular points
which are real double points.

Proof. singular points of C satisfy Equation (3) and the
system

T ′
b(x)(Tb(x)− Ta(y) cos aϕ) = 0,

T ′
a(y)(Ta(y)− Tb(x) cos aϕ) = 0.

Suppose that T ′
b(x) = T ′

a(y) = 0 then T 2
a (y) = T 2

b (x) =
1 and Equation 3 is not satisfied. Suppose that Tb(x) −
Ta(y) cos aϕ = Ta(y) − Tb(x) cos aϕ = 0, then Tb(x) =
Ta(x) = 0 and Equation 3 is not satisfied. We thus have
either T ′

b(x) = 0 and Ta(y)−Tb(x) cos aϕ = 0 that gives (b−
1)×a real points because of the classical properties of Cheby-
shev polynomials, or T ′

a(y) = 0 and Tb(x)−Ta(y) cos aϕ = 0
that gives b× (a− 1) real double points.

Remark. The study of the double points of Lissajous curves
is classical (see [2] for their parameters values). The study of
the double points of Chebyshev curves is simpler (see [10]).

Corollary 7. The affine implicit curve Tn(x) = Tm(y)
has ⌊n−1

2
⌋⌊m−1

2
⌋+⌊n

2
⌋⌊m

2
⌋ singular points that are real dou-

ble points.

Proof. The singular points satisfy either Tn(x) = Tm(y) =
1 or Tn(x) = Tm(y) = −1 and the announced results.

Theorem 8. Factorization of Tn(x)−Tm(y)
Let m = ad, n = bd, (a, b) = 1 and a odd. We have the
factorization

Tn(x)− Tm(y) = 2d−1

⌊
d
2
⌋

∏

k=0

Ck(x, y)



where

Ck(x, y) = E 2akπ
d

(Tb(x), Ta(y))

is the irreducible equation of the curve Ck : x = cos at, y =
cos bt+ 2kπ

d
, given in Proposition 5.

Proof. Let C be the curve Tn(x) = Tm(y). We easily get
Ck ⊂ C and Ck 6= Ck′ . When k = 0, C0 admits the equation
Tb(x)−Ta(x) = 0. If 2k = d, Ck admits the equation Tb(x)+
Ta(y) = 0. In the other cases, the dominant term in x of
Ck is 22b−2x2b. If d is even, we deduce that the dominant

term of
⌊
d
2
⌋

∏

k=0

Ck(x, y) is 2(b−1)dx2n and we get our result in

this case. If d is odd, we get the same result.

Corollary 9. Let d = gcd(a, b). The curve Tb(x) =
Ta(y) has ⌊ d

2
⌋+1 components. ⌊ d−1

2
⌋ of them are Lissajous

curves.

T9(x) = T3(y) T10(x) = T3(y)

T10(x) = T4(y) T10(x) = T5(y)

Figure 1: Implicit Chebyshev curves

Theorem 8 is particularly interesting when m = n = d and
a = b = 1. In this case the curve Tn(x) = Tn(y) is a union
of ellipses and some lines. It will be useful for the determi-
nation of the double points of Chebyshev space curves. We
have

Tn(t)− Tn(s)

t− s
= 2n−1

⌊
n
2
⌋

∏

k=1

E 2kπ
n

(s, t). (4)

The curve
Tn(t)− Tn(s)

t− s
= 0 has ⌊n

2
⌋ irreducible compo-

nents. Note that E 2kπ
n

and E 2lπ
m

intersect at the point (t, s) =

(cos( kπ
n

+ lπ
m
), cos( kπ

n
− lπ

m
)) and its symmetric with respect

to the lines s = −t and s = t. We recover the parametriza-
tion of the double points of x = Ta(t), y = Tb(t) that will be
very useful for the description of Chebyshev space curves.

Proposition 10 ([10, 12]). Let a and b are nonnega-
tive coprime integers, a being odd. Let the Chebyshev curve

C be defined by x = Ta(t), y = Tb(t). The pairs (t, s) giving
a crossing point are

t = cos( jπ
b
+ iπ

a
)π, s = cos( jπ

b
− iπ

a
)π

where 1 ≤ i ≤ 1
2
(a− 1), 1 ≤ j ≤ b− 1.

