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Packing and Hausdorff measures of stable trees.

Introduction

Stable trees are particular instances of Lévy trees that form a class of random compact metric spaces introduced by Le Gall and Le Jan in [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF] as the genealogy of Continuous State Branching Processes (CSBP for short). The class of stable trees contains Aldous's continuum random tree that corresponds to the Brownian case (see [START_REF] Aldous | The continuum random tree I[END_REF][START_REF] Aldous | The continuum random tree III[END_REF]). Stable trees (and more generally Lévy trees) are the scaling limit of Galton-Watson trees (see [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] Chapter 2 and [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF]). Various geometric and distributional properties of Lévy trees (and of stable trees, consequently) have been studied in [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] and in Weill [START_REF] Weill | Regenerative real trees[END_REF]. An alternative construction of Lévy trees is discussed in [START_REF] Duquesne | Growth of Lévy trees[END_REF]. Stable trees have been also studied in connection with fragmentation processes: see Miermont [START_REF] Miermont | Self-similar fragmentations derived from the stable tree I: splitting at heights[END_REF][START_REF] Miermont | Self-similar fragmentations derived from the stable tree II: splitting at nodes[END_REF], Haas and Miermont [START_REF] Haas | The genealogy of self-similar fragmentations with negative index as a continuum random tree[END_REF], Goldschmidt and Haas [START_REF] Goldschmidt | Behavior near the extinction time in self-similar fragmentation I: the stable case[END_REF] for the stable cases and see Abraham and Delmas [START_REF] Abraham | Fragmentation associated to Lévy processes using snake[END_REF] for related models concerning more general Lévy trees.

Fractal properties of stable trees have been discussed in [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] and [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF]: Hausdorff and packing dimensions of stable trees are computed in [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] and the exact Hausdorff measure of Aldous' continuum random tree is given in [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF]. The same paper contains partial results for the non-Brownian stable trees that suggest there is no exact Hausdorff measure in these cases. In this paper we prove there is no exact packing measure for the level sets of stable trees (including the Brownian case) and we also prove that there is no exact Hausdorff measure with regularly varying gauge function for the non-Brownian stable trees and their level sets.

Before stating the main results of the paper, let us recall the definition of stable CSBPs and the definition of stable trees that represent the genealogy of stable CSBPs. CSBPs are time-and space-continuous analogues of Galton-Watson Markov chains. They have been introduced by Jirina [START_REF] Jirina | Stochastic branching processes with continous state-space[END_REF] and Lamperti [START_REF] Lamperti | Continuous-state branching processes[END_REF] as the [0, ∞]-valued Feller processes that are absorbed in states {0} and {∞} and whose kernel semi-group (p t (x, dy); x ∈ [0, ∞], t ∈ [0, ∞)) enjoys the branching property: p t (x, •) * p t (x ′ , •) = p t (x + x ′ , •), for every x, x ′ ∈ [0, ∞] and every t ∈ [0, ∞). As pointed out in Lamperti [START_REF] Lamperti | Continuous-state branching processes[END_REF], CSBPs are timechanged spectrally positive Lévy processes. Namely, let Y = (Y t , t ≥ 0) be a Lévy process starting at 0 that is defined on a probability space (Ω, F , P) and that has no positive jump. Let x ∈ (0, ∞). Set A t = inf{s ≥ 0 : s 0 du/(Y u + x) > t} for any t ≥ 0, and T x = inf{s ≥ 0 : Y s = -x}, with the convention that inf ∅ = ∞. Next set Z t = X At∧Tx if A t ∧ T x is finite and set Z t = ∞ if not. Then, Z = (Z t , t ≥ 0) is a CSBP with initial state x (see Helland [START_REF] Helland | Continuity of a class of random time transformations[END_REF] for a proof in the conservative cases). Recall that the distribution of Y is characterized by its Laplace exponent ψ given by E[exp(-λY t )] = exp(tψ(λ)), t, λ ≥ 0 (see Bertoin [START_REF] Bertoin | Lévy Processes[END_REF] Chapter 7). Consequently, the law of the CSBP Z is also characterised by ψ and it is called its branching mechanism.

We shall restrict to γ-stable CSBPs for which ψ(λ) = λ γ , λ ≥ 0, where γ ∈ [START_REF] Abraham | Fragmentation associated to Lévy processes using snake[END_REF][START_REF] Aldous | The continuum random tree I[END_REF]. The case γ = 2 shall be refered as to the Brownian case (and the corresponding CSBP is the Feller diffusion) and the cases 1 < γ < 2 shall be refered as to the non-Brownian stable cases. Let Z be a γ-stable CSBP defined on (Ω, F , P). As a consequence of a result due to Silverstein [START_REF] Silverstein | A new approach to local times[END_REF], the kernel semigroup of Z is characterised as follows: for any λ, s, t ≥ 0, one has E[exp(-λZ t+s )|Z s ] = exp(-Z s u(t, λ)), where u(t, λ) is the unique nonnegative solution of ∂u(t, λ)/∂t = -u(t, λ) γ and u(0, λ) = λ. This ordinary differential equation can be explicitly solved as follows.

u(t, λ) = (γ -1)t + 1 λ γ-1 -1 γ-1 , t, λ ≥ 0 . (1) 
It is easy to deduce from this formula that γ-stable CSBPs get almost surely extinct in finite time with probability one: P(∃t ≥ 0 : Z t = 0) = 1. We refer to Bingham [START_REF] Bingham | Continuous branching processes and spectral positivity[END_REF] for more details on CSBPs.

Lévy trees have been introduced by Le Gall and Le Jan in [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF] via a coding function called the height process whose definition is recalled in Section 2.2. Let us briefly recall the formalism discussed in [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] where Lévy trees are viewed as random variables taking values in the space of all compact rooted R-trees. Informally, a R-tree is a metric space (T , d) such that for any two points σ and σ ′ in T there is a unique arc with endpoints σ and σ ′ and this arc is isometric to a compact interval of the real line. A rooted R-tree is a R-tree with a distinguished point that we denote by ρ and that we call the root. We say that two rooted R-trees are equivalent if there is a root-preserving isometry that maps one onto the other. Instead of considering all compact rooted R-trees, we introduce the set T of equivalence classes of compact rooted R-trees. Evans, Pitman and Winter in [START_REF] Evans | Rayleigh processes, real trees, and root growth with re-grafting[END_REF] noticed that T equipped with the Gromov-Hausdorff distance [START_REF] Gromov | Metric Structures for Riemannian and non-Riemannian Spaces[END_REF], is a Polish space (see Section 2.2 for more details).

With any stable exponent γ ∈ (1, 2] one can associate a sigma-finite measure Θ γ on T called the "law" of the γ-stable tree. Although Θ γ is an infinite measure, one can prove the following: Define Γ(T ) = sup σ∈T d(ρ, σ) that is the total height of T . Then, for any a ∈ (0, ∞), one has Θ γ (Γ(T ) > a) = ((γ -1)a) -1 γ-1

Stable trees enjoy the so-called branching property, that obviously holds true for Galton-Watson trees. More precisely, for every a > 0, under the probability measure Θ γ ( • | Γ(T ) > a) and conditionally given the part of T below level a, the subtrees above level a are distributed as the atoms of a Poisson point measure whose intensity is a random multiple of Θ γ , and the random factor is the total mass of the a-local time measure that is defined below (see Section 2.2 for a precise definition). It is important to mention that Weill in [START_REF] Weill | Regenerative real trees[END_REF] proves that the branching property characterizes Lévy trees, and therefore stable trees.

We now define Θ γ by an approximation with Galton-Watson trees as follows. Let ξ be a probability distribution on the set of nonnegative integers N. We first assume that k≥0 kξ(k) = 1 and that ξ is in the domain of attraction of a γ-stable distribution. More precisely, let Y 1 be a random variable such that log E[exp(-λY 1 )] = λ γ , for any λ ∈ [0, ∞). Let (J k , k ≥ 0) be an i.i.d. sequence of r.v. with law ξ. We assume there exists an increasing sequence (a p , p ≥ 0) of positive integers such that (a p ) -1 (J 1 + • • • + J pp) converges in distribution to Y 1 . Denote by τ a Galton-Watson tree with offspring distribution ξ that can be viewed as a random rooted R-tree (τ , δ, ρ) by affecting length 1 to each edge. Thus, (τ , 1 p δ, ρ) is the tree τ whose edges are rescaled by a factor 1/p and we simply denote it by 1 p τ . Then, for any a ∈ (0, ∞), the law of

1 p τ under P( • | 1 p Γ(τ ) > a) converge weakly in T to the probability distribution Θ γ ( • | Γ(T ) > a)
, when p goes to ∞. This result is Theorem 4.1 [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF].

Let us introduce two important kinds of measures defined on γ-stable trees. Let (T , d, ρ) be a γ-stable tree. For every a > 0, we define the a-level set T (a) of T as the set of points that are at distance a from the root. Namely,

T (a) := σ ∈ T : d(ρ, σ) = a . (2) 
We then define the random measure ℓ a on T (a) in the following way. For every ε > 0, write T ε (a) for the finite subset of T (a) consisting of those vertices that have descendants at level a + ε. Then, Θ γ -a.e. for every bounded continuous function f on T , we have

ℓ a , f = lim ε↓0 ((γ -1)ε) 1 γ-1 σ∈Tε(a) f (σ). (3) 
The measure ℓ a is a finite measure on T (a) that is called the a-local time measure of T . We refer to [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] Section 4.2 for the construction and the main properties of the local time measures (ℓ a , a ≥ 0) (see also Section 2.2 for more details). Theorem 4.3 [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] ensures we can choose a modification of the local time measures (ℓ a , a ≥ 0) in such a way that a → ℓ a is Θ γ -a.e. cadlag for the weak topology on the space of finite measures on T . We next define the mass measure m on the tree T by

m = ∞ 0 da ℓ a . (4) 
The topological support of m is T . Note that the definitions of the local time measures and of the mass measure only involve the metric properties of T . Let us mention that γ-stable trees enjoy the following scaling property: For any c ∈ (0, ∞), the "law" of (T , c d, ρ) under Θ γ is c 1/(γ-1) Θ γ . Then, it is easy to show that for any a, c ∈ (0, ∞) the law of c 1/(γ-1) ℓ a/c under Θ γ is the law of ℓ a under c 1/(γ-1) Θ γ (here, ℓ b stands for the total mass of the b-local time measure). Similarly, the law of c γ/(γ-1) m under Θ γ is the law of m under c 1/(γ-1) Θ γ . Since ℓ a and m are in some sense the most spread out measures on respectively T (a) and T , these scaling properties give a heuristic explanation for the following results that concern the fractal dimensions of stable tree (see [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] for a proof): For any a ∈ (0, ∞), Θ γ -a.e. on {T (a) = ∅} the Hausdorf and the packing dimensions of T (a) are equal to 1/(γ -1) and Θ γ -a.e. the Hausdorf and the packing dimensions of T are equal to γ/(γ -1).

In this paper we discuss finer results concerning possible exact Hausdorff and packing measures for stable tree and their level sets. We first state a result concerning the exact packing measure for level sets. To that end, let us briefly recall the definition of packing measures. Packing measures have been introduced by Taylor and Tricot in [START_REF] Taylor | Packing measure and its evaluation for a brownian path[END_REF]. Though their construction is done in Euclidian spaces, it easily extends to metric spaces and more specifically to γ-stable trees. More precisely, for any σ ∈ T and any r ∈ [0, ∞), let us denote by B(σ, r) (resp. B(σ, r)) the closed (resp. open) ball of T with center σ and radius r. Let A ⊂ T and ε ∈ (0, ∞). A ε-packing of A is a countable collection of pairwise disjoint closed balls B(x n , r n ), n ≥ 0, such that x n ∈ A and r n ≤ ε. We restrict our attention to packing measures associated with a regular gauge function in the following sense: A function g : (0, r 0 ) → (0, ∞) is a regular gauge function if it is continuous, non decreasing, if lim 0+ g = 0 and if there exists a constrant C ∈ (1, ∞) such that ∃ C > 1 : g(2r) ≤ Cg(r) , r ∈ (0, r 0 /2).
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Such a property shall be refered as to a C-doubling condition. We then set

P * g (A) = lim ε↓0 sup n≥0 g(r n ); ( B(x n , r n ), n ≥ 0) ε -packing of A (6) 
that is the g-packing pre-measure of A and we define the g-packing outer measure of A as

P g (A) = inf n≥0 P * g (E n ); A ⊂ n≥0 E n . (7) 
As in Euclidian spaces, P g is a Borel regular metric outer measure (see Section 2.1 for more details). The following theorem shows that the level sets of stable trees have no exact packing measure, even in the Brownian case.

Theorem 1.1 Let γ ∈ (1, 2] and let us consider a γ-stable tree (T , d, ρ) under its excursion measure Θ γ . Let g : (0, 1) → (0, ∞) be any continuous function such that

lim r→0 r -1 γ-1 g(r) = 0 . ( 8 
) (i)If n≥1 2 n γ-1 g(2 -n ) γ
< ∞, then for any a ∈ (0, ∞), Θ γ -a.e. on {T (a) = ∅} and for ℓ a -almost all σ, we have

lim inf n→∞ ℓ a (B(σ, 2 -n )) g(2 -n ) = ∞ . ( 9 
)
Moreover, if g is a regular gauge function, then P g (T (a) ) = 0, Θ γ -a.e.

