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Existence of solutions for a higher order non-local

equation appearing in crack dynamics

C. Imbert∗and A. Mellet†

April 30, 2010

Abstract

In this paper, we prove the existence of non-negative solutions for a
non-local higher order degenerate parabolic equation arising in the mod-
eling of hydraulic fractures. The equation is similar to the well-known
thin film equation, but the Laplace operator is replaced by a Dirichlet-to-
Neumann operator, corresponding to the square root of the Laplace op-
erator on a bounded domain with Neumann boundary conditions (which
can also be defined using the periodic Hilbert transform). In our study,
we have to deal with the usual difficulty associated to higher order equa-
tions (e.g. lack of maximum principle). However, there are important
differences with, for instance, the thin film equation: First, our equation
is nonlocal; Also the natural energy estimate is not as good as in the case
of the thin film equation, and does not yields, for instance, boundedness
and continuity of the solutions (our case is critical in dimension 1 in that
respect).

Keywords: Hydraulic fractures, Higher order equation, Non-local equation,
Thin film equation, Non-negative solutions, periodic Hilbert transform

MSC: 35G25, 35K25, 35A01, 35B09

1 Introduction

This paper is devoted to the following problem:











ut + (unI(u)x)x = 0 for x ∈ Ω, t > 0

ux = 0, unI(u)x = 0 for x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) for x ∈ Ω

(1)
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where Ω is a bounded interval in R, n is a positive real number and I is a non-
local elliptic operator of order 1 satisfying I ◦ I = −∆; the operator I will be
defined precisely in Section 3 as the square root of the Laplace operator with
Neumann boundary conditions. When Ω = R, it reduces to I = −(−∆)1/2. In
the sequel, we will always take Ω = (0, 1).

When n = 3, this equation arises in the modeling of hydraulic fractures. In
that case, u represents the opening of a rock fracture which is propagated in
an elastic material due to the pressure exerted by a viscous fluid which fills the
fracture (see Section 2 for details). Such fractures occur naturally, for instance
in volcanic dikes where magma causes fracture propagation below the surface of
the earth, or can be deliberately propagated in oil or gas reservoirs to increase
production. There is a significant amount of work involving the mathematical
modeling of hydraulic fractures, which is beyond the scope of this article. The
model that we consider in our paper, which corresponds to very simple fracture
geometry, was developed independently by Geertsma and De Klerk [26] and
Khristianovic and Zheltov [43]. Spence and Sharp [41] initiated the work on
self-similar solutions and asymptotic analyses of the behavior of the solutions of
(1) near the tip of the fracture (i.e. the boundary of the support of u). There
is now an abundant literature that has extended this formal analysis to various
regimes (see for instance [1], [2], [33] and reference therein). Several numerical
methods have also been developed for this model (see in particular Peirce et
al. [36], [37], [39] and [38]). However, to our knowledge, there are no rigorous
existence results for general initial data. This paper is thus a first step toward
a rigorous analysis of (1).

From a mathematical point of view, the equation under consideration:

ut + (unI(u)x)x = 0 (2)

is a non-local parabolic degenerate equation of order 3. It is closely related to
the thin film equation which corresponds to the case I = ∂xx:

ut + (unuxxx)x = 0 (3)

(note that the porous media equation corresponds to the case I(u) = u). In
particular, like the thin-film equation, Equation (2) lacks a comparison principle,
and the existence of a non-negative solution (for non-negative initial data) is
thus non-trivial (it is well known that non-negative initial data may generate
changing sign solutions of the fourth order equation ∂th+ ∂xxxxh = 0).

However, compared with (3), the analysis of (2) presents some additional
difficulties: First, the operator I is non-local and the algebra is not as simple as
with the Laplace operator. Second, because of the lower order of the operator
I, the natural regularity given by the energy inequality (u ∈ H

1
2 rather than

u ∈ H1) does not give the boundedness and continuity of weak solutions even
in dimension 1.

A remarkable feature of (2) and (3) is that the degeneracy of the diffusion
coefficient permits the existence of non-negative solutions. In the case of the
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thin film equation (3), the existence of non-negative weak solutions was first
addressed by F. Bernis and A. Friedman [11] for n > 1. Further results were
later obtained, by similar technics, in particular by E. Beretta, M. Bertsch and
R. Dal Passo [5] and A. Bertozzi and M. Pugh [13, 14]. Results in higher
dimension were obtained more recently (see [28, 27, 20]).

As in the case of the thin film equation, our approach to prove the existence
of solutions for (1) relies on a regularization-stability argument, and the main
tools are integral inequalities which we present now.

Integral inequalities. Besides the conservation of mass, the solutions of (2)
satisfy two important inequalities (that have a counterpart for the thin film
equation): Assuming that we have Ω = R and I = −(−∆)1/2 (for the time
being), we can indeed easily show that the solutions of (2) satisfy the energy
inequality

−
∫

Ω

u(t)I(u(t)) dx+

∫ T

0

∫

Ω

un(I(u)x)
2 dx dt ≤ −

∫

Ω

u0I(u0) dx (4)

(where −
∫

uI(u) dx is the homogeneous H1/2 norm) and an entropy like in-
equality

∫

Ω

G(u(t)) dx −
∫ T

0

∫

Ω

uxI(u)x dx dt =

∫

Ω

G(u0) dx (5)

where G′′(s) = 1
sn .

The energy inequality (4) controls the L∞(0, T ;H1/2(Ω)) norm of the so-
lutions (instead of L∞(0, T ;H1(Ω)) for the thin film equation). We see here
that the order 1/2 for the operator I is critical in dimension 1 in the sense that
we are just short of a L∞((0, T )× Ω) estimate and continuity of the solutions.
Because of that fact, many of the arguments used in the analysis of the thin
film equation do not apply directly to our case.

Next, we observe that as in the case of the thin film equation, the entropy
inequality (5) provides some control on some negative power of u for n > 2.
Indeed, we can take

G(s) =

∫ s

1

∫ r

1

1

tn
dt dr

so that G is a nonnegative convex function satisfying G′(1) = 0 and G(1) = 0.
This yields:

G(s) =















































s ln s− s+ 1 when n = 1

− s2−n

(2− n)(n− 1)
+

s

n− 1
+

1

2− n
when 1 < n < 2

ln
1

s
+ s− 1 when n = 2

1

(n− 2)(n− 1)

1

sn−2
+

s

n− 1
− 1

n− 2
when n > 2.

(6)
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Note that G(0) = +∞ when n ≥ 2, while G is bounded in a neighborhood of
0 for n ∈ [1, 2). This will be key in proving the non-negativity of the solution.
The entropy equality also gives some control on the L2(0, T ;H3/2(Ω)) norm of
the solution which will be crucial in getting the necessary compactness in the
construction of the solution. However, in order to make use of this inequality, we
need

∫

Ω
G(u0) dx to be finite, which, when n ≥ 2 prohibits compactly supported

initial data.

Besides those two inequalities, there are several other integral estimates that
have proved extremely useful in the study of the thin film equation. The simplest
one are local versions of (4) and (5). However, because of the nonlocal character
of the operator I, it seems very delicate to establish similar inequalities for (2).