T5(t) − T5(s)

t − s
= 0

T7(t) − T7(s)

t− s
= 0

T5(t) − T5(s)

t− s
= 0

Figure 2: Double points in the parameters space

4. CHEBYSHEV KNOTS
Chebyshev knots are polynomial analogue to Lissajous

knots that have been studied by many authors (see [1, 2,
8, 9, 13]). All knots are not Lissajous (for example the tre-
foil and the figure-eight knot). In [10], it is proved that every
knot is a Chebyshev knot.

When a, b are coprime integers, c is an integer and ϕ is
some real constant, the Chebyshev space curve C(a, b, c, ϕ)
is defined by

x = Ta(t), y = Tb(t), z = Tc(t+ ϕ).

Its projection on the (x, y)-plane is the Chebyshev curve
x = Ta(t), y = Tb(t). Because a and b are coprime integers,
the curve C(a, b, c, ϕ) is singular if and only if it has some
double points. We showed in [12], that the set Za,b,c of
critical values ϕ for which the curve C(a, b, c, ϕ) is singular
is finite. Consider the polynomials

Pn =
Tn(t)− Tn(s)

t− s
, Qn =

Tn(t+ ϕ)− Tn(s+ ϕ)

t− s
.

and the algebraic variety defined by

Va,b,c = {Pa(s, t) = 0, Pb(s, t) = 0, Qc(s, t, ϕ) = 0}.

Because degϕQn = n − 1 and the leading term of Qn is

2n−1nϕn−1, we showed that Va,b,c is 0-dimensional and has
at most 1

2
(a − 1)(b − 1)(c − 1) points. We deduced that

|Za,b,c| ≤
1
2
(a− 1)(b− 1)(c− 1).

Let Za,b,c = {ϕ1, . . . , ϕn}. The type of the knot C(a, b, c, ϕ)
is constant when ϕ in (ϕi, ϕi+1). Our aim is to give a direct
way to determine a set r0, . . . , rn of rational numbers such
that C(a, b, c, ϕ) is one of the C(a, b, c, ri).

We can determine a polynomial Ra,b,c ∈ Z[ϕ] for which
Za,b,c = Z(R). It can be defined by 〈R〉 = 〈Pa, Pb, Qc〉

⋂

Q[ϕ]
and may be obtained with Gröbner basis ([3]).

Example. When a = 3, b = 4, c = 5, we find that
Ra,b,c =

(

80ϕ4 + 60ϕ2 − 1
)

·
(

6400ϕ8 − 3200ϕ6 + 560ϕ4 − 80ϕ2 + 1
)

.
There are exactly 6 critical values that are symmetrical
about the origin. For these values of ϕ, the curveQ5(s, t, ϕ) =



ϕ = .590 ϕ = .128

ϕ = .117 ϕ = .117, .128, .590

Figure 3: P3 = 0, P4 = 0, Q5 = 0

0, which is translated from the curve P5(s, t) = 0 by the vec-
tor (ϕ,ϕ), meets the points {P3 = 0, P4 = 0}.

In [12], we developed a method for a = 3 or a = 4 based
on resultant calculations in Z[X, t]. We have computed all
possible values for a = 3 and a = 4, b ≤ 25 and c ≤ 300. But
this method would not work for a > 4 or for bigger values
of c. Here we give an explicit formula for the polynomial R.

Proposition 11. Let a, b be nonnegative coprime inte-
gers and c be an integer. Suppose that a is odd. Let Ra,b,c(ϕ)
be the polynomial

a−1
2
∏

i=1

b−1
∏

j=1

Qc(cos(
j
b
+ i

a
)π, cos( j

b
− i

a
)π,ϕ). (5)

Ra,b,c ∈ Z[ϕ] and C(a, b, c, ϕ) is singular iff Ra,b,c(ϕ) = 0.

Proof. ϕ ∈ Za,b,c iff there exists (s, t) such that Pa(s, t) =
Pb(s, t) = 0 and Qc(s, t, ϕ) = 0. This conditions are equiv-
alent to have s = cos( j

b
+ i

a
) and t = cos( j

b
− i

a
) and

Qc(s, t, ϕ) = 0, for some 1 ≤ i ≤ a−1
2

and 1 ≤ j ≤ b − 1,
from Proposition 10.