(ii) If n≥1 2 n γ-1 g(2 -n ) γ = ∞
, then for any a ∈ (0, ∞), Θ γ -a.e. and for ℓ a -almost all σ, we have

lim inf n→∞ ℓ a (B(σ, 2 -n )) g(2 -n ) = 0 . ( 10 
)
Moreover, if g is a regular gauge function, then P g (T (a) ) = ∞, Θ γ -a.e. on the event {T (a) = ∅}.

This result is not surprising, even in the Brownian case, for it has been proved in [START_REF] Gall | The packing measure of the support of super-Brownian motion[END_REF] that super-Brownian motion with quadratic branching mechanism has no exact packing measure in the super-critical dimension d ≥ 3 and [START_REF] Gall | The packing measure of the support of super-Brownian motion[END_REF] provides a test that is closed in some sense to the test given in the previous theorem.

Remark 1.1 For any p ≥ 1, define recursively the functions log p by log 1 = log and log p+1 = log p • log. The previous theorem provides the following family of critical gauge functions for packing measures of level sets of a γ-stable tree: For any θ ∈ R and any p ≥ 1, set

g p,θ (r) = r 1 γ-1 (log(1/r) . . . log p (1/r)) 1 γ (log p+1 (1/r)) θ .
If γθ > 1, then for any a ∈ (0, ∞), one has P g p,θ (T (a) ) = 0, Θ γ -a.e. and if γθ ≤ 1, then for any a ∈ (0, ∞), one has P g p,θ (T (a) ) = ∞, Θ γ -a.e. on the event {T (a) = ∅}.

Remark 1.2 Although the level sets of stable trees have no exact packing measure, the whole γ-stable tree has an exact packing measure as shown in the preprint [START_REF] Duquesne | The exact packing measure of Lévy trees[END_REF]. More precisely, for any r ∈ (0, 1/e), we set

g(r) = r γ γ-1 (loglog 1/r) 1 γ-1 .
Then, there exists c 0 ∈ (0, ∞) such that P g = c 0 m, Θ γ -a.e.

Let us briefly recall the definition of Hausdorff measures on a γ-stable tree (T , d). Let us fix a regular gauge function g. For any subset E ⊂ T , we set diam(E) = sup x,y∈E d(x, y) that is the diameter of E. For any A ⊂ T , the g-Hausdorff measure of A is then given by

H g (A) = lim ε↓0 inf n≥0 g(diam(E n )); diam(E n ) < ε and A ⊂ n≥0 E n . (11) 
As in the Euclidian case, H g is a metric and Borel regular outer measure on T . In the Brownian case Theorem 1.3 in [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF] asserts that there exists a constant c 1 ∈ (0, ∞) such that for any a ∈ (0, ∞), Θ 2 -a.e. we have H g 1 ( • ∩ T (a) ) = c 1 ℓ a , where g 1 (r) = r log log 1/r. The non-Brownian stable cases are quite different as shown by the following proposition that asserts that in these cases, there is no exact upper-density for local time measures. Let us mention that the first point of the theorem is proved in Proposition 5.2 [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF].

Proposition 1.2 Let γ ∈ (1, 2) and let (T , d, ρ) be γ-stable tree under its excursion measure Θ γ . Let g : (0, 1) → (0, ∞) be a continuous function such that

lim r→0 g(r) = 0 and lim r→0 r -1 γ-1 g(r) = ∞ . ( 12 
) (i)(Prop. 5.2 [13]) If n≥1 2 -n g(2 -n ) γ-1 < ∞, then for any a ∈ (0, ∞), Θ γ -a.e. for ℓ a -almost all σ, we have lim sup n→∞ ℓ a (B(σ, 2 -n )) g(2 -n ) = 0 . ( 13 
)
Moreover, if g is a regular gauge function, then H g (T (a) ) = ∞, Θ γ -a.e. on the event {T (a) = ∅}.

(ii) If n≥1 2 -n g(2 -n ) γ-1 = ∞,
then for any a ∈ (0, ∞), Θ γ -a.e. on the event {T (a) = ∅} and for ℓ a -almost all σ, we have

lim sup n→∞ ℓ a (B(σ, 2 -n )) g(2 -n ) = ∞ . (14) 
Recall that a function g is regularly varying at 0 with exponent q iff for any c ∈ (0, ∞), g(cr)/g(r) tend to c q when r goes to 0.

Theorem 1.3 Let γ ∈ (1, 2
) and let (T , d, ρ) be γ-stable tree under its excursion measure Θ γ . Then the level sets of T have no exact Hausdorff measure with continuous regularly varying gauge function. More precisely, let g : (0, 1) → (0, ∞) be a regular gauge function that is regularly varying at 0.

-Either for any a ∈ (0, ∞), we Θ γ -a.e. have H g (T (a)) = ∞, on {T (a) = ∅}, -or for any a ∈ (0, ∞), we Θ γ -a.e. have H g (T (a)) = 0.

Remark 1.3 Proposition 1.2 and Theorem 1.3 suggest that if n≥1 2 -n g(2 -n ) γ-1 = ∞ ,
then, H g (T (a)) = 0, Θ γ -a.e. as conjectured in [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF]. The best result in this direction is Theorem 1.5 in [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF] that shows that H g (T (a)) = 0, Θ γ -a.e. if g is of the following form:

g(r) = r -1 γ-1 (log 1 r ) 1 γ-1 (loglog 1 r ) u ,
with u < 0.

Let us discuss now the Hausdorff properties of whole stable trees. In the Brownian case, Theorem 1.1 in [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF] asserts that there exists a constant c 2 ∈ (0, ∞) such that Θ 2a.e. we have H g 2 = c 2 m, where g 2 (r) = r 2 log log 1/r. In the non-Brownian stable cases, the situation is quite different as shown by following proposition that asserts that in these cases, the mass measure has no exact upper-density. Let us mention that the first point of the theorem is proved in Proposition 5.1 [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF].

Proposition 1.4 Let γ ∈ (1, 2) and let (T , d, ρ) be γ-stable tree under its excursion measure Θ γ . Let g : (0, 1) → (0, ∞) be a function such that

lim r→0 g(r) = 0 and lim r→0 r -γ γ-1 g(r) = ∞ . ( 15 
)
(i)(Prop. 5.1 [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF])

If n≥1 2 -γ n g(2 -n ) γ-1 < ∞, then Θ γ -a.
e. for m-almost all σ, we have

lim sup n→∞ m(B(σ, 2 -n )) g(2 -n ) = 0 . ( 16 
)
Moreover, if g is a regular gauge function, then H g (T ) = ∞, Θ γ -a.e.

(ii)

If n≥1 2 -γ n g(2 -n ) γ-1 = ∞, then Θ γ -a.
e. for m-almost all σ, we have

lim sup n→∞ m(B(σ, 2 -n )) g(2 -n ) = ∞ . ( 17 
)
The previous proposition is completed by the following result.

Theorem 1.5 Let γ ∈ (1, 2) and let (T , d, ρ) be γ-stable tree under its excursion measure Θ γ . Then T has no exact Hausdorff measure with continuous regularly varying gauge function. More precisely, let g : (0, 1) → (0, ∞) be a regular gauge function that is regularly varying at 0.

-Either H g (T ) = ∞, Θ γ -a.e.
-or H g (T ) = 0, Θ γ -a.e.

Remark 1.4 Proposition 1.4 and Theorem 1.5 suggest that if

n≥1 2 -γ n g(2 -n ) γ-1 = ∞
then, H g (T ) = 0, Θ γ -a.e. as conjectured in [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF]. The best result in this direction is Theorem 1.4 in [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF] that show that H g (T ) = 0, Θ γ -a.e. if g is of the following form:

g(r) = r -γ γ-1 (log 1 r ) 1 γ-1 (loglog 1 r ) u , with u < 0.
The paper is organised as follows. In Section 2.1, we recall the basic comparison results on Hausdorff and packing measures in metric spaces. In Section 2.2, we introduce the γ-stable height processes and the γ-stable trees, and we recall a key decomposition of stable trees according the ancestral line of a randomly chosen vertex that is used to prove the upper-and lower-density results for the local time measures and the mass measure. In Section 2.3, we state various estimates that are used in the proof sections. Section 3 is devoted to the proofs of the main results of the paper.

2 Notation, definitions and preliminary results. Though standard in Euclidian spaces (see Taylor and Tricot [34]), packing measures are less usual in Polish spaces that is why we briefly recall few results in this section. As already mentioned, we restrict our attention to continuous gauge functions that satisfy a doubling condition: Let us fix C > 1. We denote by G C the set of such regular gauge functions that satisfy a C-doubling condition and we set G = C>1 G C that is the set of the gauge functions we shall consider. Let us mention that, instead of regular gauge functions, some authors speak of blanketed Hausdorff functions after Larman [START_REF] Larman | A new theory of dimension[END_REF].

Let (T , d) be an uncountable complete and separable metric space. Let us fix g ∈ G C . Recall from [START_REF] Bingham | Encyclopaedia of mathematics and its applications[END_REF] the definition of the g-packing measure P g and from [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] the definition of the g-Hausdorff measure H g . We shall use the following comparison results. Lemma 2.1 (Taylor and Tricot [34], Edgar [START_REF] Edgar | Centered densities and fractal measures[END_REF]). Let g ∈ G C . Then, for any finite Borel measure µ on T and for any Borel subset A of T , the following holds true.

(i)If lim inf r→0 µ(B(σ,r)) g(r)
≤ 1, for any σ ∈ A, then P g (A) ≥ C -2 µ(A).

(ii)If lim inf r→0 µ(B(σ,r)) g(r)
≥ 1, for any σ ∈ A, then P g (A) ≤ µ(A).

(iii)If lim sup r→0 µ(B(σ,r)) g(r)

≤ 1, for any σ ∈ A, then H g (A) ≥ C -1 µ(A).

(iv)If lim sup r→0 µ(B(σ,r)) g(r)

≥ 1, for any σ ∈ A, then H g (A) ≤ Cµ(A).

Points (iii) and (iv) in Euclidian spaces are stated in Lemmas 2 and 3 in Rogers and Taylor [START_REF] Rogers | Functions continuous and singular with respect to Hausdorff measures[END_REF]. Points (i) and (ii) in Euclidian spaces can be found in Theorem 5.4 in Taylor and Tricot [START_REF] Taylor | Packing measure and its evaluation for a brownian path[END_REF]. We refer to Edgar [START_REF] Edgar | Centered densities and fractal measures[END_REF] for a proof of Lemma 2.1 for general metric spaces: For (i) and (ii), see Theorem 4.15 [START_REF] Edgar | Centered densities and fractal measures[END_REF] in combination with Proposition 4.24 [START_REF] Edgar | Centered densities and fractal measures[END_REF]. For (iii) and (iv), see Theorem 5.9 [START_REF] Edgar | Centered densities and fractal measures[END_REF].

Remark 2.1 Our definition of g-packing measures (that is Edgar's definition in [START_REF] Edgar | Centered densities and fractal measures[END_REF] Section 5) is slightly different from that of Taylor and Tricot in [START_REF] Taylor | Packing measure and its evaluation for a brownian path[END_REF] who use open balls packing and g(diam(•)) as set function. However, since the gauge function is continuous and since it satisfies a doubling condition, the corresponding packing measure is equivalent to ours. It only change the bounds in (iii) and (iv) in a obvious way.

Height processes and Lévy trees.

In this section we recall (mostly from [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] and [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF]) various results concerning stable height processes and stable trees that are used in Sections 2.3 and in the proof sections.

The height process. We fix γ ∈ [START_REF] Abraham | Fragmentation associated to Lévy processes using snake[END_REF][START_REF] Aldous | The continuum random tree I[END_REF]. It is convenient to work on the canonical space D([0, ∞), R) of cadlag paths equipped with Skorohod distance and the corresponding Borel sigma field. We denote by X = (X t , t ≥ 0) the canonical process and by P the canonical distribution of a γ-stable and spectrally positive Lévy process with Laplace exponent ψ(λ) = λ γ . Namely, E[exp(-λX t )] = exp(tλ γ ), for any λ, t ≥ 0. Note that X t is integrable and that E[X t ] = 0, which easily implies that X oscillates when t goes to infinity. P-a.s. the path X has infinite variation (for more details, see Bertoin [START_REF] Bertoin | Lévy Processes[END_REF] Chapters VII and VIII ).

In the more general context of spectrally positive Lévy processes, it has been proved in Le Gall and Le Jan [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF] and in [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] Chapter 1 that there exists a continuous process H = (H t , t ≥ 0) such that for any t ≥ 0, the following limit holds in P-probability.

H t := lim ε→0 1 ε t 0 1 {I s t <Xs<I s t +ε} ds , (18) 
where I s t stands for inf s≤r≤t X r . The process H = (H t , t ≥ 0) is called the γ-stable height process. As we see below, H provides a way to explore the genealogy of a γ-stable CSBP. We refer to Le Gall and Le Jan [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF] for a careful explanation of [START_REF] Evans | Rayleigh processes, real trees, and root growth with re-grafting[END_REF] in the discrete setting.