Another crucial estimate in the analysis of (3), established by Bernis [10], is
the following:

∫

(u
n+2

2
xxx )

2 dx ≤ C

∫

unu2
xxx dx

for n ∈ (12 , 3). Such an inequality yields important estimates from the dissipa-
tion in the energy inequality (despite the degeneracy of the diffusion coefficient).
Again it is not clear what would play the role of this inequality in our situa-
tion. The same remark holds for the so called α-entropy [11, 5, 14, 15]: for
α ∈ (max(−1, 12 − n), 2 − n), α 6= 0, it can be proved that the solutions of the
thin film equation (3) satisfy:

1

α+ 1

∫

uα+1(·, T ) dx+ C

∫ T

0

∫

(

|∂xu
α+n+1

4 |4 + |∂xxu
α+n+1

2 |2
)

dx dt

≤ 1

α+ 1

∫

uα+1
0 dx.

These last two inequalities are essential in establishing many qualitative
properties of the solutions, such as finite speed expansion of the support and
waiting time phenomenon. Though we expect such properties to hold for (2) as
well, it is not clear at this point how to deal with the non local character of I.

Finally, let us comment on the power of the diffusion coefficient un. Inter-
estingly, the power n = 3, which is the physically relevant power in our model,
is critical in many results for the thin film equation. In particular many exis-
tence and regularity results (as well as waiting time results) are only valid for
n ∈ (0, 3). It is actually believed that for n ≥ 3, (and it is proved for n ≥ 4) the
support of the solutions of (3) does not expand. It is not clear what would be
the critical exponent for (2), though numerical results suggest that for n = 3,
the support of the solutions of (2) does expand for all time.

Main results. A weak formulation of (2) is given by

∫∫

Q

u ∂tϕdxdt+

∫∫

Q

un∂xI(u) ∂xϕdxdt = −
∫

Ω

u0ϕ(0, ·) dx
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for all ϕ ∈ D(Q) whereQ denotes Ω×(0, T ). However, because of the degeneracy
of the coefficient un, it is difficult to give a meaning to the term un∂xI(u).
We thus perform an additional integration by parts to get the following weak
formulation of (2):

∫∫

Q

u ∂tϕdxdt−
∫∫

Q

nun−1∂xu I(u) ∂xϕdxdt−
∫∫

Q

un I(u) ∂xxϕdxdt

= −
∫

Ω

u0ϕ(0, ·) dx (7)

for all ϕ ∈ D(Q) satisfying ∂xϕ|∂Ω = 0.
We are going to prove the following existence theorem:

Theorem 1. Assume n ≥ 1. For any non-negative initial condition u0 ∈
H

1
2 (Ω) such that

∫

Ω

G(u0) dx < ∞, (8)

there exists a non-negative function u ∈ L∞(0, T,H
1
2 (Ω)) such that

u ∈ L2(0, T,H
3
2

N(Ω)) (9)

which satisfies (7) for all ϕ ∈ D(Q) satisfying ∂xϕ|∂Ω = 0.

Furthermore u satisfies, for almost every t ∈ (0, T )

∫

Ω

u(t, ·) dx =

∫

Ω

u0 dx, (10)

‖u(t, ·)‖2
H

1
2 (Ω)

+ 2

∫ t

0

∫

Ω

g2 dx ds ≤ ‖u0‖2
H

1
2 (Ω)

, (11)

where the function g ∈ L2(Q) satisfies g = ∂x(u
n
2 I(u)) − n

2u
n−2

2 ∂xu I(u) in
D′(Ω), and

∫

Ω

G(u(x, t)) dx + ||u||2
L2(0,t;Ḣ

3
2
N
(Ω))

≤
∫

Ω

G(u0(x)) dx. (12)

We recall that the function G : (0,∞) → R+ is given by (6). The space

H
3
2

N (Ω) appearing in (9) will be defined precisely in Section 3. In particular, the
following characterization will be given:

H
3
2

N (Ω) =

{

u ∈ H
3
2 (Ω) ;

∫

Ω

u2
x

d(x)
dx < ∞

}

where d(x) denotes the distance to ∂Ω. Condition (9) thus implies that u
satisfies ux = 0 on ∂Ω in some weak sense.

Note that at least formally, we have g = u
n
2 ∂xI(u) (though we do not have

enough regularity on u to give a meaning to this product in general). Finally,
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we point out that we have H
3
2

N (Ω) ⊂ W 1,p(Ω) for all p < ∞ and so every terms
in (7) makes sense.

For n ≥ 2, condition (8) requires in particular that Supp(u0) = Ω and
inequality (12) implies that this remains true for all positive time. This is a
serious restriction since the case of compactly supported initial data is physically
the most interesting (see Section 2). We hope to be able to get rid of this
assumption in a further work.

For n > 3, we can actually show that condition (8) requires u(·, t) to be
strictly positive for a.e. t ∈ (0, T ). In fact, we can prove:

Theorem 2. When n > 3, there exists a set P ⊂ (0, T ) such that |(0, T )\P | = 0
and the solution u given by Theorem 1 satisfies

u(·, t) ∈ Cα(Ω) for all t ∈ P and for all α < 1,

and u(·, t) is strictly positive in Ω. Finally, u solves

∂tu+ ∂xJ = 0 in D′(Ω),

where
J(·, t) = un∂xI(u) ∈ L1(Ω) for all t ∈ P.

Organization of the article. The paper is organized as follows: In Section 2,
we give a brief description of the mathematical modeling of hydraulic fracture
which gives rise to equation (2) with n = 3. In Section 3, we introduce the
functional analysis tools that will be needed to prove Theorem 1. In particular,
the non-local operator I(u) is defined, first using a spectral decomposition, then
as a Dirichlet-to-Neuman map. An integral representation for I, using the
periodic Hilbert transform is also given. Section 4 is devoted to the study of a
regularized equation while the proof of Theorem 1 is given in Sections 5 (for the
case n ≥ 2) and 6 (for the case n ∈ [1, 2)). Theorem 2 is proved in Section 7.

Acknowledgements. The authors would like to thank A. Pierce for bringing
this model to their attention and for many very fruitful discussions during the
preparation of this article. The first author was partially supported by the ANR-
projects “EVOL” and “MICA”. The second author was partially supported by
NSF Grant DMS-0901340.

2 The physical model

When n = 3, Equation (2) can be used to model the propagation of an im-
permeable KGD fracture driven by a viscous fluid in a uniform elastic medium
under condition of plane strain. More precisely, denoting by (x, y, z) the stan-
dard coordinates in R

3, we consider a fracture which is invariant with respect
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to one variable (say z) and symmetric with respect to another direction (say
y). The fracture can then be entirely described by its opening u(x, t) in the y
direction (see Figure 2). Since it assumes that the fracture is an infinite strip
whose cross-sections are in a state of plane strain, this model is only applicable
to rectangular planar fracture with large aspect ratio.

We now briefly describe the main steps of the derivation of (1).

2.1 Conservation of mass and Poiseuille law

The conservation of mass for the fluid inside the fracture, averaged with respect
to y yields:

∂t(ρu) + ∂xq = 0 in R (13)

where ρ is the density of the fluid (which is assumed to be constant) and q =
q(x, t) denotes the fluid flux. This flux is given by

q = ρuv (14)

where v is the y-averaged horizontal component of the velocity of the fluid

v =
1

u

∫ u/2

−u/2

vH(t, x, y) dy.