Qc(s, t, ϕ) is a symmetric polynomial of Z[ϕ][t, s]. Let αi =
iπ
a
, βj = jπ

b
and s = cos(αi + βj), t = cos(αi − βj). From

s + t = 2 cosαi cos βj and st = cos2 αi + cos2 βj − 1, we
deduce that Qc(s, t, ϕ) belongs to Z[ϕ, cosαi][cos βj ].

Pi =
b−1
∏

j=1

Qc(cos(αi + βj), cos(αi − βj), ϕ)

belongs to Z[ϕ, cosαi] because the cos βj are the roots of
Vb ∈ Z[t]. From Qc(−s,−t, ϕ) = Qc(s, t,−ϕ) we deduce

that

a−1
2
∏

i=1

Pi(−ϕ)Pi(ϕ) =
a−1
∏

i=1

Pi(ϕ) ∈ Z[ϕ]. We thus have

R2
a,b,c ∈ Z[ϕ] and so it is for Ra,b,c.

Let s = cos(α + β), t = cos(α − β). Using Theorem 8 and
Formula (4), we get

Qc(s, t, ϕ) = 2c−1

⌊
c
2
⌋

∏

k=1

E 2kπ
n

(s, t).

Let us consider Pα,β,γ =
1

sin2 γ
E2γ(s+ϕ, t+ϕ). For γ 6= π

2
,

Pα,β,γ is

ϕ2 + 2ϕ cosα cosβ +
(cos2 α− cos2 γ)(cos2 β − cos2 γ)

sin2 γ

and

P
α,β,

π
2
= ϕ+ cosα cosβ.

We therefore obtain

Qc(cos(α+ β), cos(α− β), ϕ) = K

⌊
c
2
⌋

∏

k=1

P
α,β,

kπ
c

(ϕ)

with K = 2c−1
c
∏

k=1

2 sin kπ
c

= c2c−1. We get therefore

Ra,b,c(ϕ) = K
1
2
(a−1)(b−1)

⌊
c
2
⌋

∏

k=1

a−1
2
∏

i=1

b−1
∏

j=1

P iπ
a

,
jπ
b

,
kπ
c

(ϕ).

We have written Ra,b,c as the product of second or first-
degree polynomials in Q(cos π

a
, cos π

b
, cos π

c
).

5. COMPUTING THE CRITICAL VALUES
The goal is to get compute the real roots of Ra,b,c to get

the diagram of C(a, b, c, ϕ) (we basically need sample points
for R−Z(Ra,b,c)). As Ra,b,c factorizes as a product of poly-
nomials Pα,β,γ where α = iπ

a
, β = jπ

b
and γ = kπ

c
.

Our strategy consists in first computing separately the real
roots of each Pα,β,γ and then combining these roots to get
those of Ra,b,c. A straightforward approach would be to use
interval arithmetic to approximate the various trigonometric
expressions, but this will fail when Ra,b,c has multiple roots.

5.1 Real roots of Pα,β,γ

Let α = iπ
a
, β = jπ

b
and γ = kπ

c
with 1 ≤ i ≤ a−1

2
, 1 ≤

j ≤ b − 1, 1 ≤ k ≤ ⌊ c−1
2

⌋. We obtain a1 ≤ cosα ≤ a2,
b1 ≤ cos β ≤ b2, c1 ≤ cos γ ≤ c2.

If γ = π
2
, the unique root of P

α,β,
π
2
is − cosα cos β.

If γ 6= π
2
, the discriminant of Pα,β,γ is D = 4 cos2 γ

(

1 −

sin2 α sin2 β

sin2 γ

)

, and it has the same sign as

sin2 γ − sin2 α sin2 β (6)

The knowledge of the sign of D then gives explicit formulas
for the distinct real root(s) of Pα,β,γ .

5.2 Multiplicity of 0

Proposition 12. The multiplicity of ϕ = 0 in Ra,b,c is

a−1
2

((b, c)− 1) + ⌊ b
2
⌋((a, c)− 1).