For any c ∈ (0, ∞), it is easy to prove that (c -1/γ X ct , t ≥ 0) has the same law as X and we easily derive from ( 18) that, under P, one has

c -γ-1 γ H ct , t ≥ 0 (law) = (H t , t ≥ 0) . (19) 
Excursions of the height process. In the Brownian case γ = 2, X is distributed as a Brownian motion and [START_REF] Evans | Rayleigh processes, real trees, and root growth with re-grafting[END_REF] easily implies that H is proportional to X -I, which is distributed as a reflected Brownian motion. In more general cases, H is neither a Markov process nor a martingale. However it is possible to develop an excursion theory for H as follows. Recall that X has infinite variation sample paths. Basic results on fluctuation theory (see [START_REF] Bertoin | Lévy Processes[END_REF] Chapter VI.1 and VII.1) entail that X -I is a strong Markov process in [0, ∞) and that 0 is regular for (0, ∞) and recurrent with repect to this Markov process. Moreover, -I is a local time at 0 for X -I (see Theorem VII.1 [START_REF] Bertoin | Lévy Processes[END_REF]). Denote by N γ the corresponding excursion measure of X -I above 0 and denote by (a j , b j ), j ∈ I, the excursion intervals of X -I above 0 and by X j = X (a j +•)∧b j -I a j , j ∈ I, the corresponding excursions. Then, the point measure j∈I δ (- [START_REF] Evans | Rayleigh processes, real trees, and root growth with re-grafting[END_REF] implies that the value of H t only depends of the excursion of X -I straddling t and that j∈I (a j , b j ) = {t ≥ 0 : H t > 0}. This allows to define H under N γ (see the comments in Section 3.2 [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] for more details). We use the slightly abusive notation N γ (dH) for the "distribution" of H under the excursion measure N γ of X -I above 0. For any j ∈ I, we set H j = H (a j +•)∧b j . Then the H j s are the excursions of H above 0, and the point measure

Ia j ,X j ) is a Poisson point measure on [0, ∞) × D([0, ∞), R) with intensity dx ⊗ N γ (dX). Now, observe that
j∈I δ (-Ia j ,H j ) (20) is distributed under P as Poisson point measure on [0, ∞) × D([0, ∞), R) with intensity dx ⊗ N γ (dH). Set ζ := inf{t > 0 : X t = 0}
that is the total duration of X under N γ . Since X does not drift to ∞, the lifetime ζ is finite N γ -a.e. Moreover, N γ -a.e. H 0 = H ζ = 0 and H t > 0 for any t ∈ (0, ζ). We easily deduce from [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] the following scaling property for H under N γ : For any c ∈ (0, ∞) and for any measurable function

F : D([0, ∞), R) → [0, ∞), one has c 1 γ N γ F (c -γ-1 γ H ct , t ≥ 0) = N γ F (H t , t ≥ 0) . ( 21 
)
Local times of the height process. We recall here from [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] Chapter 1 Section 1.3 the following result: There exists a jointly measurable process (L a s , a, s ≥ 0) such that P-a.s. for any a ≥ 0, s → L a s is continuous and non-decreasing and such that ∀t, a ≥ 0, lim

ε→0 E sup 0≤s≤t 1 ε s 0 dr1 {a<Hr≤a+ε} -L a s = 0 . ( 22 
)
The process (L a s , s ≥ 0) is called the a-local time of H. Recall that I stands for the infinimum process of X. Then, the following properties of local-times of H hold true: First observe that L 0 t = -I t , t ≥ 0. Second, the support of the random Stieltjes measure dL a

• is contained in the closed set {t ≥ 0 : H t = a}. Moreover, a general version of the Ray-Knight theorem for H asserts the following: For any x ≥ 0, set T x = inf{t ≥ 0 : X t = -x}. Then, the process (L a Tx ; a ≥ 0) is a distributed as a γ-stable CSBP with initial state x. We refer to Le Gall and Le Jan [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF] Theorem 4.2 or to [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] Theorem 1.4.1 for a proof of this general version of Ray-Knight Theorem.

The CSBP (L a Tx ; a ≥ 0) admits a cadlag modification that is denoted in the same way to simplify notation. An easy argument deduced from the approximation [START_REF] Haas | The genealogy of self-similar fragmentations with negative index as a continuum random tree[END_REF] entails that a 0 L b Tx db = Tx 0 1 {Ht≤a} dt. This remark combined with an elementary formula on CSBPs (whose proof can be found in Le Gall [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF]) entails that

E exp -µL a Tx -λ Tx 0 1 {Ht≤a} dt = exp -xκ a (λ, µ) , a, λ, µ ≥ 0, (23) 
where κ a (λ, µ) is the unique solution of the following differential equation

κ 0 (λ, µ) = λ and ∂κ a ∂a (λ, µ) = λ -κ a (λ, µ) γ , a, λ, µ ≥ 0. (24) 
The function κ plays an important role and we shall turn back to it further.

It is possible to define the local times of H under the excursion measure N γ as follows.

For any b > 0, let us set v(b) = N γ (supt∈[0,ζ] H t > b).
The continuity of H and the Poisson decomposition [START_REF] Goldschmidt | Behavior near the extinction time in self-similar fragmentation I: the stable case[END_REF] obviously imply that v(b) < ∞, for any b > 0. It is moreover clear that v is non-increasing and lim ∞ v = 0. For every a ∈ (0, ∞), we then define a continuous increasing process (L a t , t ∈ [0, ζ]), such that for every b ∈ (0, ∞) and for any t ≥ 0, one has

lim ε→0 N γ 1 {sup H>b} sup 0≤s≤t∧ζ 1 ε s 0 dr1 {a-ε<Hr≤a} -L a s = 0. (25) 
See [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] Section 1.3 for more details. The process (L a t , t ∈ [0, ζ]) is the a-local time of the height process. Note that N γ -a.e. the support of the Stieltjes measure dL a

• is contained in {t : H t = a}.

Recall notation (a j , b j ), j ∈ I, for the excursion intervals of H above 0 and set ζ j = b ja j that is the the total duration of the excursion H j . One easily deduces from ( 25) that µL a Tx + λ Tx 0

1 {Ht≤a} dt = µ(L a b j -L a a j ) + λ ζ j 0 1 {H j t ≤a} dt
, where the sum in the right member is taken over the set indices j ∈ I such that -I a j ≤ x. Therefore, [START_REF] Goldschmidt | Behavior near the extinction time in self-similar fragmentation I: the stable case[END_REF] entails that

N γ 1 -e -µL a ζ -λ a 0 1 {H t ≤a} dt = κ a (λ, µ) , a, λ, µ, ≥ 0. ( 26 
)
We refer to [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] Chapter 1 for more details. By taking λ = 0 in the previous display, we get

N γ (1 -exp(-µL a ζ ) ) = u(a, µ)
, where u is given by ( 1). This easily entails

∀a ≥ 0 , N γ (L a ζ ) = 1 . (27) 
Let us also mention from [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] the following formula

∀a > 0 , v(a) = N γ sup H t ≥ a = N γ L a ζ = 0 = (γ -1)a -1 γ-1 . (28) 
Lévy trees. We first define R-trees (or real trees) that are metric spaces that generalise graph-trees. Definition 2.1 Let (T, δ) be a metric space. It is a real tree iff the following holds true for any σ 1 , σ 1 ∈ T .

(a)There is a unique isometry

f σ 1 ,σ 2 from [0, δ(σ 1 , σ 2 )] into T such that f σ 1 ,σ 2 (0) = σ 1 and f σ 1 ,σ 2 (δ(σ 1 , σ 2 )) = σ 2 . We denote by [[σ 1 , σ 2 ]] the geodesic joining σ 1 to σ 2 . Namely, [[σ 1 , σ 2 ]] := f σ 1 ,σ 2 ([0, δ(σ 1 , σ 2 )]) (b)If j is a continuous injective map from [0, 1] into T , such that j(0) = σ 1 and j(1) = σ 2 , then we have j([0, 1]) = [[σ 1 , σ 2 ]].
A rooted R-tree is an R-tree (T, δ) with a distinguished point r called the root.

Among metric spaces, R-trees are characterized by the so-called four points inequality that is expressed as follows. Let (T, δ) be a connected metric space. Then, (T, δ) is a R-tree iff for any σ 1 , σ 2 , σ 3 , σ 4 ∈ T , we have

δ(σ 1 , σ 2 ) + δ(σ 3 , σ 4 ) ≤ δ(σ 1 , σ 3 ) + δ(σ 2 , σ 4 ) ∨ δ(σ 1 , σ 4 ) + δ(σ 2 , σ 3 ) . ( 29 
)
We refer to Evans [START_REF] Evans | Probability and real trees[END_REF] or to Dress, Moulton and Terhalle [START_REF] Dress | T-theory: an overview[END_REF] for a detailed account on this property. The set of all compact rooted R-trees can be equipped with the pointed Gromov-Hausdorff distance in the following way. Let (T 1 , δ 1 , r 1 ) and (T 2 , δ 2 , r 1 ) be two compact pointed metric spaces. They can be compared one with each other thanks to the pointed Gromov-Hausdorff distance defined by

d GH (T 1 , T 2 ) = inf δ H j 1 (T 1 ), j 2 (T 2 ) ∨ δ j 1 (r 1 ), j 2 (r 2 ) .
Here the infimum is taken over all (j 1 , j 2 , (E, δ)), where (E, δ) is a metric space, where j 1 : T 1 → E and j 2 : T 2 → E are isometrical embeddings and where δ H stands for the usual Hausdorff metric on compact subsets of (E, δ). Obviously d GH (T 1 , T 2 ) only depends on the isometry classes of T 1 and T 2 that map r 1 to r 2 . In [START_REF] Gromov | Metric Structures for Riemannian and non-Riemannian Spaces[END_REF], Gromov proves that d GH is a metric on the set of the equivalence classes of pointed compact metric spaces that makes it a complete and separable metric space. Let us denote by T, the set of all equivalence classes of rooted compact real-trees. Evans, Pitman and Winter observed in [START_REF] Evans | Rayleigh processes, real trees, and root growth with re-grafting[END_REF] that T is d GH -closed. Therefore, (T, d GH ) is a complete separable metric space (see Theorem 2 of [START_REF] Evans | Rayleigh processes, real trees, and root growth with re-grafting[END_REF]).

Let us briefly recall how R-trees can be obtained via continuous functions. We consider a continuous function h : [0, ∞) → R such that there exists a ∈ [0, ∞) such that h is constant on [a, ∞). We denote by ζ h the least of such real numbers a and we view ζ h as the lifetime of h. Such a continuous function is said to be a coding function. To avoid trivialities, we also assume that h is not constant. Then, for every s, t ≥ 0, we set

b h (s, t) = inf r∈[s∧t,s∨t] h(r) and d h (s, t) = h(s) + h(t) -2b h (s, t). ( 30 
)
Clearly 

d h (s, t) = d h (t,
0 , t 1 ∈ [0, ζ h ] such that h(t 0 ) = h(t 1 ) = min h, we have p h (t 0 ) = p h (t 1 )
; so it makes sense to define the root of (T h , d h ) by ρ h = p h (t 0 ). We shall refer to the rooted compact R-tree (T h , d h , ρ h ) as to the tree coded by h.

We next define the γ-stable tree as the tree coded by the γ-stable height process (H t , 0 ≤ t ≤ ζ) under the excursion measure N γ and to simplify notation we set

(T H , d H , ρ H ) = (T , d, ρ) . We also set p = p H : [0, ζ] → T . Note that ρ = p(0). Since H ζ = 0 and since H t > 0, for any t ∈ (0, ζ), ζ is the only time t ∈ [0, ζ] distinct from 0 such that p(t) = ρ.
Let us denote by T the root-preserving isometry class of (T , d, ρ). It is proved in [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] that T is measurable in (T, d GH ). We then define Θ γ as the "distribution" of T under N γ . Remark 2.2 We have stated the main results of the paper under Θ γ because it is more natural and because Θ γ has an intrinsic characterization as shown by Weill in [START_REF] Weill | Regenerative real trees[END_REF]. However, each time we make explicit computations with stable trees, we have to work with random isometry classes of compact real trees, which causes technical problems (mostly measurability problems). To avoid these unnecessary complications during the intermediate steps of the proofs, we prefer to work with the specific compact rooted real tree (T , d, ρ) coded by the γ-stable height process H under N γ rather than directly work under Θ γ . So, we prove the results of the paper for (T , d, ρ) under N γ , which easily implies the same results under Θ γ .