Under the lubrification approximation, Navier-Stokes equations reduce to

µ
∂2vH
∂y2

(t, x, y) = ∂xp(x, t)

where p denotes the pressure of the fluid at a point x and µ denotes the viscosity
coefficient. Assuming a no-slip boundary condition v = 0 at y = ±u/2, we
deduce

vH(t, x, y) =
1

µ
∂xp

[

1

2
y2 − 1

8
u2

]

for −u ≤ y ≤ u

7



and so

v(x, t) = − u2

12µ
∂xp(x, t)

Using (14), we deduce Poiseuille law

q = − u3

12µ
∂xp . (15)

Together with (13), this implies

∂tu− ∂x

(

u3

12µ
∂xp

)

= 0.

In order to obtain (2), it only remains to express the pressure p as a function of
the displacement u (i.e. p = −I(u)).

2.2 The pressure law

For a state of plane strain, the elasticity equation expresses the pressure as a
function of the fracture opening. After a rather involved computation, one can
derive the following nonlocal expression (see [19]):

p(x, t) = −E′

4π

∫

R

∂xu(z, t)

z − x
dz

where E′ denotes Young’s modulus. Denoting by H the Hilbert transform, we
can rewrite this formula as

p(x, t) =
E′

4
H(∂xu) =

E′

4
(−∆)1/2u(x, t)

where (−∆)1/2 is the half-Laplace operator, defined, for instance, using the
Fourier transform by F((−∆)1/2u) = |ξ|F(u).

It is well known that the half Laplace operator can also be defined as a
Dirichlet-to-Neumann map for the harmonic extension. More precisely, the
pressure is given by

p(x) =
E′

4
∂yv(x, 0) (16)

where v solves
{

−∆v = 0 in R× (0,+∞),
v(x, 0) = u(x, t), on R .

(17)

By taking advantage of the symmetry of the problem, the function v(x, y) can
be interpreted as the displacement of the rock. Denoting I(u) = −(−∆)1/2u,

we deduce p = −E′

4 I(u) and so

∂tu+
E′

48µ
∂x

(

u3∂xI(u)
)

= 0.
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A technical assumption. In order to reduce the technicality of the analysis,
we will assume that the crack is periodic with respect to x. Since we expect
compactly supported initial data to give rise to compactly supported solutions
whose supports expand with finite speed, this is a reasonnable physical assump-
tion. We also assume that the initial crack is even with respect to x = 0 and
we look for solutions that are also even.

By making such assumptions (periodicity and evenness), we can replace (17)
with the following boundary value problem







−∆v = 0 in Ω× (0,∞)
vν = 0 on ∂Ω× (0,∞)
v(x, 0) = u(x) on Ω

with Ω = (0, 1) if the period of the initial crack is 2. The cylinder Ω× (0,+∞)
is denoted by C in the remaining of the paper.

Mathematical definition of the pressure. It turns out that it is easier to
define first the operator I by using the spectral decomposition of the Laplace
operator: We take {λk, ϕk} the eigenvalues and corresponding eigenvectors of
the Laplacian operator in Ω with Neumann boundary conditions on ∂Ω:

{

−∆ϕk = λkϕk in Ω
∂νϕk = 0 on ∂Ω.

We then define the operator I by

I(u) :=

∞
∑

k=0

ckϕk(x) 7→ −
∞
∑

k=0

ckλ
1
2

k ϕk(x)

which maps H1(Ω) onto L2(Ω). We will prove that this operator can be char-
acterized as a Dirichlet-to-Neumann map (see Proposition 2) and that it has an
integral representation as well (see Proposition 3).

2.3 Boundary conditions

The opening u is solution of (2) in its support. The model must thus be sup-
plemented with some boundary conditions at the tip of the fracture.

Assuming that Supp(u(t, ·)) = [−ℓ(t), ℓ(t)], it is usually assumed that

u = 0, u3∂xp = 0 at x = ±ℓ(t)

which ensures zero width and zero fluid loss at the tip.
We point out that the model is a free boundary problem, since the support

[−ℓ(t), ℓ(t)] of the fracture is not known a priori. Since the equation is of order
3, those two conditions are not enough to fully determine a solution. In fact,
there should be an additional condition which takes into account the energy
required to break the rock at the tip of the crack. Consistent with linear elastic

9



fracture propagation, we can assume that the rock toughness KIc equals the
stress intensity factor KI . When the crack propagation is determined by the
toughness of the rock, a formal asymptotic analysis of fracture profile at the tip
(see [1, 23]) then shows that

u(x, t) ∼ K ′

E′

√

ℓ(t)− x as x → ℓ(t) (18)

withK ′ = 4
√

2
πKIc (and a similar condition for x → −ℓ). One can now take this

condition on the profile of u at the tip as the missing free boundary condition.
The resulting free boundary problem is clearly very delicate to study (remember
that (1) is a third order degenerate non-local parabolic equation).

A particular case which is simpler and still interesting is the case of zero
toughness (KIc = 0). This is relevant mainly if there is a pre-fracture (i.e. the
rock is already cracked, even though u = 0 outside the initial fracture). Math-
ematically speaking, this means that Equation (1) is now satisfied everywhere
in R even though u is expected to have compact support. No free boundary
conditions are necessary. This is the problem that we are considering in this
paper.

Note that one should then have limx→ℓ(ℓ(t)− x)−1/2u(x, t) = 0 at the tip of
the crack. In fact, formal arguments show that the asymptotic behavior of the
fracture opening near the fracture tip should be proportional to (ℓ(t) − x)2/3

(see [1, 23]).
This approach is very similar to what is usually done with the porous media

equation, and it has been used successfully in the case of the thin film equation
to prove the existence of solutions with zero contact angle (in that case, we speak
of precursor film, or pre-wetting). The study of the free boundary problem with
free boundary condition (18) would be considerably more difficult (one would
expect the gradient flow approach developed by F. Otto [35] for the thin film
equation with non zero contact angle to yield some result when n = 1).

3 Preliminaries

In this section, we define the operator I and give the functional analysis results
that will play an important role in the proof of the main theorem. A very similar
operator, with Dirichlet boundary conditions rather than Neumann boundary
conditions, was studied by Cabré and Tan [17]. This section follows their anal-
ysis very closely.

3.1 Functional spaces

The space Hs
N (Ω). We denote by {λk, ϕk}k=0,1,2... the eigenvalues and corre-

sponding eigenfunctions of the Laplace operator in Ω with Neumann boundary
conditions on ∂Ω:

{

−∆ϕk = λkϕk in Ω
∂νϕk = 0 on ∂Ω,

(19)
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normalized so that
∫

Ω
ϕ2
k dx = 1. When Ω = (0, 1), we have

λ0 = 0 , ϕ0(x) = 1

and
λk = (kπ)2 , ϕk(x) =

√
2 cos(kπx) k = 1, 2, 3, . . .

The ϕk’s clearly form an orthonormal basis of L2(Ω). Furthermore, the ϕk’s
also form an orthogonal basis of the space Hs

N (Ω) defined by

Hs
N (Ω) =

{

u =
∞
∑

k=0

ckϕk ;
∞
∑

k=0

c2k(1 + λs
k) < +∞

}

equipped with the norm

||u||2Hs
N
(Ω) =

∞
∑

k=0

c2k(1 + λs
k)

or equivalently (noting that c0 = ‖u‖L1(Ω) and λk ≥ 1 for k ≥ 1):

||u||2Hs
N (Ω) = ‖u‖2L1(Ω) + ‖u‖2

Ḣs
N(Ω)

where the homogeneous norm is given by:

‖u‖2
Ḣs

N
(Ω)

=

∞
∑

k=1

c2kλ
s
k.

A characterisation of Hs
N (Ω). The precise description of the space Hs

N (Ω)
is a classical problem.