Proof. We have to examine whenever ϕ = 0 is a root of
Pα,β,γ where α = iπ

a
, β = jπ

b
and γ = kπ

c
. Here a is odd so

cosα 6= 0. Thus, ϕ = 0 is a root of P
α,β,

π
2
if and only if

cosα cos β (7)

is null and when γ 6= π
2
, ϕ = 0 is a root of Pα,β,γ if and only

if the following expression is null

(cos2 α− cos2 γ)(cos2 β − cos2 γ) (8)

• If γ = β = π
2
, ϕ = 0 is a root for i = 1, . . . , a−1

2
.

• If γ 6= π
2
, ϕ = 0 is a root of Pα,β,γ if and only if

sin2 γ = sin2 α or sin2 γ = sin2 β, that is ic = ka or
jc = kb or (b − j)c = kb. The root ϕ = 0 is obtained

for i = λ a
(a,c)

, k = λ c
(a,c)

, λ = 1, . . . , (a,c)−1
2

and it

is double when β = π
2
. It is also obtained for j =

µ b
(b,c)

, k = µ c
(a,c)

, µ = 1, . . . , (b, c) − 1. We obtain

⌊ b
2
⌋((a, c)− 1) + ((b, c)− 1)(a− 1)/2.

We thus obtain the result.

Remark. We find that 0 is not a critical value if and only
if a, b and c are pairwise coprime integers. This result was
first proved by Comstock ([4], 1897), who found the number
of crossing points of the harmonic curve parametrized by
x = Ta(t), y = Tb(t), z = Tc(t).

5.3 Non null multiple roots of Ra,b,c

It may happen that Ra,b,c has multiple root ϕ. Several
cases may occur.

1. Pα,β,γ has a double root ϕ = − cosα cos β.

2. Pα,β,γ1 and Pα,β,γ2 have a common root.

3. Pα1,β1,γ1 and Pα2,β2,γ2 have a common root.

◮ Pα,β,γ has a double root if and only if Disc (Pα,β,γ) = 0,
this discriminant having the same sign as

sin2 γ − sin2 α sin2 β (9)

Proposition 13. Let α = iπ
a
, β = jπ

b
and γ = kπ

c
, where

(i, a) = (j, b) = (k, c) = 1. If a, b, c are pairwise coprime
integers, then Disc (Pα,β,γ) 6= 0.

Proof. We have Q(sin2 α, sin2 β) = Q(cos 2α, cos 2β) =
Q(ζa, ζb)

⋂

R. We have ζbab = ζa and ζaab = ζb. Let u, v
such that au+ bv = 1, we get ζvaζ

u
b = ζab. We thus deduce

Q(ζa, ζb) = Q(ζab). So Q(sin2 α, sin2 β) = Q(cos 2π
ab
).

If sin2 γ = sin2 α sin2 β then cos2 γ ∈ Q(cos 2π
ab

) and

cos 2γ ∈ Q(cos 2π
ab
)
⋂

Q(cos 2π
c
) = Q.

Consequently 2 cos γ ∈ Z, then 2 cos 2α, 2 cos 2β ∈ Z. We
therefore deduce that α, β, γ ∈ {π

6
, π
4
, π
3
, π
2
}. There is no

solution with a, b, c relatively coprime integers.

◮ The resultant of Pα,β,γ1 and Pα,β,γ2 is

4 cos2 γ1 cos
2 γ2

sin2 γ1 sin
2 γ2 − sin2 α sin2 β

sin2 γ1 sin2 γ2

Proposition 14. Let α = iπ
a
, β = jπ

b
and γ1 = k1π

c
,

γ2 = k2π
c

, where (i, a) = (j, b) = 1. If a, b, c are relatively
coprime integers, then Res (Pα,β,γ1 , Pα,β,γ2) 6= 0.

Proof. sin2 γ1 sin
2 γ2 ∈ Q(cos 2π

c
) and following the proof

of Proposition 13, we have cos 2α, cos 2β, cos 2π
c

∈ 1
2
Z when

Res (Pα,β,γ1 , Pα,β,γ2) = 0. We thus have cos 2γ1 and cos 2γ2
in 1

2
Z. and α, β, γ1, γ2 ∈ {π

6
, π
4
, π
3
, π
2
}. It is not possible to

have (c, ab) = 1.