The local time measures and the mass measure on γ-stable trees. As above mentioned, we now work with the γ-stable tree (T , d, ρ) coded by H under the excursion measure N γ . A certain number of definitions and ideas can be extended from graph-trees to real trees such as the degree of a vertex. Namely, for any σ ∈ T , we denote by n(σ) the (possibly infinite) number of connected components of the open set T \{σ}. We say that n(σ) is the degree of σ. Let σ be a vertex distinct from the root. If n(σ) = 1, then we say that σ is a leaf of T ; if n(σ) = 2, then we say that σ is a simple point; if n(σ) ≥ 3, then we say that σ is a branching point of T . If n(σ) = ∞, we then speak of σ as an infinite branching point. We denote by Lf (T ) the set leaves of T , we denote by Br(T ) the set of branching points of T and we denote by Sk(T ) = T \Lf (T ) the skeleton of T . Note that the closure of the skeleton is the whole tree Sk(T ) = T . Let us mention that H is not constant on every non-empty open subinterval of [0, ζ], N γ -a.e. This easily entails the following characterisation of leaves in terms of the height process: For any t ∈ (0, ζ),

p(t) ∈ Lf (T ) ⇐⇒ ∀ε > 0 , inf s∈[t-ε,t]
H s and inf

s∈[t,t+ε] H s < H t . (31) 
Let us now define the the mass measure and the local time measures on T : The mass measure m is the measure induced by the Lebesgue measure ℓ on [0, ζ] via p. Namely, for any Borel set A of T , we have m(A) = ℓ(p -1 (A)). We can prove that the mass measure is diffuse and its topological support is clearly T . Moreover m is supported by the set of leaves:

m Sk(T ) = 0 . ( 32 
)
For any a ∈ (0, ∞), the a-local time measure ℓ a is the measure induced by dL a • via p. Namely,

ℓ a , f = ζ 0 dL a s f (p(s)) ,
for any positive measurable application f on T . Let us mention that the topological support of ℓ a is included in the a-level set T (a) = {σ ∈ T : d(ρ, σ) = a} and note from the definition that the total mass ℓ a of ℓ a is L a ζ . Moreover, observe that T (a) is not empty iff sup H ≥ a. Then, (28) can be rewritten as follows.

∀ a > 0, v(a) = N γ T (a) = ∅ = N γ (ℓ a = 0) = (γ -1)a -1 γ-1 . ( 33 
)
As already mentioned, the a-local time measure ℓ a can be defined in a purely metric way by ( 3) and there exists a modification of local time measures (ℓ a , a ≥ 0) such that a → ℓ a is N γ -a.e. cadlag for the weak topology on the space of finite measures on T . Except in the Brownian case, a → ℓ a is not continuous and Theorem 4.7 [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] asserts that there is a one-to-one correspondence between the times of discontinuity of a → ℓ a , the infinite branching points of T and the jumps of the excursion X of the underlying γ-stable Lévy process. More precisely, a is a time-discontinuity of a → ℓ a iff there exists a unique infinite branching point σ a ∈ T (a) such that ℓ a-= ℓ a + λ a δ σa . Moreover, a point σ ∈ T is an infinite branching point iff there exists t ∈ [0, ζ] such that p(t) = σ and ∆X t > 0; if furthermore σ = σ a , then λ a = ∆X t . Now, observe that if σ ∈ T (a) is an atom of ℓ a , the definition (3) of ℓ a entails that σ is an infinite branching point and that a is a time-discontinuity of a → ℓ a . Thus, σ = σ a . Recall that the Ray-Knight theorem for H asserts that a → ℓ a is distributed as a CSBP (under its excursion measure), which has no fixed time-discontinuity. This (roughly) explains the following.

∀ a > 0, N γ -a.e. ℓ a is diffuse.

We refer to [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] for more details.

The branching property for H. We now describe the distribution of excursions of the height process above level b (or equivalently of the corresponding stable tree above level b). ) is isometric to the tree coded by H b,j .

We then define Hb s = H τ b s , where for every s ≥ 0, we have set

τ b s = inf t ≥ 0 : t 0 ds 1 {Hs≤b} > s .
The process Hb = ( Hb s , s ≥ 0) is the height process below b and the rooted compact R-tree ( B(ρ, b), d, ρ) is isometric to the tree coded by Hb . Let G b be the sigma-field generated by Hb augmented by the N γ -negligible sets. From the approximation [START_REF] Lamperti | Continuous-state branching processes[END_REF], it follows that L b

ζ is measurable with respect to G b . We next use the following notation

N (b) γ = N γ ( • | sup H > b) (35) 
that is a probability measure and we define the following point measure on

[0, ∞) × D([0, ∞), R): M b = j∈I b δ (L b g b j ,H b,j ) (36) 
The branching property at level b then asserts that under

N (b) γ , conditionally given G b , M b is distributed as a Poisson point measure with intensity 1 [0,L b ζ ] (x)dx ⊗ N γ (dH).
We refer to Proposition 1.3.1 in [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] or the proof of Proposition 4.2.3 [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF]. Let us mention that it is possible to rewrite intrinsically the branching property under Θ γ : we refer to Theorem 4.2 [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] for more details.

Spinal decomposition at a random time. We recall another decomposition of the height process (and therefore of the corresponding tree) that is proved in [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF] Chapter 2 and in [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] under a more explicit form (see also [START_REF] Duquesne | On the re-rooting invariance property of Lévy trees[END_REF] for further applications). This decomposition is used in a crucial way in the proof of the upper-and lower-density results for the local times measures and the mass measure. Let us introduce an auxiliary probability space (Ω, F , P) that is assumed to be rich enough to carry the various independent random variables we shall need.

Let (U t , t ≥ 0) be a subordinator defined on (Ω, F , P) with initial value U 0 = 0 and with Laplace exponent ψ ′ (λ) = γλ γ-1 , λ ≥ 0. Let

N * = j∈I * δ (r * j , H * j ) (37)
be a random point measure on [0, ∞) × D([0, ∞), R) defined on (Ω, F , P) such that a regular version of the law of N * conditionally given U is that of a Poisson point measure with intensity dU r ⊗ N γ (dH). Here dU r stands for the (random) Stieltjes measure associated with the non-decreasing path r → U r . For any a ∈ (0, ∞), we also set

N * a = j∈I * 1 [0,a] (r * j ) δ (r * j , H * j ) . ( 38 
)
We next consider the γ-height process H under its excursion measure N γ . For any t ≥ 0, we set Ĥt := (H (t-s) + , s ≥ 0) (here, ( •) + stands for the positive part function) and Ȟt := (H (t+s)∧ζ , s ≥ 0). We also define the random point measure

N t on [0, ∞) × D([0, ∞), R) by N t = N ( Ĥt ) + N ( Ȟt ) := j∈Jt δ (r t j ,H * t,j ) , (39) 
where for any continuous function h : [0, ∞) → [0, ∞) with compact support, the point measure N (h) is defined as follows: Set h(t) = inf [0,t] h and denote by (g i , d i ), i ∈ I(h) the excursion intervals of hh away from 0 that are the connected component of the open set {t ≥ 0 :

h(t) -h(t) > 0}. For any i ∈ I(h), set h i (s) = ((h -h)((g i + s) ∧ d i ) , s ≥ 0).
We then define N (h) as the point measure on [0, ∞) × D([0, ∞), R) given by

N (h) = i∈I(h) δ (h(g i ),h i ) .
Lemma 3.4 in [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] asserts the following. For any a and for any nonnegative measurable function F on the set of positive measures on [0, ∞) × D([0, ∞), R) (equipped with the topology of the vague convergence), one has

N γ ζ 0 dL a t F N t = E [F (N * a )] . (40) 
We shall refer to this identity as to the spinal decomposition of H at a random time. Recall notation (r t j , H * t,j ), j ∈ J t from (39). The specific coding of T by H entails that for any j ∈ J there exists a unique j ′ ∈ J t such that d(ρ, σj ) = r t j ′ and such that the rooted compact R-tree (Tj , d, σj ) is isometric to the tree coded by H * t,j ′ We now compute m( B(p(t), r)) in terms of N t as follows. First, recall from (30) the definition of b(s, t) and d(s, t). Note that if H s = b(s, t) with s = t, then p(s) ∈ Sk(T ) by [START_REF] Miermont | Self-similar fragmentations derived from the stable tree II: splitting at nodes[END_REF]. Let us fix a radius r in (0, H t ). Then, [START_REF] Rogers | Functions continuous and singular with respect to Hausdorff measures[END_REF] 

Let us briefly interpret this decomposition in terms of

entails m B(p(t), r) = ζ 0 1 {d(s,t)≤r} ds = ζ 0 1 {0<Hs-b(s,t)≤r-Ht+b(s,t)} . The definition of (N ( Ĥt ), N ( Ȟt )) entails m B(p(t), r) = j∈Jt 1 [Ht-r , Ht] (r t j ) • ζ t j 0 1 {H * t,j s ≤r-Ht+r t j } ds, (41) 
where ζ t j stands for the lifetime of the path H * t,j . For any a ∈ (0, ∞) and for any r ∈ [0, a], we next set

M * r (a) = j∈I * 1 [a-r,a] (r * j ) • ζ * j 0 1 {H * j s ≤r-a+r * j } ds , (42) 
where ζ * j stands for the lifetime of the path H * j . Then, (M * r (a), r ∈ [0, a]) is a cadlag increasing process defined on (Ω, F , P). The spinal decomposition (40) implies that for any a ∈ (0, ∞) and for any bounded measurable F : D([0, a], R) → R, we have

N γ ζ 0 dL a t F m( B(p(t), r)) r∈[0,a] = E F (M * r (a)) r∈[0,a] .
Since the a-local time measure is the image measure of dL a • by the canonical projection p, we get

N γ T ℓ a (dσ) F m( B(σ, r)) r∈[0,a] = E F (M * r (a)) r∈[0,a] . ( 43 
)
This identity is used in the proof of Proposition 1.4.

Let us discuss a similar formula for the a-local time measure: Let t ∈ [0, ζ] be such that H t = a. Namely p(t) ∈ T (a). We fix r ∈ (0, 2a). Then observe that for any s ∈ [0, ζ] such that H s = a, we have d(s, t) ≤ r iff b(s, t) ≥ a -(r/2). We then get

ℓ a B(p(t), r) = ℓ a ({p(t)}) + j∈Jt 1 [a-r 2 , a) (r t j ) L a-r t j ζ t j (t, j) , (44) 
where L a-r t j ζ t j (t, j) stands for the local time at level ar t j of the excursion H * t,j . Next, for any a ≥ 0 and any r ∈ (0, 2a), we set

L * r (a) = j∈I * 1 [a-r 2 , a] (r * j ) L a-r * j ζ * j ds , (45) 
where, L a-r * j ζ * j stands for the local time at level ar * j of the excursion H * j . Now [START_REF] Taylor | Packing measure and its evaluation for a brownian path[END_REF] entails that ℓ a ({p(t)}) = 0, N γ -a.e. and (44) combined with the spinal decomposition (40) implies that for any a ∈ (0, ∞) and for any bounded measurable

F : D([0, a], R) → R, we have N γ T ℓ a (dσ) F ℓ a ( B(σ, r)) r∈[0,2a] = E F (L * r (a)) r∈[0,2a] (46) 
This identity is used to prove Theorem 1.1 and Proposition 1.2.

Estimates.

Let us fix a > 0. Recall the definition of the a-local time measure ℓ a (whose total mass ℓ a is equal to L a ζ ) and recall that

N γ 1 -e -λ ℓ a = N γ 1 -e -λL a ζ = u(a, λ) = (γ -1)a + 1 λ γ-1 -1 γ-1 . ( 47 
)
Next recall from [START_REF] Weill | Regenerative real trees[END_REF] the definition of N (a) γ . We easily deduce from ( 28) and (47) that

N (a) γ exp(-λ ℓ a ) = 1 - (γ -1)aλ γ-1 1 + (γ -1)aλ γ-1 1 γ-1 . (48) 
Consequently,

a -1 γ-1 ℓ a under N (a) γ (law) = ℓ 1 under N (1) γ . ( 49 
)
Lemma 2.2 For any γ ∈ (1, 2], we have

N (1) γ ℓ 1 ≤ x ∼ x→0+ x γ-1 (γ -1) 2 Γ(γ)
.

Proof: From (48), we get

N (1) γ exp(-λ ℓ 1 ) ∼ λ→∞ λ -(γ-1) (γ -1) 2 .
The desired result is then a direct consequence of a Tauberian theorem due to Feller: see [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] Chapter XIII § 5 (see also [START_REF] Bingham | Encyclopaedia of mathematics and its applications[END_REF] Theorem 1.7.1', p. 38 ).

Recall the notation N * and the definition of L * r (a) from (45). For any

0 ≤ r ′ ≤ r ≤ 2a, we set Λ r ′ ,r (a) = j∈I * 1 [a-r 2 , a-r′ 2 ) (r * j ) L a-r * j ζ * j . ( 50 
) Observe that ∀ 0 ≤ r ′ ≤ r ≤ 2a , L * r (a) = Λ r ′ ,r (a) + L * r ′ (a). (51) 
Lemma 2.3 Let (r n , n ≥ 0) be a sequence such that 0 < r n+1 ≤ r n ≤ 2a and lim n r n = 0. Then, the random variables (Λ r n+1 ,rn (a), n ≥ 0) are independent and

L * r 0 (a) = n≥0 Λ r n+1 ,rn (a) . (52) 
Proof: First, note that (52) is a direct consequence of the definitions of Λ r ′ ,r (a) and of L * r (a). Let us prove the independence property. Recall that conditionally given U, N * is a Poisson point process with intensity dU t ⊗ N γ (dH). Elementary properties of Poisson point processes and the definition of the Λ r n+1 ,rn (a)s entail that the random variables (Λ r n+1 ,rn (a), n ≥ 0) are independent conditionally given U. Moreover, the conditional distribution of Λ r n+1 ,rn (a) given U only involves the increments of U on [r n+1 , r n ], which easily implies the desired result since U is a subordinator.