Intuitively, for s < 3/2, the boundary condition uν = 0 does not make sense,
and one can show that (see Agranovich and Amosov [4] and references therein):

Hs
N (Ω) = Hs(Ω) for all 0 ≤ s <

3

2
.

In particular, we have H
1
2

N(Ω) = H
1
2 (Ω) and we will see later that

‖u‖2
Ḣ

1
2 (Ω)

=

∫

Ω

∫

Ω

(u(y)− u(x))2ν(x, y)dxdy

where ν(x, y) is a given positive function; see (23) below.
For s > 3/2, the Neumann condition has to be taken into account, and we

have in particular

H2
N (Ω) = {u ∈ H2(Ω) ; uν = 0 on ∂Ω}

which will play a particular role in the sequel. More generally, a similar charac-
terization holds for 3/2 < s < 7/2. For s > 7/2, additional boundary conditions
have to be taken into account.
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The case s = 3/2 is critical (note that uν |∂Ω is not well defined in that space)
and one can show that

H
3
2

N(Ω) =

{

u ∈ H
3
2 (Ω) ;

∫

Ω

u2
x

d(x)
dx < ∞

}

where d(x) denotes the distance to ∂Ω. A similar result appears in [17]; more

precisely, such a characterization of H
3
2

N (Ω) can be obtained by considering
functions u such that ux ∈ V0(Ω) where V0(Ω) is defined in [17] as the equivalent

of our space H
1/2
N (Ω) with Dirichlet rather than Neumann boundary conditions.

We do not dwell on this issue since we will not need this result in our proof.

3.2 The operator I

As it is explained in the Introduction, the operator I is related to the computa-
tion of the pressure as a function of the displacement. From this point of view,
the operator I is a Dirichlet-to-Neumann operator associated with the Lapla-
cian. Since we study the problem in a periodic setting we explained that this
yields to consider Neumann boundary conditions on a cylinder C = Ω×(0,+∞).

Spectral definition. It is convenient to begin with the spectral definition of
the operator I: With λk and ϕk defined by (19), we define the operator

I :

∞
∑

k=0

ckϕk 7−→ −
∞
∑

k=0

ckλ
1
2

k ϕk (20)

which clearly maps H1(Ω) onto L2(Ω) and H2
N (Ω) onto H1(Ω).

Dirichlet-to-Neuman map. With the spectral definition in hand, we are
now going to show that I can also be defined as the Dirichlet-to-Neumann
operator associated with the Laplace operator supplemented with Neumann
boundary conditions.

To be more precise, we consider the following boundary problem in the
cylinder C = Ω× (0,+∞):







−∆v = 0 in C,
v(x, 0) = u(x) on Ω,
vν = 0 on ∂Ω× (0,∞).

(21)

We will show that we have
I(u) = ∂yv(·, 0).

We start with the following result which show the existence of a unique harmonic
extension v:

Proposition 1 (Existence and uniqueness for (21)). For all u ∈ H
1
2

N (Ω), there
exists a unique extension v ∈ H1(C) solution of (21).

12



Furthermore, if u(x) =
∑∞

k=1 ckϕk(x), then

v(x, y) =
∞
∑

k=1

ckϕk(x) exp(−λ
1
2

k y). (22)

Proof. We recall that H
1
2

N (Ω) = H
1
2 (Ω), and for a given u ∈ H

1
2 (Ω) we consider

the following minimization problem:

inf

{
∫

C

|∇w|2 dx dy ; w ∈ H1(C) , w(·, 0) = u on Ω

}

.

Using classical arguments, one can show that this problem has a unique mini-
mizer v (note that the set of functions on which we minimize the functional is
not empty). This minimizer is a weak solution of (21). In particular, it satisfies

∫

C

∇v · ∇w dxdy = 0

for all w ∈ H1(Ω) such that w(·, 0) = 0 on Ω, which includes a weak formulation
of the Neumann condition.

Finally, the representation formula (22) follows from a straightforward com-
putation. Indeed, we have

∫ ∞

0

∫

Ω

|∇v|2 dx dy =

∫ ∞

0

∫

Ω

|∂xv|2 + |∂yv|2 dx dy

= 2

∞
∑

k=1

c2kλk

∫ ∞

0

exp(−2λ
1/2
k y) dy

= 2

∞
∑

k=1

c2kλk
1

2λ
1/2
k

=
∞
∑

k=1

c2kλ
1/2
k = ||u||2

Ḣ
1
2 (Ω)

which shows that v belongs to H1(C). The fact that v satisfies (21) is easy to
check.

We can now show:

Proposition 2 (The operator I is of Dirichlet-to-Neumann type). For all u ∈
H2

N (Ω), we have

I(u)(x) = −∂v

∂ν
(x, 0) = ∂yv(x, 0) for all x ∈ Ω,

where v is the unique harmonic extension solution of (21).

Furthermore I ◦ I(u) = −∆u.

13



Proof. This follows from a direct computation using (22). Furthermore, if u is
in H2

N (Ω), we know that
∑∞

k=0 c
2
kλ

2
k < ∞. It is now easy to derive the following

equality

I(I(u)) =

∞
∑

k=0

ckλkϕk(x) = −∆u.

Integral representation. The operator I can also be represented as a sin-
gular integral operator. Indeed, we will prove the following

Proposition 3. Consider a smooth function u : Ω → R. Then for all x ∈ Ω,

I(u)(x) =

∫

Ω

(u(y)− u(x))ν(x, y)dy

where ν(x, y) is defined as follows: for all x, y ∈ Ω,

ν(x, y) =
π

2

(

1

1− cos(π(x − y))
+

1

1− cos(π(x + y))

)

. (23)

Proof. We use the Dirichlet-to-Neumann definition of I. Let v denote the so-
lution of (21). Then v is the restriction to (0, 1) of the unique solution w of
(21) where Ω is replaced with (−1, 1) and u is replaced by its even extension to
(−1, 1). In particular, w is even with respect to x. Then there exists a holomor-
phic function W defined in the cylinder (−1, 1)×(0,+∞) such that w = Re(W ).
Next, we consider the holomorphic function z 7→ eiπz = e−πyeiπx defined on the
cylinder (−1, 1)×(0,+∞) with values into the unit disk D1 = {(x, y) : x2+y2 <
1}. If z denotes the complex variable x + iy, then a new holomorphic function
W0 is obtained by the following formula

W (z) = W0(e
iπz).

In particular, W0 is defined and harmonic in D1. This implies that the function
W0 can be represented by the Poisson integral. Precisely,

W0(Z) =
1− |Z|2

2π

∫

∂D1

W0(Y )

|Y − Z|2 dσ(Y ).

This implies that for all z ∈ C,

W (z) =
1− e−2πy

2π

∫ 1

−1

W (θ)

|eiπθ − e−πyeiπx|2πdθ

and we finally obtain

w(x, y) =
1− e−2πy

2

∫ 1

−1

w(θ, 0)

|eiπθ − e−πyeiπx|2 dθ.

14



Taking w = 1, we get in particular the following equality:

1 =
1− e−2πy

2

∫ 1

−1

1

|eiπθ − e−πyeiπx|2 dθ.

We deduce:

w(x, y) − w(x, 0)

y
=

1− e−2πy

2y

∫ 1

−1

w(θ, 0) − w(x, 0)

|eiπθ − e−πyeiπx|2 dθ

which implies (letting y go to zero):

∂yw(x, 0) = π

∫ 1

−1

w(θ, 0) − w(x, 0)

|eiπθ − eiπx|2 dθ.