If (c, ab) > 1, it may occur that the resultant is null, which
occurs if and only if the following expression is null

sin2 α sin2 β − sin2 γ1 sin
2 γ2 (10)

For example with α = 13π
35

, β = π
6
, γ1 = 11π

35
, γ2 = 13π

70
. In

this example we have γ1 + γ2 = π
2
and α = 2γ2. It seems

that all the example of double values come from the same
identity.
◮ In case when α1 6= α2 or β1 6= β2, Pα1,β1,γ1 and Pα2,β2,γ2

have a common root if Res ϕ(Pα1,β1,γ1 , Pα2,β2,γ2) = 0. This
resultant can be expanded and its sign is the one of:
(

(cos2 α1 − cos2 γ1)(cos
2 β1 − cos2 γ1) sin

2 γ2 −

(cos2 α2 − cos2 γ2)(cos
2 β2 − cos2 γ2) sin

2 γ1
)2

−
4(cosα1 cos β1 − cosα2 cosβ2) sin

2 γ1 sin
2 γ2×

(

(cos2 α1 − cos2 γ1)(cos
2 β1 − cos2 γ1) cosα2 cos β2 sin

2 γ2 −
(cos2 α2 − cos2 γ2)(cos

2 β2 − cos2 γ2) cosα1 cosβ1 sin
2 γ1

)

.
(11)

5.4 The Algorithm
From the above results, one can see that computing the ex-

act expression of all the real roots of Ra,b,c, requires the com-
putation of the sign of expressions P (f2

j (µi), i = 1 . . . 2, j =
1 . . . 6) where P is a polynomial with rational coefficients,
where fj ∈ {sin, cos} and µi ∈ { i1π

a
, i2π

a
, j1π

b
, j2π

b
, k1π

c
, i2π

c
}.

Precisely, one may need to compute, at some stages, the
signs of 6,7,8,10 and 11.
Isolate and Refine. One straightforward way for testing
the sign of such expressions is to replace the various values
of cos k∗π

m
or sin k∗π

m
by some accurate interval with rational

bounds and to perform interval arithmetic to get an interval
that contains the value (and thus the sign). This may not
give the sign in every situation but this will give a filter that
is easy to perform.

Such intervals can be computed by performing algorithms
based on Descarte’s rule of signs (see for example [18]) on
the used Chebyshev polynomials.

Note that we know in advance which polynomials to con-
sider, thanks to the above study, and note also that algo-
rithms like [18] can easily solve such polynomials for very
high degrees (several thousands) with a large accuracy. The
computation of the required isolating intervals can then be
performed as a pre-processing for the global algorithm.

From now, we denote by Isolate(P ,acc) the function that
isolates the roots of a univariate polynomial P with rational
coefficients by means of intervals with rational bounds for a
given accuracy acc (maximal length of the intervals). This
function provides non overlapping intervals that contains a
unique real root of P (and such that each real root of P is
contained in one of the intervals).

Note also that if more accuracy for some intervals are re-
quired, is is easy, from the isolating intervals provided by the
function Isolate to refine them (decreasing their length) ef-
ficiently (just evaluating P at some points, without running
again the Isolate function with a higher value for acc. We
name by Refine(interval,P ,acc) the function that decreases
the length of the interval interval to get an accuracy ≤ acc
knowing that the interval isolates a real root of P .



FilterSignTest. We first use a filter (named FilterSignTest
in the sequel) which consists in using interval arithmetic
for the evaluations. Given Isolating intervals with rational
bounds that contain the values of the required sin/cos, the
function FilterSignTest straightforwardly evaluates our ex-
pressions. If the resulting interval is [0, 0] or do not contain
0, on can decide the sign of the input, other else, the function
returns FAIL.
FormalNullTest. In case of failure of FilterSignTest, one
has to decide if the input is null or not, which is the goal of
the function FormalNullTest we now describe.

Let m be the smallest common multiple of a, b and c.
According to the definitions of Vn and Tn,

cos kπ
m

= Tk(cos
π
m
), sin kπ

m
= Vk(cos

π
m
) sin π

m
,

2 sin2 kπ
m

= 1− T2k(cos
π
m
), 2 cos2 kπ

m
= 1 + T2k(cos

π
m
).