Remark 2.3

The previous lemma and (51) imply that for any 0 ≤ r ′ ≤ r ≤ 2a, one has L * r (a) ≥ Λ r ′ ,r (a) and that Λ r ′ ,r (a) is independent of L * r ′ (a). Observe also that the process r → L * r (a) has independent increments. Lemma 2.4 For any 0 ≤ r ′ ≤ r ≤ 2a, we have

E exp(-λΛ r ′ ,r (a)) = γ-1 2 r ′ λ γ-1 + 1 γ-1 2 rλ γ-1 + 1 γ γ-1 . ( 53 
)
Consequently, we get

r -1 γ-1 Λ r ′ ,r (a) (law) = Λ r ′ r ,1 (1) 
.

Proof: First observe that the second point is an immediate consequence of the first one. Recall that conditionally given U, N * is distributed as a Poisson point process with intensity dU t ⊗ N γ . Therefore,

E exp -λΛ r ′ ,r (a) | U = exp - [a-r/2,a-r ′ /2 ) dUt Nγ 1 -e -λL a-t ζ . Recall that u(a -t, λ) = N γ 1 -e -λL a-t ζ
, where u is given by ( 1) and recall that U is a subordinator with Laplace exponent λ → γλ γ-1 . Thus,

E exp -λΛ r ′ ,r (a) = exp -γ a-r ′ /2 a-r/2
u(at, λ) γ-1 dt , which entails the desired result thanks to a simple change of variable.

Taking r ′ = 0 in the previous lemma entails the following. Lemma 2.5 For any a ∈ (0, ∞) and for any r ∈ [0, 2a], we have

E exp(-λL * r (a)) = 1 + γ-1 2 rλ γ-1 -γ γ-1 .
Then, r -1/(γ-1) L * r (a) has the same law as L * 1 (1).
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To simplify notation, we set

Z γ := L * 1 (1) and Z ′ γ := Λ 1 2 ,1 . (54) 
Proposition 2.6 We have the following estimates.

• (i) For γ ∈ (1, 2), we have

lim x→∞ x γ-1 P(Z γ ≥ x) = 2 lim x→∞ x γ-1 P(Z ′ γ ≥ x) = γ 2Γ(2 -γ)
.

• (ii) For any γ ∈ (1, 2] we get

lim x→0+ x -γ P(Z γ ≤ x) = 2 γ γ-1 (γ -1) γ γ-1 Γ(1 + γ)
.

Proof: First assume that γ ∈ (1, 2). When λ goes to 0, we have

E e -λZγ = 1 - γ 2 λ γ-1 + o(λ γ-1 ) and E e -λZ ′ γ = 1 - γ 4 λ γ-1 + o(λ γ-1 ) .
A Tauberian theorem due to Bingham and Doney [START_REF] Bingham | Asymptotic properties of super-critical branching processes. I: The Galton-Watson process[END_REF] (see also [START_REF] Bingham | Encyclopaedia of mathematics and its applications[END_REF] Theorem 8.1.6, p. 333 ) implies (i). Let us prove (ii). We have γ ∈ [START_REF] Abraham | Fragmentation associated to Lévy processes using snake[END_REF][START_REF] Aldous | The continuum random tree I[END_REF]. When λ goes to ∞, we get

lim λ→∞ λ γ E e -λZγ = 2 γ γ-1 (γ -1) γ γ-1 .
Then, (ii) is a consequence of a Tauberian theorem due to Feller ([19] Chapter XIII, § 5 ; see also [START_REF] Bingham | Encyclopaedia of mathematics and its applications[END_REF] Theorem 1.7.1', p. 38).

Recall the definition of M * r (a) from (42). For any 0 ≤ r ′ ≤ r ≤ a, we set

Q r ′ ,r (a) = j∈I * 1 [a-r,a-r ′ ) (r * j ) ζ * j 0 1 {H * j s ≤r-a+r * j } . ( 55 
)
Arguing as in Lemma 2.3, we prove the following independence property.

Lemma 2.7 Let (r n , n ≥ 0) be a sequence such that 0 < r n+1 ≤ r n ≤ a and lim n r n = 0. Then, the random variables (Q r n+1 ,rn (a), n ≥ 0) are independent.

Remark 2.4 Note that the increments of r ∈ [0, a] → M * r (a) are not independent. However, for any 0 ≤ r ′ ≤ r ≤ a, we have

M * r (a) -M * r ′ (a) = Q r ′ ,r (a) + j∈I * 1 [a-r ′ , a] (r * j ) ζ * j 0 1 {r ′ -a+r * j <H * j s ≤r-a+r * j } , which first implies that M * r (a) ≥ Q r ′ ,r (a). Moreover, we easily see that Q r ′ ,r (a) is inde- pendent of M * r ′ (a).
Recall the definition of κ a (λ, µ) and recall it satisfies [START_REF] Jirina | Stochastic branching processes with continous state-space[END_REF].

Lemma 2.8 For any a ∈ (0, ∞) and for any r ∈ [0, a], we have

E exp(-λQ r ′ ,r (a)) = 1 - κ r-r ′ (λ, 0) γ λ . ( 56 
) Then, (r -r ′ ) -γ γ-1 Q r ′ ,r (a) (law) = M * 1 (1)
.

Proof: Recall that conditionally given U, N * is distributed as a Poisson point process with intensity dU t ⊗ N γ . Thus,

E exp -λQ r ′ ,r (a) | U = exp - [a-r,a-r ′ ) dU t κ r-a+t (λ, 0) .
Since U is a subordinator with Laplace exponent λ → γλ γ-1 , we get

E e -λQ r ′ ,r (a) = exp -γ a-r ′ a-r κ r-a+t (λ, 0) γ-1 dt = exp -γ r-r ′ 0 κ s (λ, 0) γ-1 ds .
Set y = κ s (λ, 0). Then, ( 24) entails

γ r-r ′ 0 κ s (λ, 0) γ-1 ds = κ r-r ′ (0,λ) 0 γ y γ-1 λ -y γ dy = log λ -log λ -κ r-r ′ (λ, 0) γ ,
which entails the first point of the lemma. Now observe that the scaling property [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] combined with [START_REF] Larman | A new theory of dimension[END_REF] entails that for any a, λ ≥ 0, and any c > 0, one has

κ a (λ, 0) = c 1 γ-1 κ c a (c -γ γ-1 λ, 0) ,
which easily implies the second point of the lemma. Take r ′ = 0 in the previous lemma to get the following lemma. Lemma 2.9 For any a ∈ (0, ∞) and for any r ∈ [0, a], we have

E exp(-λM * r (a)) = 1 - κ r (λ, 0) γ λ .
Then, r -γ/(γ-1) M * r (a) has the same law as M * 1 (1). To simplify notation, let us set Y γ := M * 1 (1).

Proposition 2.10 For any γ ∈ (1, 2), we have

lim x→∞ x γ-1 P(Y γ ≥ x) = 1 Γ(2 -γ)
.

Proof: Recall ( 26), recall that ζ 0 1 {Hs≤a} ds = a 0 L b ζ db and recall that N(L b ζ ) = 1, for any b ∈ (0, ∞) (see [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF]). Thus,

lim λ→0 κ a (λ, 0) λ = N ζ 0 1 {Hs≤a} ds = a 0 N L b ζ db = a . ( 57 
)
Take a = 1 in (57) and use Lemma 2.9 to get

E e -λYγ = 1 -λ γ-1 + o(λ γ-1 )
when λ goes to 0. Since 0 < γ -1 < 1, a Tauberian theorem due to Bingham and Doney [START_REF] Bingham | Asymptotic properties of super-critical branching processes. I: The Galton-Watson process[END_REF] entails the desired result (see also [START_REF] Bingham | Encyclopaedia of mathematics and its applications[END_REF] Theorem 8.1.6, p. 333).

3 Proofs of the main results. Let us fix a ∈ (0, ∞) and let g : (0, 1) → (0, ∞) be such that lim 0+ r -1/(γ-1) g(r) = 0. To simplify notation we set h(r) = r -1/(γ-1) g(r). Lemma 2.5 and Proposition 2.6 (ii) imply that for all sufficiently large n,

P(L * 2 -n (a) ≤ g(2 -n )) = P(Z γ ≤ h(2 -n )) ∼ n→∞ K γ h(2 -n ) γ , (58) 
where K γ is the limit on the right member of Proposition 2.6 (ii). We first prove Theorem 1.1 (i). So we assume

n≥1 h(2 -n ) γ < ∞ . ( 59 
)
Borel-Cantelli and (58) imply P(lim 59) is also satisfied by K.h for arbitrarily large K. Then, (46) implies ) is isometric to the tree coded by H b,j . The total height of T b j is then Γ(T b j ) = sups≥0 H b,j s . For any η > 0, we set

inf n→∞ L * 2 -n (a)/g(2 -n ) ≥ 1) = 1. This easily entails P(lim inf n→∞ L * 2 -n (a)/g(2 -n ) = ∞) = 1, since (
N γ T ℓ a (dσ)1 {lim infn ℓ a (B(σ,2 -n ))/g(2 -n )<∞} = 0 , which entails (9) in Theorem 1.1 (i).
D b,η = {T b j ; i ∈ I b : Γ(T b j ) > η} . Note that D b,η is a finite set. Observe that ℓ a (T b j ) = L a d b j -L a g b j
is the local time at level ab of H b,j , or equivalently the total mass of the local time measure at level ab of T b j . Then, the branching property entails for any x > 0,

N (b) γ T ∈D b,a-b 1 {ℓ a (T )≤x} G b = L b ζ N γ L a-b ζ ≤ x ; sup H > a -b . Recall that L a-b ζ = ℓ a-b .
Then, [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF] and the scaling property (49) imply

N γ L a-b ζ ≤ x ; sup H > a -b = (γ -1)(a-b) -1 γ-1 N (1) γ ℓ 1 ≤ (a-b) -1 γ-1 x . Recall that N γ -a.e. L b ζ = ℓ b = 0, on {sup H ≤ b}. Thus, (27) and (28) entail N γ 
T ∈D b,a-b

1 {ℓ a (T )≤x} = (γ -1)(a-b) -1 γ-1 N (1) γ ℓ 1 ≤ (a-b) -1 γ-1 x . (60) 
For any n ∈ N such that 2 -n < a, we next set

V n = T ∈D a-2 -n ,2 -n g(2.2 -n )1 {ℓ a (T )≤g(2.2 -n )} .
We apply (60) with b = a -2 -n and η = 2 -n , and we use Lemma 2.2 to get

N(V n ) = (γ -1) -1 γ-1 2 n γ-1 g(2.2 -n )N (1) γ ℓ 1 ≤ 2 -1 γ-1 h(2.2 -n ) ≤ K ′ γ h(2.2 -n ) γ ,
where K ′ γ is a positive constant that only depends on γ. Therefore, (59) entails

N γ -a.e. lim n→∞ p≥n V p = 0 . (61) 
Let ε ∈ (0, a/2). We assume that T (a) = ∅. Let ( B(σ m , r m ) ; m ≥ 1) be any ε-closed packing of E. Namely, the closed balls B(σ m , r m ) are pairwise disjoints, σ m ∈ E ⊂ T (a) and r m ≤ ε, for any m ≥ 1. Let us fix m ≥ 1. There exists n (that depends on m) such that 2 -n < r m ≤ 2.2 -n . Now observe that T (a) is the union of the sets T ∩ T (a) where T ranges in D a-2 -n-1 ,2 -n-1 . Consequently, there exists T * ∈ D a-2 -n-1 ,2 -n-1 such that σ m ∈ T * ∩ T (a). Denote by σ * , the lowest point in T * . Namely σ * is the point of T * that is the closest to root and σ * ∈ T (a -2 -n-1 ). It is easy to prove that for any σ ∈ T * ∩ T (a), we have

d(σ, σ m ) ≤ d(σ, σ * ) + d(σ, σ * ) = 2.2 -n-1 = 2 -n < r m .
Thus T * ∩ T (a) ⊂ T (a) ∩ B(σ m , r m ). Thus, ℓ a (T * ) ≤ ℓ a ( B(σ m , r m )). Since this holds true for any m ≥ 1, we get

m≥1 g(r m )1 {ℓ a (B(σm,rm))<g(rm)} ≤ n:2 -n <ε V n+1 . (62) 
Now observe that

m≥1 g(r m )1 {ℓ a (B(σm,rm))≥g(rm)} ≤ m≥1 ℓ a (B(σ m , r m )) ≤ ℓ a .
This inequality combined with (62) implies

m≥1 g(r m ) ≤ ℓ a + n:2 -n <ε V n+1 .
Since, this holds true for any ε-closed packing ( B(σ m , r m ) ; m ≥ 1) of E, (61) entails P * g (E) ≤ ℓ a , N γ -a.e. where P * g stands for the g-packing pre-measure, which completes the proof of the lemma since P g (E) ≤ P * g (E), by definition of P g . Lemma 2.1 (ii) implies that P g (T (a)\E) ≤ ℓ a . This inequality combined with Lemma 3.1 entails N γ -a.e. P g (T (a)) = P g (E) + P g (T (a)\E) ≤ 2 ℓ a . This proves that for any regular gauge function g that satisfies (59), we N γ -a.e. have P g (T (a)) ≤ 2 ℓ a . Thus, for any constant K > 0, we have P Kg (T (a)) ≤ 2 ℓ a . Now observe that P Kg (T (a)) = KP g (T (a)), which easily implies P g (T (a)) = 0, N γ -a.e. This completes the proof of Theorem 1.1 (i).