The integral on the right hand side of the previous equality is understood in the
sense of the principal value of the associated distribution. We finally use the
fact that w is even in x and is equal to u on Ω to obtain the following singular
integral representation of I(u):

I(u)(x) = π

∫ 1

0

(u(θ, 0)− u(x, 0))

(

1

|1− eiπ(x−θ)|2 +
1

|1− eiπ(x+θ)|2
)

dθ.

The space H− 1
2 (Ω). The space H− 1

2 (Ω) is defined as the topological dual

space ofH
1
2 (Ω). It is classical that for any u ∈ H− 1

2 (Ω), there exists u1 ∈ L2(Ω)

and u2 ∈ H
1
2 (Ω) such that u = u1 + ∂xu2 (in the sense of distributions). We

will also use repeatedly the following elementary lemma, whose proof is left to
the reader:

Lemma 1. If u ∈ H
1
2 (Ω), then the distribution I(u) is in H− 1

2 (Ω) and for all

v ∈ H
1
2 (Ω),

〈I(u), v〉
H−

1
2 (Ω),H

1
2 (Ω)

= −
+∞
∑

k=0

λ
1
2

k ckdk

where u =
∑+∞

k=0 ckϕk and v =
∑+∞

k=0 dkϕk. In particular,

−〈I(u), u〉
H−

1
2 (Ω),H

1
2 (Ω)

= ||u||2
Ḣ

1
2 (Ω)

.

Important equalities. The semi-norms || · ||
Ḣ

1
2 (Ω)

, || · ||Ḣ1(Ω), || · ||
Ḣ

3
2 (Ω)

and || · ||Ḣ2
N
(Ω) are related to the operator I by equalities which will be used

repeatedly.

Proposition 4 (The operator I and several semi-norms).
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For all u ∈ H
1
2 (Ω), we have

1

2

∫

Ω

∫

Ω

(u(x) − u(y))2ν(x, y)dxdy = ||u||2
Ḣ

1
2 (Ω)

.

For all u ∈ H1(Ω), we have

∫

Ω

(I(u))2dx = ‖u‖2
Ḣ1(Ω)

.

For all u ∈ H2
N (Ω), we have

−
∫

Ω

I(u)xux dx = ||u||2
Ḣ

3
2
N
(Ω)

.

For all u ∈ H2
N (Ω), we have

∫

Ω

(∂xI(u))
2 dx = ‖u‖2

Ḣ2
N
(Ω)

.

Remark 1. Note that I(u)x 6= I(ux).

Proof. The two first equalities are easily derived form the definition of I, def-
initions of the semi-norms, the integral representation of I and the fact that
ν(x, y) = ν(y, x).

In order to prove the third and fourth equalities, we first remark that ∂xϕk =

−λ
1
2

k sin(kπx) form an orthogonal basis of L2(Ω).
In order to prove the fourth equality, we first write

∂x(I(u)) = −
∞
∑

k=1

ckλ
1
2

k ∂xϕk in L2(Ω)

from which we deduce

∫

Ω

(I(u)x)
2 dx =

∞
∑

k=1

c2kλk

∫

Ω

(∂xϕk)
2 dx

=

∞
∑

k=1

c2kλk

∫

Ω

ϕk(−∂xxϕk) dx

=

∞
∑

k=0

c2kλ
2
k = ||u||2

Ḣ2
N

.

As far as the third equality is concerned, we note that

ux =

∞
∑

k=0

ck∂xϕk in L2(Ω).
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We then have

−
∫

Ω

I(u)xux dx =

∞
∑

k=0

c2kλ
1
2

k

∫

Ω

(∂xϕk)
2 dx

= −
∞
∑

k=0

c2kλ
1
2

k

∫

Ω

ϕk∂xxϕk dx

=
∞
∑

k=0

c2kλ
1
2

k

∫

Ω

λkϕ
2
k dx

=

∞
∑

k=0

c2kλ
3
2

k = ||u||2
Ḣ

3
2 (Ω)

.

3.3 The problem −I(u) = g

We conclude this preliminary section by giving a few results about the following
problem:

For a given g ∈ L2(Ω), find u ∈ H1(Ω) such that

−I(u) = g.
(24)

Note that
∫

Ω I(u) dx = 0 for all u ∈ H1(Ω) (since
∫

Ω ϕk dx = 0 for all k ≥ 1)
and so a necessary condition for the existence of a solution to (24) is

∫

Ω

g(x) dx = 0.

Note also that there is no uniqueness since if u is a solution then u+C is also a
solution for any constant C. We may however expect a unique solution if we add
the further constraint

∫

u dx = 0. Indeed, a weak solution u ∈ H
1
2 (Ω) for g ∈

H− 1
2 (Ω) can be found using Lax-Milgram theorem in {u ∈ H

1
2 (Ω) ;

∫

Ω
u dx =

0} equipped with the norm ||u||
Ḣ

1
2 (Ω)

. Alternatively, we can use the spectral

framework: For g ∈ L2(Ω) such that
∫

Ω
g(x) dx = 0, we have

g =

∞
∑

k=1

dkϕk with

∞
∑

k=1

d2k < ∞.

We can then write:

u = I−1(g) :=

∞
∑

k=1

dk

λ
1
2

k

ϕk (25)

which clearly lies in H1(Ω) and satisfies
∫

Ω u dx = 0. The fact that the ϕk’s
form an orthogonal basis of L2(Ω) implies that there is only one solution of (24)
such that

∫

Ω u dx = 0. Finally it is clear from (25) that further regularity on g
will imply further regularity on u. We sum up this discussion in the following
statement

17



Theorem 3. For all g ∈ L2(Ω) such that
∫

Ω
g dx = 0, there exists a unique

function u ∈ H1(Ω) such that −I(u) = g in L2(Ω) and
∫

Ω u dx = 0. Further-
more, if g is in H1(Ω), then u ∈ H2

N (Ω).

We will also use the following corollary of the previous theorem

Corollary 1. For all g ∈ L2(Ω), there exists a unique solution u ∈ H1(Ω) of

−I(v) +

∫

Ω

v dx = g.

Proof. Set m =
∫

Ω g(x) dx and consider g̃ = g − m. Then g̃ ∈ L2(Ω) and
∫

Ω
g̃dx = 0. There is a (unique) u ∈ H1(Ω) such that

−I(u) = g −m,

∫

Ω

u(x) dx = 0.

We then set v = u+m. Then
∫

Ω
v dx = m and

−I(v) = −I(u) = g −m = g −
∫

Ω

v dx.

As far as uniqueness is concerned, if we consider two solutions v1 and v2 then
we have

∫

Ω

v1dx =

∫

Ω

v2dx =

∫

Ω

g

and this implies that w = v1 − v2 satisfies −I(w) = 0. The uniqueness of the
solution given by Theorem 3 implies that w = 0 and the proof is complete.

4 A regularized problem

We now turn to the proof of Theorem 1. The degeneracy of the diffusion co-
efficient is a major obstacle to the development of a variational argument. As
in [11], the existence of solution for (2) is thus obtained via a regularization
approach: Given ε > 0, we consider

∂tu+ ∂x(fε(u)∂xI(u)) = 0, t ∈ (0, T ), x ∈ Ω (26)

where
fε(s) = s+

n + ε

(with s+ = max(s, 0)), with the initial condition

u(0, x) = u0(x) (27)

and boundary conditions

ux = 0 , fε(u)∂x(I(u)) = 0 on ∂Ω.