Also, testing if P (fi(µj), i = 1 . . . 2, j = 1 . . . 6) = 0 is equiv-
alent to testing if the expression P (Fi(cos

π
m
), i = 1 . . . 2, j =

1 . . . 6) = 0 where the Fi’s are Chebyshev polynomials of
first order of maximal index 2 ∗k or of second order of max-
imal index k, where k is the max of {i1, i2, j1, j2, k1, k2}.
Since Mm is the minimal polynomial of cos π

m
, this is equiv-

alent to testing if P (Fi(T ), i = 1 . . . 2, j = 1 . . . 6) = 0 in
Q[T ]/〈Mm(T )〉.
SignTest. Our function first performs the FilterSignTest.
If it returns an interval with bounds of same sign, then the
sign of the tested expression is the sign of the two bounds
of the interval. Otherwise, we run the FormalNullTest. If
this test returns 0 then the expression is null. Otherwise,
we decrease the lengths of the intervals that represent the
values of cos kπ

m
, sin kπ

m
by calling the function Refine until

the FilterSignTest do not FAIL (the fact that the sign of the
expression to be tested is known not to be 0 ensures that
this process will end).
The global algorithm. We proceed in four steps :

(0) We isolate the roots of some Chebyshev polynomials
using the Isolate black-box with an arbitrary accuracy.

(1) We compute separately and symbolically the roots of
the Pα,β,γ : the formulas used depends on the sign of some
elements that belong to Q(cos π

a
, cos π

b
, cos π

c
) (expressions

6,7 and 8 ).
(2) We then take the union of these symbolic expressions

and remove the duplicate roots, which remains to deciding
if the difference of two elements of Q(cos π

a
, cos π

b
, cos π

c
) is

null or not (expressions 10 and 11).
(3) We then use interval arithmetic to evaluate the formal

expressions obtained at step (2) which are simple expressions
depending the roots which were isolated at step (0). Since
step (2) ensures that the roots are all distinct, there exists
an accuracy for the isolation intervals so that the evaluation
of all these formal expressions give disjoint intervals. When
the current accuracy is not sufficient, we refine the intervals
we got at step (0) using the Refine black box and perform
again the step (3).

From the these disjoint intervals with rational bounds, we
straightforwardly get the sample points we need.

6. KNOTS DIAGRAMS
We shall study the diagram of the curve C(a, b, c, ϕ), that

is to say the plane projection C(a, b) onto the (x, y)-plane
and the nature (under/over) of the crossings over the double
points of C(a, b). There are two cases of crossing: the right

Figure 4: The right twist and the left twist

twist and the left twist (see [15] and Figure 4)) In [12], we
showed that the nature of the crossing over the double point
Aα,β corresponding to parameters (t = cosα+β, s = cosα−
β), α = iπ

a
, β = jπ

b
is given by the sign of

D(s, t, ϕ) = Qc(s, t, ϕ)Tb−a(s, t, ϕ)

= (−1)i+jQc(s, t, ϕ) sin
ibπ
a

sin jbπ
b

= (−1)i+jQc(s, t, ϕ)(−1)ib÷a(−1)ja÷b.

D(s, t, ϕ) > 0 if and only if the crossing is a right twist.

Note that crossing points of the Chebyshev curve C(a, b) :
x = Ta(t), y = Tb(t) lie on the (b−1) vertical lines T ′

b(x) = 0
and on the (a−1) horizontal lines T ′

a(y) = 0. We can there-
fore represent the knot diagram of C(a, b, c, r) by a billiard
knot (see [10]), which is a pure combinatoric objet. As an ex-
ample, consider the knots 52 = C(4, 5, 7, 0), 52 = C(5, 6, 7, 0),
41 = C(3, 5, 7, 0). We can represent their diagrams by the

following billiard knots: When a = 3 or a = 4, the knot is

rational and is classified by its Schubert fraction that we de-
duce easily form its diagram (see [11, 12]). When b ≥ a ≥ 5,
the knot might be rational (for example C(5, 6, 7, 0)) but the
problem of classification is much more difficult. Neverthe-
less, the knowledge of the diagrams allows the computation
of invariants like the Conway, Alexander and Jones polyno-
mials (see [15]).