Let us prove Theorem 1.1 (ii). We now assume

n≥1 h(2 -n ) γ = ∞ . (63) 
For any n ≥ 1, set

S n = ε 1 +. . .+ε n , where ε n = 1 {L * 2 -n (a) ≤ g(2 -n )} . Estimates (58) implies that E [S n ] ∼ n→∞ K γ n l=1 h 2 -l γ . ( 64 
) Next observe that E S 2 n = E[S n ] + 2 1≤k<l≤n E [ε k ε l ] . Fix 1 ≤ k < l ≤ n. As noted in Remark 2.3, Λ 2 -l ,2 -k (a) ≤ L * 2 -k (a). Thus, {L * 2 -k (a) ≤ g(2 -k )} ∩ {L * 2 -l (a) ≤ g(2 -l )} ⊂ {Λ 2 -l ,2 -k (a) ≤ g(2 -k )} ∩ {L * 2 -l (a) ≤ g(2 -l )}. Remark 2.3 also asserts that L * 2 -l (a) is independent of Λ 2 -l ,2 -k (a). Thus, E [ε k ε l ] ≤ P Λ 2 -l ,2 -k (a) ≤ g(2 -k ) E [ε l ] ≤ P 2 k γ-1 Λ 2 -l ,2 -k (a) ≤ h(2 -k ) E [ε l ] . (65) 
We give an upper bound of the last probability thanks to the Laplace transform of

2 k γ-1 Λ 2 -l ,2 -k (a)
that is explicitly given in (53) in Lemma 2.4:

E exp(-λ2 k γ-1 Λ 2 -l ,2 -k (a)) = (γ-1) 2 2 -(l-k) λ γ-1 + 1 (γ-1) 2 λ γ-1 + 1 γ γ-1 = 2 -(l-k) + 1 -2 -(l-k) γ-1 2 λ γ-1 + 1 γ γ-1 ≤ 2 1 γ-1 2 -γ γ-1 (l-k) + 1 -2 -(l-k) γ-1 2 λ γ-1 + 1 γ γ-1 ,
by an elementary convex inequality. Set C 1 = 2 1/(γ-1) (2/(γ -1)) γ/(γ-1) . The previous inequality easily entails the following

E exp(-λ2 k γ-1 Λ 2 -l ,2 -k (a)) ≤ C 1 2 -γ γ-1 (l-k) + λ -γ .
We now use Markov inequality to get

P 2 k γ-1 Λ 2 -l ,2 -k (a) ≤ h(2 -k ) ≤ eE exp -2 k γ-1 Λ 2 -l ,2 -k (a)/h(2 -k ) ≤ e C 1 2 -γ γ-1 (l-k) + h(2 -k ) γ . (66) 
Now, (58) implies that there exists C 2 ∈ (0, ∞) that only depends on γ and h such that

h(2 -k ) γ ≤ C 2 E[ε k ],
for any k ≥ 1. Thus, (65) and (66) imply there exists C 3 ∈ (0, ∞) (that only depends on h and γ) such that

E [ε k ε l ] ≤ C 3 2 -γ γ-1 (l-k) E[ε l ] + E[ε k ]E[ε l ] ,
which easily implies

E S 2 n ≤ 1 + C 3 1 -2 -γ γ-1 E [S n ] + C 3 . (E [S n ]) 2 .
By (64) and (63),we get

lim sup n→∞ E [S 2 n ] (E [S n ]) 2 ≤ C 3 and Kochen-Stone's Lemma implies P( n≥1 ε n = ∞) ≥ 1/C 3 > 0. As observed in Remark 2.3, r → L *
r (a) has independent increments. Thus, Kolmogorov's 0-1 law applies and we get P( n≥1 ε n = ∞) = 1. This entails P(lim 63) is also satisfied by c.h for arbitrarily small c > 0. This easily implies

inf n L * 2 -n (a)/g(2 -n ) ≤ 1) = 1. Observe that (
P(lim inf n L * 2 -n (a)/g(2 -n ) = 0) = 1 and (46) entails N γ T ℓ a (dσ)1 {lim infn ℓ a (B(σ,2 -n ))/g(2 -n )>0} = 0 .
This proves [START_REF] Duquesne | The exact packing measure of Lévy trees[END_REF] in Theorem 1.1 (ii). Furthermore, if g is a regular gauge function, then, (10) and Lemma 2.1 (i) entail that N γ -a.e. P g (T (a) ) = ∞, on {T (a) = ∅}, which completes the proof of Theorem 1.1.

Proof of Proposition 1.2.

Fix a > 0 and let g be as in Proposition 1.2. Namely g : (0, 1) → (0, ∞) is such that lim 0+ r -1/(γ-1) g(r) = ∞. To simplify notation we set h(r) = r -1/(γ-1) g(r). Although Proposition 1.2 (i) is already proved in [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF] we provide a brief proof of it: We assume that

n≥1 h(2 -n ) -(γ-1) < ∞ . (67) 
The scaling property stated in Lemma 2.5 and Proposition 2.6 (i) imply that for all sufficiently large n, 1) .

P(L * 2 -n (a) ≥ g(2 -n )) = P(Z γ ≥ h(2 -n )) ∼ n→∞ γ 2Γ(2 -γ) h(2 -n ) -(γ-
Borel-Cantelli entails P(lim sup n→∞ L * 2 -n (a)/g(2 -n ) ≤ 1). Since (67) is satisfied by K.h for arbitrarily large K, we easily get P(lim

sup n→∞ L * 2 -n (a)/g(2 -n ) = 0) = 1 and (46) entails N γ T ℓ a (dσ)1 {lim sup n ℓ a (B(σ,2 -n ))/g(2 -n )>0} = 0 .
This proves (13) in Proposition 1.2 (i). Furthermore, if g is a regular gauge function, then, (13) and Lemma 2.1 (iii) entail that N γ -a.e. H g (T (a) ) = ∞, on {T (a) = ∅}, which completes the proof of Proposition 1.2 (i).

Let us prove [START_REF] Duquesne | On the re-rooting invariance property of Lévy trees[END_REF] in Proposition 1.2 (ii). We now assume

n≥1 h(2 -n ) -(γ-1) = ∞ . ( 68 
) For any n ≥ 1, set ε n = 1 {Λ 2 -n-1 ,2 -n (a) ≥ g(2 -n )}
. The scaling property in Lemma 2.4 and Proposition 2.6 (i) imply 1) .

E[ε n ] ∼ n→∞ γ 4Γ(2 -γ) h(2 -n ) -(γ-
Therefore n≥1 E[ε n ] = ∞.
The independence property stated in Lemma 2.3 shows that the ε n 's are independent. The converse of Borel-Cantelli implies 68) is satisfies by c.h for arbitrarily small c > 0, we easily get P(lim

P( n≥1 ε n = ∞) = 1. As noticed in Remark 2.3, we have ε n ≤ 1 {L * 2 -n (a)≥g(2 -n )} . Consequently, P(lim sup n→∞ L * 2 -n (a)/g(2 -n ) ≥ 1) = 1. Since (
sup n→∞ L * 2 -n (a)/g(2 -n ) = ∞) = 1 and (46) entails N γ T ℓ a (dσ)1 {lim sup n ℓ a (B(σ,2 -n ))/g(2 -n )<∞} = 0 ,
which proves ( 14) in Proposition 1.2 (ii).

Proof of Proposition 1.4.

Let g be as in Proposition 1.4. Namely lim 0+ r -γ/(γ-1) g(r) = ∞. To simplify notation we set h(r) = r -γ/(γ-1) g(r). Although Proposition 1.4 (i) is already proved in [START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF] we provide a brief proof of it. We assume that

n≥1 h(2 -n ) -(γ-1) < ∞ . (69) 
Let us fix a > 0. The scaling property stated in Lemma 2.9 and Proposition 2.10 (i) imply that

P(M * 2 -n (a) ≥ g(2 -n )) = P(Y γ ≥ h(2 -n )) ∼ n→∞ h(2 -n ) -(γ-1) Γ(2 -γ) .
Borel-Cantelli implies P(lim sup n M * 2 -n (a)/g(2 -n ) ≤ 1) = 1. Since (69) is satisfied by K.h for arbitrarily large K, we easily get P(lim sup n→∞ M * 2 -n (a)/g(2 -n ) = 0) = 1. By (43), for any a > 0, we get [START_REF] Edgar | Centered densities and fractal measures[END_REF] in Proposition 1.4. Furthermore, if g is a regular gauge function, then, ( 16) and Lemma 2.1 (iii) imply that H g (T ) = ∞, N γ -a.e. , which completes the proof of Proposition 1.4 (i).

N γ T ℓ a (dσ)1 {lim sup n m(B(σ,2 -n ))/g(2 -n )>0} = 0 . Since m = ∞ 0 ℓ a , this entails
Let us prove [START_REF] Evans | Probability and real trees[END_REF] in Proposition 1.4 (ii). We assume

n≥1 h(2 -n ) -(γ-1) = ∞ . ( 70 
)
For any n ≥ 1, we set ε n = 1 {Q 2 -n-1 ,2 -n (a) ≥ g(2 -n )} . The scaling property stated in Lemma 2.8 and Proposition 2.10 (i) entail

E[ε n ] = P Y γ ≥ 2 -γ γ-1 h(2 -n ) ∼ n→∞ 2 γ h(2 -n ) -(γ-1) Γ(2 -γ) , Thus, n≥1 E[ε n ] = ∞.
The independence property of Lemma 2.7 (i) implies that the ε n 's are independent. Thus, P( n≥1 ε n = ∞) = 1, by the converse of Borel-Cantelli. Then, Remark 2.4 entails 70) is satisfied by c.h for arbitrarily small c > 0, we easily get P(lim

ε n ≤ 1 {M * 2 -n (a)≥g(2 -n )} , for any n ≥ 1. Thus, P(lim sup n→∞ M * 2 -n (a)/g(2 -n ) ≥ 1) = 1. Since (
sup n→∞ M * 2 -n (a)/g(2 -n ) = ∞) = 1
. By (43), for any a > 0, we get We fix γ ∈ (1, 2) and we consider the γ-stable tree (T , d, ρ) coded by the height process (H t , t ≥ 0) under its excursion measure N γ . Recall that p stands for the canonical projection from [0, ζ] onto T = [0, ζ]/ ∼. Recall that ρ = p(0) stands for the root of T . We extend p on [0, ∞) by setting p(t) = ρ, for any t ≥ ζ. Let 0 ≤ s ≤ t and set T s,t = p([s, t]), equipped with the distance d on T . We set ρ s,t = p(r 0 ) where r 0 ∈ [s, t] is such that H r 0 = inf r∈[s,t] H r . Observe that (T s,t , d, ρ s,t ) is a compact rooted real tree that is isometric to the compact real tree coded by the process H s,t := (H (s+r)∧t , r ≥ 0).

N γ T ℓ a (dσ)1 {lim sup n m(B(σ,2 -n ))/g(2 -n )<∞} = 0 . Since m = ∞ 0 ℓ a ,
Let g : (0, 1) → (0, ∞) be regular gauge function. We denote by H g the g-Hausdorff measure on (T , d). Recall that T is compact and note that any subset of T is contained in a closed ball with the same diameter. In the definition of H g (T s,t ), we may restrict our attention to finite coverings with closed balls with center of the form p(r), with r ∈ Q ∩ [s, t] and with rational radius. This entails that H g (T s,t ) is a measurable function of H s,t . Similarly, for any a ≥ 0, H g (T (a) ∩ T s,t ) is a measurable function of H s,t .

Let us fix a > 0. Recall the definition of Ha that is the height process below a and recall that G a is the sigma-field generated by Ha augmented with the N γ -negligible sets. We denote by G a-the sigma-field generated by b<a G b . It is easy to observe that N γa.e. Ha is the limit in D([0, ∞), R) of Hb when b goes to a. Then, G a-= G a . Next observe that the rooted real tree coded by Ha is isometric to B(ρ, a) = {σ ∈ T : d(ρ, σ) ≤ a}. Thus, H g ( B(ρ, a) ) and H g (T (a) ) are G a -measurable [0, ∞]-valued random variables.

Proof of Theorem 1.3. Let g(r) = r q s(r) where q is nonnegative and where s is slowly varying at 0. Recall that we furthermore assume that g is a regular gauge function. Recall that N γ -a.e. on {T (a) = ∅}, the Hausdorff dimension of T (a) is 1/(γ -1). Thus, if q > 1/(γ -1), then H g (T (a) ) = 0, N γ -a.e. and if q < 1/(γ -1), then H g (T (a) ) = ∞, N γ -a.e. on {T (a) = ∅}. We then restrict our attention to the case q = 1/(γ -1).

The general idea of the proof of Theorem 1.3 is the following: if for a certain a ∈ (0, ∞), we have N γ ( 0 < H g (T (a)) < ∞) > 0, then we first prove that 0 < H g (T (a)) < ∞, N γa.e. on {T (a) = ∅}. We next observe that H g (• ∩ {T (a) = ∅}) behaves like ℓ a with respect to the scaling property and the branching property and we prove it entails that H g (• ∩ {T (a) = ∅}) = c 0 ℓ a , where c 0 ∈ (0, ∞). Finally, we get a contradiction thanks to the test stated in Proposition 1.2.