The first step in the proof of Theorem 1, is to prove the following proposition:
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Proposition 5 (Existence of solution for the regularized problem). For all

u0 ∈ H
1
2 (Ω) and for all T > 0, there exists a unique function uε such that

uε ∈ L∞(0, T ;H
1
2 (Ω)) ∩ L2(0, T ;H2

N(Ω))

solution of
∫∫

Q

uε∂tϕdxdt +

∫∫

Q

fε(u
ε)∂xI(u

ε)∂xϕdxdt = −
∫

Ω

u0ϕ(0, ·) dx (28)

for all ϕ ∈ C1
c ([0, T ), H

1(Ω)) with Q = Ω× (0, T ).
Moreover, the function uε satisfies

∫

Ω

uε(x, t) dx =

∫

Ω

u0(x) dx a.e. t ∈ (0, T ) (29)

and

‖uε(t, ·)‖2
Ḣ

1
2 (Ω)

+ 2

∫ t

0

∫

Ω

fε(u
ε)(∂xI(u

ε))2 dx ds ≤ ‖u0‖2
Ḣ

1
2 (Ω)

a.e. t ∈ (0, T ).

(30)
Finally, if Gε is a non-negative function such that G′′

ε (s) = 1
fε(s)

, then uε

satisfies for almost every t ∈ (0, T )

∫

Ω

Gε(u
ε)(x, t) dx +

∫ t

0

‖ uε(s)‖2
Ḣ

3
2
N
(Ω)

ds ≤
∫

Ω

Gε(u0) dx. (31)

Remark 2. Note that this result does not require condition (8) to be satisfied
and is thus valid with compactly supported initial data. However, we will need
condition (8) to get enough compactness on uε to pass to the limit ε → 0 and
complete the proof of Theorem 1.

There are several possible approaches to prove Proposition 5. In the next
sections, we present a proof based on a time discretization of (28) and fairly
classical monotonicity method (though the operator here is not monotone, but
only pseudo-monotone).

4.1 Stationary problem

In order to prove Proposition 5, we first consider the following stationary prob-
lem (for τ > 0):

For a given g ∈ H
1
2 (Ω), find u ∈ H2

N (Ω) such that
{

u+ τ∂x(fε(u)∂xI(u)) = g in Ω

∂xu = 0 and ∂xI(u) = 0 on ∂Ω.

(32)

Once we prove the existence of a solution for (32), a simple time discretization
method will provide the existence of a solution to (28). We are going to prove:
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Proposition 6 (The stationary problem). For all g ∈ H
1
2 (Ω), there exists

u ∈ H2
N (Ω) such that for all ϕ ∈ H1(Ω),

1

τ

∫

Ω

(u− g)ϕdx −
∫

Ω

fε(u) ∂xI(u) ∂xϕdx = 0 . (33)

Furthermore,
∫

Ω

u(x) dx =

∫

Ω

g(x) dx , (34)

‖u‖2
Ḣ

1
2 (Ω)

+ 2τ

∫

Ω

fε(u)(∂xIu)
2 dx ≤ ‖g‖2

Ḣ
1
2 (Ω)

, (35)

and if
∫

Ω
Gε(g) dx < ∞ then

∫

Ω

Gε(u) dx+ τ‖u‖2
Ḣ

3
2
N
(Ω)

≤
∫

Ω

Gε(g) dx. (36)

In order to prove such a result, we have to reformulate (33):

New formulation of (33). We are going to use classical variational methods
to show the existence of a solution to (33). In order to work with a coercive
non-linear operator, we need to take ϕ = −I(v) as a test function. We note,
however, that by doing that we would restrict ourself to test functions with
zero mean value. In order to recover all test functions from H1(Ω), we use
Corollary 1 and consider

ϕ = −I(v) +

∫

Ω

v dx (37)

for some function v ∈ H2
N (Ω). Let us emphasize the fact that Corollary 1 implies

in particular that there is a one-to-one correspondence between ϕ ∈ H1(Ω) and
v ∈ H2

N (Ω) satisfying (37).
Using (37), Equation (33) becomes:

−
∫

Ω

u I(v) dx+

(
∫

Ω

u dx

)(
∫

Ω

v dx

)

+ τ

∫

Ω

fε(u)∂xI(u)∂xI(v) dx

= −
∫

Ω

g I(v) dx +

(
∫

Ω

g dx

)(
∫

Ω

v dx

)

. (38)

We can now introduce the non-linear operator we are going to work with.

A non-linear operator. We define for all u and v ∈ H2
N (Ω)

A(u)(v) = −
∫

Ω

u I(v) dx+

(
∫

Ω

u dx

)(
∫

Ω

v dx

)

+ τ

∫

Ω

fε(u)∂xI(u)∂xI(v) dx.

One can now show that this non-linear operator is continuous, coercive and
pseudo-monotone. Classical theorems imply the existence of a solution to the
equation A(u) = g for proper g’s. More precisely, we have the following propo-
sition:
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Proposition 7 (Existence for the new problem). For all g ∈ H
1
2 (Ω) there exists

u ∈ H2
N (Ω) such that

A(u)(v) = −
∫

Ω

g I(v) dx +

(
∫

Ω

g dx

)(
∫

Ω

v dx

)

for all v ∈ H2
N (Ω). (39)

For the sake of readability, we postpone the proof of this rather technical
proposition to Appendix A, and we turn to the proof of Proposition 6.

Proof of Proposition 6. For a given g ∈ H
1
2 (Ω), Proposition 7 gives the exis-

tence of a solution u ∈ H2
N (Ω) of (38). We recall that for any ϕ ∈ H1(Ω), there

exists v ∈ H2
N (Ω) such that

ϕ = −I(v) +

∫

Ω

v dx

and so equivalently, we have that u satisfies (33) for all ϕ ∈ H1(Ω).
Next, we note that the mass conservation equality (34) is readily obtained

by taking v = 1 as a test function in (38), while (35) follows by taking v =
u−

∫

Ω u dx:

‖u‖2
Ḣ

1
2 (Ω)

+ τ

∫

Ω

fε(u)|∂xI(u)|2 = −
∫

Ω

gI(u) dx

≤ ‖g‖
Ḣ

1
2 (Ω)

‖u‖
Ḣ

1
2 (Ω)

≤ 1

2
||g||2

Ḣ
1
2 (Ω)

+
1

2
||u||2

Ḣ
1
2 (Ω)

.

Finally since G′
ε is smooth with G′

ε and G′′
ε bounded and Ω is bounded, we

have G′
ε(u) ∈ H1(Ω). We can thus find v ∈ H2

N (Ω) such that

−I(v) +

∫

Ω

v(x) dx = G′
ε(u).

Equation (38) then implies:

−
∫

Ω

uG′
ε(u) dx+ τ

∫

Ω

fε(u)F
′′
ε (u) ∂xI(u) ∂xu dx = −

∫

Ω

gG′
ε(u) dx

and so (using the definition of Gε given in Proposition 5)

−τ

∫

Ω

∂xI(u) ∂xu dx =

∫

Ω

G′
ε(u)(g − u) dx

Since Gε is convex (G′′
ε ≥ 0), we have G′

ε(u)(g − u) ≤ Gε(g) − Gε(u) and we
deduce (36) (using Proposition 4).
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4.2 Proof of Proposition 5

In order to construct the solution uε of (26), we discretize the problem with
respect to t, and construct a piecewise constant function

uτ (x, t) = un(x) for t ∈ (nτ, (n+ 1)τ), n ∈ {0, . . . , N + 1},

where τ = T/N and (un)n∈{0,...,N+1} is such that

1

τ
(un+1 − un) + ∂x(fε(u

n+1)∂xI(u
n+1)) = 0 .