Computing the knots diagram
Let ϕ ∈ R. ϕ may be a rational number r ∈ Q−Za,b,c or an
algebraic number given by a polynomial whom it is a root
and an isolating interval. The main step is the computation
of the crossing nature at the double point Aα,β , where α =
iπ
a
, β = jπ

b
. There are two cases to consider.

1. We know the roots ϕ1 ≤ · · · ≤ ϕm of Qc(s, t, ϕ).
If ϕ < ϕ1 then n = 0 otherwise let n = max{k, ϕ >
ϕk}. We have sign

(

Qc(s, t, ϕ)
)

= (−1)n.

2. We do not know the roots of Qc(s, t, ϕ).



We compute Qc(s, t, ϕ) using the recurrence formula:

Q0 = 0, Q1 = 1, Q2 = 2S + 4ϕ,
Q3 = −4T + 12ϕS + 4S2 + 12ϕ2 − 3.

Qn+4 = 2 (S + 2ϕ) (Qn+3 +Qn+1)
−2

(

2ϕ2 + 2 T + 2ϕS + 1
)

Qn+2 −Qn.

where S = s+ t = 2 cosα cos β and T = st = cos2 α+
cos2 β−1 (see [12]). We work formally inQ[u, v]/〈M,N〉
whereM,N are the minimal polynomials of u = cosα,
v = cos β.

The sign of the crossing is (−1)i+j+ib÷a+ja÷bQc(s, t, ϕ).

7. EXPERIMENTS
In [12], we gave parametrizations of every rational knot

as C(3, b, c, ϕ) and C(4, b, c, ϕ) where (b, c) were minimal for
the lexicographic order (c ≤ 300). For 6 knots we knew
the minimal b and that c > 300. With the methods we
developed here, we know now that these knots admit the
following minimal Chebyshev parametrizations.

95 = C(3, 13, 326, 1/85), 103 = C(4, 13, 348, 1/138),
1030 = C(4, 13, 306, 1/738), 1033 = C(4, 13, 856, 1/328),
1036 = C(3, 14, 385, 1/146), 1039 = C(3, 14, 373, 1/182).

R3,14,385 has degree 4992. It has 2883 real roots. All are
simple roots except 0 that is of multiplicity 6.

R4,13,856 has degree 15390 and 9246 real roots (0 has mul-
tiplicity 18). We get 2050 non trivial knots, 83 of them are
distinct, and 63 have less than 10 crossings.

Outside the intrinsic combinatorial aspects of the problem,
the complexity of our algorithm essentially depends on the
FormalNullTest. In the worst case d = abc and degMd =
1
2
(a − 1)(b − 1)(c − 1), when a, b, c are prime integers and

the most difficult computation consists in deciding if the
expression 11 is null or not which is equivalent to testing if
a univariate polynomial of degree 4 ∗d is null modulo Md or
not.

These computations can be speed up a lot since they can
be performed modulo a prime integer : all the considered
polynomials have a power of two as leading coefficient and
we just need to test if one polynomial is null modulo another
one.

In this challenging experiments, we never had to run the
FormalNullTest, the FilterSignTest being always sufficient,
thanks to the filters given by propositions 13 and 14 and to
a good (experimental) choice initial choice of accuracy when
computing the prerequisites running the Isolate algorithm.

The main difference with the algorithm described in [12]
and the computation of Ra,b,c as a polynomial of degree
1
2
(a − 1)(b − 1)(c − 1), is that it came as a resultant of a

polynomial of degree (c − 1) in (X,ϕ) and a polynomial of
degree 1

2
(a − 1)(b − 1) in X with coefficients in a unique

field extension. The example described in this section can
be considered as the extremal case, in terms of degree, to be
solved using methods from the state of the art when running
[12] while it can be solved in few minutes with the method
proposed in this article.

8. CONCLUSION
The method we developed in this paper allows us to com-

pute Chebyshev knot diagrams for high values of a, b and c.
Our experience with small a and b shows that the difficult

cases (multiple roots of Ra,b,c we found were predictable).
There are certainly some specific reasons connected with
arithmetic properties and the structure of cyclic extensions.
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