The proof is in several steps. We first discuss how a → H g (T (a)) ∈ [0, ∞] behaves with respect to the branching property. We agree on the convention exp(-∞) = 0. Then, for any a, λ ∈ (0, ∞), it makes sense to set ũ(a, λ) = N γ 1e -λHg (T (a) ) , Recall from [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF] . By monotone convergence, we get lim n ũn (ab, λ) = ũ(ab, λ). Then, observe that lim n ↑ L n = H g (T (a) ). Thus, the conditional dominated convergence theorem implies that for any λ ∈ (0, ∞), we N (b) γa.s. have

N (b) γ e -λHg (T (a) ) G b = e -L b ζ ũ(a-b,λ) , (71) Since 
L b ζ = 0, N γ -a.e. on {sup H ≤ b}, this entails ũ(a, λ) = N γ 1 -e -L b ζ ũ(a-b,λ) = u(b, ũ(a -b, λ) ) . (72) 
Note that Theorem 1.3 is implied by the two following claims.

(Claim 1) If there exists a 0 ∈ (0, ∞) such that N γ (H g (T (a 0 ) ) = ∞) > 0, then for any a ∈ (0, ∞), N γ -a.e. H g (T (a)) = ∞, on {T (a) = ∅}.

(Claim 2) For any a ∈ (0, ∞), N γ (0 < H g (T (a)) < ∞) = 0.
to set φ(λ) = limb↓0 ↑ ũ(b, λ) ∈ (0, ∞]. Then (72) entails ũ(a, λ) = u(a, φ(λ)), for any a, λ > 0, with the convention: u(a, ∞) = v(a). Since N γ (H g (T (a)) = ∞) = 0, (76) and the definition of ũ imply ũ(a, λ) < v(a). Consequently, φ(λ) ∈ (0, ∞), for any λ > 0. Next, observe that u satisfies the same scaling property (75) as ũ. Therefore, c 1/(γ-1) φ(λ) = φ(c 1/(γ-1) λ), for any c, λ > 0. Namely, φ(λ) = c 0 λ, where c 0 := φ(1) ∈ (0, ∞) and we have proved that

ũ(b, λ) = u(b, c 0 λ) , λ, b > 0 . (77) 
We next prove that for any a > b > 0, and for any λ ≥ 0,

N (a) γ -a.s. N (a) γ e -λHg (T (a) ) G b = N (a) γ e -λc 0 L a ζ G b . ( 78 
)
Proof of (78): by the branching property, we easily get

N (b) γ e -λc 0 L a ζ G b = e -L b ζ u(a-b,c 0 λ) . Therefore, N (b) γ e -λHg(T (a) ) G b = N (b) γ e -λc 0 L a ζ G b .
Then, we get

N (b) γ (1 {Hg (T (a) )=0} |G b ) = N (b) γ (1 {L a ζ =0} |G b ) = e -L b ζ v(a-b)
, by letting λ go to ∞. Thus, N (b) γ -a.s.

N (b) γ 1 {Hg (T (a) )>0} e -λHg(T (a) ) G b = N (b) γ 1 {L a ζ >0} e -λc 0 L a ζ G b .
By ( 28) and ( 76 

We now prove the following. Consequently, there exists a Borel subset A ⊂ D([0, ∞), R) whose complementary set is N γ -negligible and such that on A, one has H g ( Ba (σ, r)) = c 0 ℓ a ( Ba (σ, r)) < ∞, for any σ ∈ T (a) and any r ∈ Q + , which easily entails (80).

We have proved that (74) implies that there exists c 0 ∈ (0, ∞) such that (80) holds true. Let us furthermore assume that

n≥1 2 -n g(2 -n ) γ-1 < ∞ . (81) 
Then, Proposition 1.2 (i) implies that H g (T (a)) = ∞, N γ -a.e. on {T (a) = ∅}, which contradict (80) since N γ (ℓ a (T (a)) = ∞) = 0. Consequently (81) fails and Proposition 1.2 (ii) entails that ℓ a (E) = ℓ a (T (a)), where E is a Borel subset of T (a) such that lim sup n ℓ a (B(σ, 2 -n ))/g(2 -n ) = ∞ for any σ ∈ E. By the comparison lemma for Hausdorf measures (Lemma 2.1 (iv)), we get H g (E) = 0, which contradicts (80). This implies that (74) is false, which proves (Claim 2). This completes the proof of Theorem 1.3.

Proof of Theorem 1.5. Let g(r) = r q s(r) where q is nonnegative and s is slowly varying at 0. Recall that we furthermore assume that g is a regular gauge function. Recall that N γ -a.e. the Hausdorff dimension of T is γ/(γ -1). Thus, if q > γ/(γ -1), then H g (T ) = 0, N γ -a.e. and if q < γ/(γ -1), then H g (T ) = ∞, N γ -a.e. We next restrict our attention to the case q = γ/(γ -1).

The general idea of the proof of Theorem 1.5 is the following: if N γ ( 0 < H g (T ) < ∞) > 0, then we first prove that 0 < H g (T ) < ∞, N γ -a.e. We next observe that H g behaves like m with respect to the scaling property and the branching property and we prove it entails that H g = c 0 m, where c 0 ∈ (0, ∞). Finally, we get a contradiction thanks to the test stated in Proposition 1.4.

We first need to state two preliminary results. We agree on the convention exp(-∞) = 0 and for any a, λ > 0 and any µ ≥ 0, we set

κa (λ, µ) = N γ 1 -e -λHg ( B(ρ,a) )-µL a ζ ∈ [0, ∞] .
Let us fix b ∈ (0, a). Recall that (g b j , d b j ), i ∈ I b stands for the connected components of the open set {t ≥ 0 : H t > b} and recall that for any j ∈ I b , we denote by H b,j the We first prove (Claim 1). Let us suppose that N γ (H g (T ) < ∞) > 0. Then, there exists a 0 > b 0 > 0 such that N γ (H g ( B(ρ, a 0 ) < ∞ ; sup H > b 0 ) > 0. Next, observe that the left member in (82) with a = a 0 and b = b 0 is strictly positive, which entails that κa 0 -b 0 (λ, 0) < ∞, for any λ ∈ (0, ∞), since we N (b) γ -a.s. have L b ζ > 0. Therefore, we have

N γ (H g ( B(ρ, a 0 -b 0 )) = ∞) ≤ κa 0 -b 0 (λ, 0) < ∞ , λ ∈ (0, ∞) .
The scaling property easily entails that

N γ (H g ( B(ρ, b)) = ∞) = b -1/(γ-1) N γ (H g ( B(ρ, 1)) = ∞) . Since b → N γ (H g ( B(ρ, b)) = ∞) is obviously non-decreasing and finite at b = a 0 -b 0 , we get N γ (H g ( B(ρ, b)) = ∞) = 0 for any b > 0. Consequently, N γ (H g (T ) = ∞) = 0, since T is bounded.
This completes the proof of the first claim.

We now prove (Claim 2). We argue by contradiction, so we suppose that

N γ (0 < H g (T ) < ∞) > 0 . (84) 
First, observe that (Claim 1) entails that

N γ (H g ( B(ρ, a)) = ∞) = 0 for any a > 0. Since T is bounded, we get N γ -a.e. H g (T ) < ∞ . (85) 
Then observe that for any b ∈ (0, ∞) the left member in (82) is strictly positive for any λ > 0. This entails κa-b(λ, 0) < ∞ for any a > b > 0, λ > 0, since we N (b) γ -a.s. have L b ζ > 0, as already mentionned. More simply, we have proved κa (λ, 0) < ∞ , a, λ ∈ (0, ∞) .

Let µ > 0. Observe that 0 ≤ κa (λ, µ)κa (λ, 0) ≤ µN γ (L a ζ ) = µ .

This implies that κa (λ, µ) < ∞. Moreover (84) implies that κa (λ, µ) > 0. Thus, we have proved that κa (λ, µ) ∈ (0, ∞) , a, λ > 0 , µ ≥ 0 . 

We next prove that for any λ ∈ (0, ∞), there exists φ(λ) ∈ (0, ∞), such that for any a > 0, we have κa (λ, 0) = N γ 1e -λHg ( B(ρ,a) ) = φ(λ) Observe that N γ -a.e. we have lim h→0 H g ( B(ρ, h)) = H g ({ρ}) = 0, since any Hausdorf measure is diffuse. Dominated convergence entails that lim h→0 κh (λ, 0) = 0, for any λ ∈ (0, ∞). Consequently, lim n κ1/n (λ, 0) = 0. Moreover, we get This implies that for any λ ∈ (0, ∞), N γ -a.e.

1e -λHg ( B(ρ,1)) = c 0 λ Proof of (94): recall that (g a j , d a j ), j ∈ I a , stands for the excursion intervals of H above a and that H a,j stands for the excursion correponding to (g a j , d a j ). Recall that we have set T a j = p([g a j , d a j ]) and σ a j = p(g a j ) so that the subtree (T a j , d, σ a j ) is isometric to the rooted compact real tree coded by the excursion H a,j . For any b ≥ 0, recall the notation T We thus have proved that on A, H g and c 0 m are finite Borel measures on T that agree on the set of all closed balls of T . This clearly implies (94).

We have proved that (84) implies H g = c 0 m N γ -a.e. We now argue as in the proof of Theorem 1.3 to get a contradiction thanks to the test stated in Proposition 1.4. This proves that (84) is wrong, which entails (Claim 2). As already mentioned, it completes the proof of Theorem 1.5.

2. 1

 1 Hausdorff and packing measures on metric spaces.

  Let us fix b ∈ (0, ∞), and denote by (g b j , d b j ), j ∈ I b , the connected components of the open set {t ≥ 0 : H t > b}. For any j ∈ I b , denote by H b,j the corresponding excursion of H that defined by H b,j s = H (g b j +s)∧d b jb, s ≥ 0. This decomposition is interpreted in terms of the tree as follows. Recall that B(ρ, b) stands for the closed ball with center ρ and radius b. Observe that the connected component the open set T \ B(ρ, b) are the subtrees T b,o j := p((g b j , d b j )), j ∈ J b . The closure T b j of T b,o j is simply {σ b j } ∪ T b,o j , where σ b j = p(g b j ) = p(d b j ), that is the points on the b-level set T (b) at which T b,o j is grafted. Observe that the rooted compact R-tree (T b j , d, σ b j

  the γ-stable tree T coded by H. Choose t ∈ (0, ζ) and set σ = p(t) ∈ T . Then the geodesic [[ρ, σ]] is interpreted as the ancestral line of σ. Let us denote by T o j , j ∈ J , the connected components of the open set T \[[ρ, σ]] and denote by Tj the closure of T o j . Then, there exists a point σ j ∈ [[ρ, σ]] such that Tj = {σj } ∪ T o j .

3. 1

 1 Proof of Theorem 1.1.

Lemma 3 . 1

 31 We assume that g is a regular gauge function that satisfies (59) and we setE = σ ∈ T (a) : lim inf r→0 ℓ a (B(σ, r))/g(r) < 1 .Then, N γ -a.e. P g (E) ≤ ℓ a . Proof: Let us fix b ∈ (0, a). Recall that (g b j , d b j ), j ∈ I b stand for the connected components of the open set {t ≥ 0 : H t > b} and recall that H b,j is the corresponding excursion of H above b corresponding to (g b j , d b j ). We set T b j = p([g b j , d b j ]) and σ b j = p(g b j ) = p(d b j ). As already mentioned (T b j , d, σ b j

  this entails[START_REF] Evans | Probability and real trees[END_REF] in Proposition 1.4.

3. 4

 4 Proof of Theorem 1.3 and of Theorem 1.5.

  the definition of v(a) and observe that ũ(a, λ) ≤ v(a) < ∞. Let us fix b ∈ (0, a). Recall that (g b j , d b j ), i ∈ I b stands for the connected components of the open set {t ≥ 0 : H t > b} and recall that for any j ∈ I b , we denote by H b,j the corresponding excursion of H above b. We also set T b j = p([g b j , d b j ]) and σ b j = p(g b j ). Then, the subtree (T b j , d, σ b j ) is isometric to the rooted compact real tree coded by the excursion H b,j . For any n ≥ 1, we set L n = j∈I b n∧H g (T b j (a-b) ), where T b j (a-b) := {σ ∈ T b j: d(σ b j , σ) = a-b}. Note that T b j (ab) is the (ab)-level set of T b j . Since H g (T b j (ab)) is a measurable function of H b,j , the branching property (36) applies and for any λ ∈ (0, ∞), we N(b) γa.s. get N (b) γ e -λLn G b = e -L b ζ ũn(a-b,λ) , where ũn (ab, λ) = N γ (1exp(-λn ∧ H g (T (ab) )) )

1 {sup 1 {sup

 11 ), we have 1 {L a ζ >0} = 1 {Hg(T (a) )>0} = 1 {sup H>a} , N γ -a.e. Thus, N (b) γ -a.s. we get N (b) γ H>a} e -λHg(T (a) ) G b = N (b) γ H>a} e -λc 0 L a ζ G b . Recall that N (b) γ = N γ (• ∩ {sup H > b})/v(b) and note that {sup H > a} ⊂ {sup H > b}. Thus, for any positive G b -measurable random variable Y , we get N γ 1 {sup H>a} e -λHg(T (a) ) Y = N γ 1 {sup H>a} e -λc 0 L a ζ Y , which easily entails (78). Recall that L a ζ and H g (T (a) ) are G a -measurable and recall that G a-= G a . By letting b go to a in (78), we get H g (T (a) ) = c 0 L a ζ , N (a) γ -a.s. which easily entails H g (T (a) ) = c 0 L a ζ , N γ -a.e. Recall that ℓ a (T (a) ) = L a ζ . Thus, we have proved: ∀a ∈ (0, ∞) , N γ -a.e. H g (T (a) ) = c 0 ℓ a (T (a) ) .