The existence of the un follows from Proposition 6 by induction on n. We
deduce:

Corollary 2 (Discrete in time approximate solution). For any N > 0 and

uε
0 ∈ H

1
2 (Ω), there exists a function uτ ∈ L∞(0, T ;H

1
2 (Ω)) such that

• t 7→ uτ (x, t) is constant on [kτ, (k + 1)τ) for k ∈ {0, . . . , N}, τ = T
N ,

• uτ = u0 on [0, τ)× Ω,

• for all ϕ ∈ C1(0, T,H1(Ω)),

∫∫

Qτ,T

uτ − Sτu
τ

τ
ϕ dx dt =

∫∫

Qτ,T

fε(u
τ )∂xI(u

τ )∂xϕdxdt (40)

where Qτ,T = (τ, T )× Ω and Sτu
τ (x, t) = uτ (t− τ, x).

Moreover, the function uτ satisfies

∫

Ω

uτ (x, t) dx =

∫

Ω

u0(x) dx a.e. t ∈ (0, T ) (41)

and for all t ∈ (0, T )

‖uτ(t, ·)‖2
Ḣ

1
2 (Ω)

+ 2

∫ t

0

∫

Ω

fε(u
τ )(∂xI(u

τ ))2 dx dt ≤ ‖u0‖2
Ḣ

1
2 (Ω)

(42)

and if
∫

Ω
Gε(u0) dx < ∞, then for all t ∈ (0, T )

∫

Ω

Gε(u
τ (t, ·)) dx +

∫ t

0

‖uτ‖2
Ḣ

3
2
N
(Ω)

ds ≤
∫

Ω

Gε(u0) dx. (43)

It remains to prove that uτ converges to a solution of (28) as τ goes to
zero. This is fairly classical and we detail the proof for the interested reader in
Appendix B.

22



5 Proof of Theorem 1: Case n ≥ 2

Proposition 5 provides the existence of a solution uε ∈ L∞(0, T ;H
1
2 (Ω)) ∩

L2(0, T ;H2
N(Ω)) of (28). Our goal is now to pass to the limit ε → 0. We

point out that at this point, the solution uε may change sign and that it is only
at the limit ε → 0 that we are able to recover a non-negative solution, using the
fact that n ≥ 2.

Step 1: Compactness result. First, we note that (30) implies

||uε(t)||
H

1
2 (Ω)

≤ ||u0(t)||
H

1
2 (Ω)

for all ε > 0. (44)

The bound (44) and Sobolev embedding theorems imply that the sequence
(uε)ε>0 is bounded in L∞(0, T ;Lp(Ω)) for all p < ∞ and so fε(u

ε) is bounded in

L∞(0, T ;Lp(Ω)) for all p < ∞. Furthermore, (30) also gives that fε(u
ε)

1
2 ∂xI(u

ε)
is bounded in L2(0, T ;L2(Ω)). We deduce that

fε(u
ε)∂xI(u

ε) is bounded in L2(0, T ;Lr(Ω))

for all r ∈ [1, 2). Writing

∂tu
ε = −∂x(fε(u

ε)∂xI(u
ε)) in D′(Ω),

we deduce that (∂tu
ε)ε>0 is bounded in L2(0, T ;W−1,r′(Ω)) for all r′ ∈ (2,+∞).

Thanks to the following embeddings

H
1
2 (Ω) →֒ Lq(Ω) → W−1,r′(Ω)

for all q < ∞, if follows (using Aubin’s lemma) that (uε)ε>0 is relatively compact
in C0(0, T, Lq(Ω)) for all q < +∞. Hence, we can extract a subsequence, still
denoted by uε such that

uε −→ u in C0(0, T, Lq(Ω)) for all q < ∞

and
uε −→ u almost everywhere in Q.

Step 2: Passing to the limit in Equation (28). We now have to pass to
the limit in (28). We fix ϕ ∈ D(Q). Since uε → u in C0(0, T, L1(Ω)), we have

∫∫

Q

uε∂tϕdxdt →
∫∫

Q

u ∂tϕdxdt.

Next, we remark that(30) implies

ε

∫∫

Q

(∂xI(u
ε))2 dx dt ≤ 1

2
||u0||

H
1
2 (Ω)

.
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Cauchy-Schwarz inequality thus implies
∫∫

Q

ε∂xI(u
ε)∂xϕdxdt −→ 0 .

Finally, (30) implies that (uε)
n
2

+∂xI(u
ε) is bounded in L2(0, T, L2(Ω)). Since

uε is bounded in L∞(0, T ;Lp(Ω)) for all p < ∞ we deduce that (uε)n+∂xI(u
ε) is

bounded in L2(0, T ;Lr(Ω)) for all r ∈ [1, 2) and so

hε := (uε)n+∂xI(u
ε) ⇀ h in L2(0, T ;Lr(Ω))-weak.

Passing to the limit in (28), we get:
∫∫

Q

u ∂tϕdxdt+

∫∫

Q

h ∂xϕdxdt = −
∫∫

Q

u0ϕ(0, ·) dx dt

for all ϕ ∈ D(Q).

Step 3: Equation for the flux h. In order to get (7), it only remains to
show that

h = un
+∂xI(u)

in the following sense:
∫∫

Q

h φdx dt = −
∫∫

Q

nun−1
+ ∂xu I(u) φdx dt −

∫∫

Q

un
+I(u) ∂xφdx dt (45)

for all test function φ such that φ|∂Ω = 0; that is

h = ∂x(u
n
+I(u))− nun−1

+ (∂xu)I(u) in D′(Ω).

For that we note that since
∫

Ω

Gε(u0) dx ≤ C,

Inequality (31) implies that (uε)ε is bounded in L2(0, T ;H
3
2 (Ω)). Recall that

(∂tu
ε)ε is bounded in L2(0, T,W−1,r′(Ω)) for all r′ ∈ (2,+∞). Aubin’s lemma

then implies that uε is relatively compact in L2(0, T ;Hs(Ω)) for s < 3/2. In
particular, we can assume that

I(uε) −→ I(u) in L2(0, T ;L2(Ω))

and
∂xu

ε −→ ∂xu in L2(0, T ;Lp(Ω)), for all p < ∞.

Writing
∫∫

Q

hεφ =

∫∫

Q

(uε)n+∂xI(u
ε) φdx dt

= −
∫∫

Q

n(uε)n−1
+ ∂xu

ε I(uε) φdx dt −
∫∫

Q

(uε)n+ I(uε) ∂xφdx dt,

we see that those estimates, together with the fact that uε converges to u in
L∞(0, T ;Lp(Ω)) for all p < ∞, are enough to pass to the limit and get (45).
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Step 4: Properties of u. It is readily seen that u satisfies the conservation
of mass (10) (by passing to the limit in (29)), and the lower semicontinuity of
the norm implies the entropy inequality (12).

Next, Inequality (30) implies that gε = (uε
+)

n
2 ∂xI(u

ε) converges weakly in
L2((0, T )×Ω) to a function g, and the lower semicontinuity of the norm implies
(11). Proceeding as above we can easily show that

g = ∂x(u
n
2

+I(u))− n

2
u

n
2
−1

+ ∂xu I(u) in D′(Ω).