N

  γ -a.e. H g ( • ∩ T (a) ) = c 0 ℓ a . (80) Proof of (80): let a > b > 0. The branching property and (79) easily imply that N γa.e. for any j ∈ Ib, we have H g (T b j (ab) ) = c 0 ℓ a (T b j (ab) ). For any σ ∈ T (a) and any r ≥ 0, we set Ba (σ, r) = {σ ′ ∈ T (a) : d(σ, σ ′ ) ≤ r}. Note that Ba (σ, r) is the closed ball in (T (a), d) with radius r and center σ. Let us fix σ ∈ T (a) and let us denote by σ the unique point in [[ρ, σ]] such that d(σ, σ) = ab. Observe that Ba (σ, 2(ab)) is the union of the T b j (ab) such that σ b j = σ. Since the T b j (ab)s are pairwise disjoints, we get ∀a > b > 0, N γ -a.e. ∀σ ∈ T (a), H( Ba (σ, 2(a-b)) ) = c 0 ℓ a ( Ba (σ, 2(a-b)) ).

Since

  N γ (L b ζ = 0) = N γ (sup H > b), (82) easily entails κa (λ, µ) = N γ 1e -λHg( B(ρ,b) )-L b ζ κa-b (λ,µ) = κb (λ, κa-b (λ, µ) ).

a 0 N 1 µ 1 - 1 µ 1 nG

 01111 γ e -λHg( B(ρ,b) ) L b ζ db.(88)Proof of (88): we first set U(λ, a) = N γ e -λHg( B(ρ,a) ) L a ζ , for any a, λ ∈ (0, ∞). Observe that (82), (85) and (86) imply for any a > b > 0, and any µ ∈ (0, ∞)N (b) γ e -λHg( B(ρ,a)) 1 µ 1e -µL a ζ G b = e -λHg ( B(ρ,b))-L b ζ κa-b (λ,0) e -L b ζ (κ a-b (λ,µ)-κ a-b (λ,0) ) ≤ e -λHg ( B(ρ,b)) L b ζ (κ a-b (λ, µ)κa-b (λ, 0) ) ≤ e -λHg ( B(ρ,b)) L b ζ .Observe that the following limit is non-decreasing:lim µ↓0 ↑ 1 µ 1e -µL a ζ = L a ζ . Conditional monotone convergence entails N (b) γ e -λHg ( B(ρ,a)) L a ζ G b ≤ e -λHg( B(ρ,b)) L b ζ .We integrate this inequality with respect toN (b) γ . Since {L a ζ > 0} ⊂ {L b ζ > 0},we easily get for any a > b > 0, and any λ ∈ (0, ∞),U(λ, a) = N γ e -λHg( B(ρ,a)) L a ζ ≤ N γ e -λHg( B(ρ,b)) L b ζ = U(λ, b),(89)Next, let b, h ∈ (0, ∞) and note thatH g ( B(ρ, b + h) ) -H g ( B(ρ, b) ) = 0, on the event {T (b) = ∅}. Since N γ (T (b) = ∅) = N γ (sup H > b), (82) and an elementary inequality entails N γ e -λHg ( B(ρ,b))e -λHg ( B(ρ,b+h)) = N γ e -λHg( B(ρ,b)) 1-e -L b ζ κh (λ,0) ≤ κh (λ, 0) (here we use the fact N γ (L b ζ ) = 1 in the last inequality). This implies κa (λ, 0) = κ 1 n (λ, 0) + n κ n (b, λ)db + R n (a, λ) ,(90)where we have setG n (b, λ) = (κ 1/n (λ, 0) ) -1 N γ e -λHg ( B(ρ,⌈nb⌉/n)) a, λ) = N γ e -λHg ( B(ρ,⌊na⌋/n)) 1-e -L ⌊na⌋/n ζ κ{an}/n (λ,0), where ⌊•⌋ stands for the integer-part function, where ⌈•⌉ = ⌊•⌋ + 1 and where {an} = na -⌊na⌋ stands for the fractional part of na.

R 0 . 1 0e

 01 n (a, λ) ≤ κ{an} n (λ, 0) N γ L ⌊na⌋/n ζ = κ{an} n (λ, 0) ---→ n→∞ Since lim n nκ 1/n (λ, 0) = φ(λ) = c 0 λ, we easily get N γ -a.e. lim n S n (λ) = c 0 λ -λHg ( B(ρ,b)) L b ζ db .

1 0e

 1 -λHg ( B(ρ,b)) L b ζ db . Divide this equation by λ and let λ go to 0, to get H g ( B(ρ, 1)) = 1 0 L b ζ db. Now recall that m = ∞ 0 ℓ b db, which implies (92) when b = 1. By the scaling property, the joint law of H g ( B(ρ, b)) and m( B(ρ, b)) under N γ is the same as the joint law of b γ/(γ-1)H g ( B(ρ, 1)) and b γ/(γ-1) m( B(ρ, 1)) under b -1/(γ-1) N γ , which easily implies (92) for any b ∈ (0, ∞).We next prove the following N γ -a.e. H g = c 0 m .(94)

  a j (• ≤ b) = {σ ∈ T a j : d(σ a j , σ) ≤ b)} that is the closed ball in (T a j , d, σ a j ) with center σ a j and radius b. Since H g (T a j (• ≤ b) ) is a measurable function of H a,j , the branching property (36) and (92) imply for any a, b ≥ 0,∀ a, b > 0, N γ -a.e. ∀j ∈ I a , H g (T a j (• ≤ b) ) = c 0 m(T a j (• ≤ b) ).(95)Recall that m(Sk(T )) = 0, N γ -a.e. (here Sk(T ) stands for the skeleton of T ). This result, combined with (95), shows that there exists a Borel set A ⊂ D([0, ∞), R) whose complementary set is N γ -negligible and such that m(Sk(T )) = 0 and∀ a, b ∈ Q + , ∀j ∈ I a , H g (T a j (• ≤ b) ) = c 0 m(T a j (• ≤ b) )(96)on A. We now work deterministically on A. Note that for any a ∈ Q + , any j ∈ I a and any b ∈ (0, ∞), we haveT a j (• ≤ b) = b ′ ∈Q + :b ′ ≥b T a j (• ≤ b ′ ) .Since m and H g are finite measures, (96) holds for any b ∈ [0, ∞).Let σ be a point in T that is not a leaf. Then T \{σ} has at least one connected component that does not contain the root ρ. Let us denote such a component by T o .To ease the discussion, we call such a subset of T an open upper subtree. Then, for any b ∈ (0, ∞), we denote by T o (≤ b) the set of σ ′ ∈ T o such that d(σ, σ ′ ) ≤ b. It is easy to prove that T o (• ≤ b) is the union of a non-decreasing sequence of subtrees of the formT a j (• ≤ b ′ ), with a ∈ Q + . This entails H g ( T o (• ≤ b)) = c 0 m( T o (• ≤ b)).We next fix σ ∈ T and r > 0. We denote by T o j , j ∈ J the connected components of T \[[ρ, σ]]. For any j ∈ J , denote by σ j the unique point of[[ρ, σ]] such that {σ j } ∪ T o j is the closure of T o j . Note that T j is a connected component of T \{σ j } that does not contains the root. Namely, T o j is an open upper subtree. Moreover, observe thatB(ρ, r)\[[ρ, σ]] = T o j ( • ≤ r-d(σ, σ j ) ) ; j ∈ J : 0 ≤ d(σ, σ j ) < r . This implies H( B(ρ, r)\[[ρ, σ]]) = c 0 m( B(ρ, r)\[[ρ, σ]]). Now note that [[ρ, σ]] is isometric to a compactinterval of the line. Thus, the Hausdorff dimension of [[ρ, σ]] is 1 (or 0 if it reduces to {ρ}). Therefore, H g ([[ρ, σ]]) = 0, since g is regularly varying at 0 with exponent γ/(γ -1) > 1. Next observe that [[ρ, σ[[⊂ Sk(T ). Consequently, we get m([[ρ, σ]]) = 0.
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We first prove (Claim 1). To that end, observe that ũ(b, 0+) = lim λ→0 ũ(b, λ) = N γ (H(T (b)) = ∞) for any b ∈ (0, ∞). Then, (72) entails ũ(a, 0+) = u(ab, ũ(b, 0+) ) , a > b > 0 .

(73)

Let us now recall the scaling property of T : Let c ∈ (0, ∞). The "law" of (T , cd, ρ) under N γ is the "law" of (T , d, ρ) under c 1/(γ-1) N γ . We next denote by H g,cd the g-Hausdorff measure on (T , cd, ρ) and we set g c (r) = g(cr), for any r ∈ (0, 1). Then, for any b > 0, we easily get

since g is regularly varying at 0 with exponent 1/(γ -1). The scaling property for T implies that the law of c 1/(γ-1) H g (T (b/c)) under N γ is the same as the law of

where u is given by [START_REF] Abraham | Fragmentation associated to Lévy processes using snake[END_REF]. Then, (73) and the previous arguments easily imply that for any To prove (Claim 2), we argue by contradiction and we suppose that there exists a 0 ∈ (0, ∞) such that

The previous arguments show that ũ(b, 0+) = N γ (H(T (b) ) = ∞) = 0, for any b ∈ (0, ∞).

The scaling property discussed above entails

We first claim that for any a ∈ (0, ∞),

Indeed, observe that ṽ(b) := limλ→∞ ↑ ũ(b, λ) = N γ (H(T (b) ) > 0). Then, (75) implies ṽ(b) = b -1/(γ-1) ṽ(1). Assumption (74) entails that 0 < ũ(a 0 , λ) ≤ ṽ(a 0 ). Thus, we get ṽ(1) > 0, which implies limb→0 ṽ(b) = ∞. Thanks to (72), we get ṽ(a) = u(ab, ṽ(b) ) and ṽ(a) = limb→0 u(ab, ṽ(b) ) = v(a), which is (76).

Recall that for any fixed λ ∈ (0, ∞), b → u(b, λ) is decreasing. Then, (72) implies that ũ(a, λ) ≤ ũ(b, λ), for any a > b > 0, and for any λ > 0. Thus, it makes sense corresponding excursion of H above b. We also set T

) and σ b j = p(g b j ). Then, the subtree (T b j , d, σ b j ) is isometric to the rooted compact real tree coded by the excursion H b,j . We set

with center σ b j and radius ab. For any integer n ≥ 1, for any λ ∈ (0, ∞) and for any µ ∈ [0, ∞), we then set

Here L a-b ζ j (j) stands for the local time of H j,b at level a-b. Since H is continuous, the sum only contains a finite number of non-zero terms. Recall that since H g (T b j (• ≤ ab)) is a measurable function of H b,j , the branching property (36) implies that for any λ ∈ (0, ∞),

The conditional dominated convergence theorem implies that for any λ ∈ (0, ∞), any µ ∈ [0, ∞) and any a > b > 0, we N (b) γ -a.s. have

Arguing as in the proof of (75), the scaling property of T and the fact that g is regularly varying at 0 with exponent γ/(γ -1) imply that for any c ∈ (0, ∞), the joint law of c γ/(γ-1) H g ( B(ρ, b/c)) and c 1/(γ-1) L b/c ζ under N γ is the same as the joint law of H g ( B(ρ, b)) and L b ζ under c 1/(γ-1) N γ . This easily entails

Now observe that Theorem 1.5 is implied by the two following claims.

Next, observe that 

Thus, we get

By dominated convergence, we get

This limit combined with (90) implies lim n nκ 1 n (λ, 0) = φ(λ) ∈ (0, ∞), which implies (88).

Next observe that (88) implies (∂κ a /∂a)(λ, 0) = φ(λ)∂(κ a /∂µ)(λ, 0) and by the scaling property (83) we easily get

We next prove that for any b ∈ (0, ∞),

Proof of (92): we first prove this result for b = 1. To that end, we set

where S n (λ) stands for

We want to prove that lim n N γ (D n (λ) 2 ) = 0. To that end, observe that

where we have set

Observe that T (k/n) = ∅, N γ -a.e. on {sup H ≤ k/n}. Thus, V k = 0, N γ -a.e. on {sup H ≤ k/n}. This easily implies that

These estimates justify the following:

We first fix

We next fix 1 ≤ k < n. An easy argument combined with (82) entails that for any 1 ≤ k < n, we have

Note that λ → κa (λ, 0) is clearly concave. Thus, 2κ 1/n (λ, 0) -κ1/n (2λ, 0) is nonnegative, which implies

This entails N γ (V 2 k ) ≤ 2κ 1/n (λ, 0) -κ1/n (2λ, 0), since N γ (L k/n ζ ) = 1. We also checks that N γ (V 0 ) = 2κ 1/n (λ, 0) -κ1/n (2λ, 0). These bounds combined with (93) imply N γ (D n (λ) 2 ) ≤ 2nκ 1/n (λ, 0)nκ 1/n (2λ, 0) .

When n goes to ∞, the right member of the previous inequality tends to 2φ(λ)φ(2λ) that is null since φ is linear. Thus, ∀λ ∈ (0, ∞) , N γ D n (λ) 2 = 0 .