Step 5: non-negative solutions. It remains to prove that u is non-negative.
This will be a consequence of (31) and the fact that n ≥ 2. Indeed, we recall
that for all t we have

∫

Ω

Gε(u
ε(t) dx ≤

∫

Ω

Gε(u0) dx (46)

where is such that G′′
ε (s) =

1
(s+)n+ε . As noted in the introduction, we can take

Gε(s) =

∫ s

1

∫ r

1

G′′
ε (t) dt dr

which is a nonnegative convex function for all ε. Noticing that we can also write

Gε(s) =
∫ 1

s

∫ 1

r
G′′

ε (t) dt dr when s ≤ 1, it is readily seen that Gε(s) is decreasing
with respect to ε (so Gε(s) ≤ G0(s) for all ε > 0). Hence

∫

Ω

Gε(u0) dx ≤
∫

Ω

G0(u0) dx < +∞ .

We deduce (using (46)):

lim sup
ε→0

∫

Ω

Gε(u
ε(t)) dx < +∞ . (47)

Next, we recall that uε(·, t) converges strongly in Lp(Ω) to u(·, t). We can
thus assume that it also converges almost everywhere. Egorov’s theorem then
implies the existence of a set Aη ⊂ Ω such that uε(·, t) → u(·, t) uniformly in
Aη and |Ω \Aη| < η. For some δ > 0, we now consider

Cη,δ = Aη ∩ {u(·, t) ≤ −2δ}.

For every η, δ > 0 there exists ε0(η, δ) such that if ε ≤ ε0(η, δ), then uε(·, t) ≤
−δ in Cη,δ.

But this implies that Cη,δ has measure zero. Indeed, if not, then for ε ≤
ε0(η, δ) we have

Gε(u
ε(x, t)) ≥ Gε(−δ) −→ G0(−δ) = +∞ for all x ∈ Cη,δ

(we use here the assumption n ≥ 2) and by Fatou lemma, we get

lim inf
ε→0

∫

Cη,δ

Gε(u
ε(x, t)) dx ≥

∫

Cη,δ

lim inf
ε→0

Gε(u
ε(x, t)) dx = +∞
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which contradicts (47).
We deduce that for all δ > 0 and all η > 0 we have

|{u(·, t) ≤ −2δ}| ≤ |Cη,δ|+ |Ω \Aη| ≤ η

and so |{u(·, t) ≤ −2δ}| = 0 for all δ > 0. We can conclude that

{u(·, t) < 0} =
⋃

n≥1

{

u(·, t) < − 1

n

}

has measure zero and so u(x, t) ≥ a.e. x ∈ Ω and for all t > 0.

6 Proof of Theorem 1: Case n ∈ [1, 2)

When n ∈ [1, 2) the entropy inequality cannot be used to prove that limε→0 u
ε

is non-negative. We thus proceed as in Bertozzi and Pugh [14]: Introducing

fδ(s) =
s3+n

δsn + s3

and
uδ
0(x) = u0(x) + δ.

For n < 2, we have fδ(s) ∼ s3/δ as s → 0, and so the corresponding entropy
Gδ, defined by

Gδ(s) =

∫ s

1

∫ r

1

1

fδ(t)
dt dr =

∫ s

1

∫ r

1

δ

t3
+

1

tn
dt dr.

satisfies

Gδ(s) = δ

(

1

2s
+

s

2
− 1

)

+G0(s)

where G0(s) is bounded in the neighborhood of s = 0. It is thus readily seen
that there exists C such that

∫

Ω

Gε(u
δ
0(x)) dx < C.

Furthermore, we have Gδ(0) = +∞, so the proof developed in the previous
section (regularizing the equation by introducing fδ,ε(s) = fδ(s)+ε) implies the
existence of a non-negative solution uδ of

∂tu
δ + ∂x(fδ(u

δ)∂xI(u
δ)) = 0

satisfying the usual inequalities (mass conservation, energy and entropy inequal-
ity).

Proceeding as in the previous section, we can now show that the sequence
(uδ)δ>0 is relatively compact in C0(0, T, Lq(Ω)) for all q < +∞ and in L2(0, T ;Hs(Ω))
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for s < 3/2. In particular, we can extract a subsequence, still denoted uδ, such
that

uδ −→ u in C0(0, T, Lq(Ω)) for all q < +∞
uδ −→ u almost everywhere in Q

I(uδ) −→ I(u) in L2(0, T ;L2(Ω))

∂xu
δ −→ ∂xu in L2(0, T ;Lp(Ω)), for all p < +∞.

Furthermore, since uδ ≥ 0 for all δ > 0, we have

u ≥ 0 a.e. (x, t) ∈ Ω× (0, T ).

In order to pass to the limit in the equation, we mainly need to check that
fδ(u

δ) (respectively f ′
δ(u

δ)) converges to un (respectively nun−1) in Lp(Ω). This
is a direct consequence of the convergence almost everywhere of uδ, Lebesgue
dominated convergence theorem and the fact that

fδ(s) ≤ sn for all s ≥ 0

and

f ′
δ(s) =

3δs2+2n + ns5+n

(εsn + s3)2
≤ (n+ 2)sn−1 for all s ≥ 0

(note that we need n ≥ 1 to complete this computation).
This complete the proof of Theorem 1.

7 Proof of Theorem 2

In this section, we prove Theorem 2. We recall that n > 3 and we consider the
sequence uε of solution of the regularized equation (26) introduced in the proof
of Theorem 1.

We recall that inequality (31) implies that (uε)ε is bounded in L2(0, T ;H
3
2 (Ω)).

Since (∂tu
ε)ε is bounded in L2(0, T,W−1,r′(Ω)) for all r′ ∈ (2,+∞), Aubin’s

lemma implies that uε converges strongly in L2(0, T ; Cα(Ω)) for all α < 1. We
can thus find a subsequence such that uε(t) converges strongly in Cα(Ω) for
almost every t (that is for all t ∈ P , where |(0, T ) \ P | = 0).

Next, we note that for t ∈ P , u is actually strictly positive. Indeed, if
u(x0, t0) = 0, then for any α < 1, there is a constant Cα such that

u(x, t) ≤ C|x − x0|α

We deduce
∫

G(u(x, t0)) dx ≥
∫

1

(Cα|x− x0|α)n−2
dx
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Given n > 3 we can choose α < 1 such that α(n− 2) > 1. We deduce
∫

G(u(x, t0)) dx = ∞

which contradicts (31).

We deduce that there exists δ > 0 (depending on t) such that for ε small
enough

uε(·, t) ≥ δ in Ω.

Next, we note that after removing another set of measure zero to P , we can
always assume that

lim inf
ε→0

∫

fε(u
ε)|∂xI(uε)|2 dx < ∞ for all t ∈ P.

Indeed, if we denote

Ak = {t ∈ P ; lim inf
ε→0

∫

fε(u
ε)|∂xI(uε)|2 dx ≥ k}

we have (using Fatou’s lemma):

C ≥ lim inf
ε→0

∫ T

0

∫

fε(u
ε)|∂xI(uε)|2 dx dt

≥ lim inf
ε→0

∫

Ak

∫

fε(u
ε)|∂xI(uε)|2 dx dt

≥
∫

Ak

lim inf
ε→0

∫

fε(u
ε)|∂xI(uε)|2 dx dt

≥ k|Ak|

We deduce |Ak| ≤ C/k and thus

|{t ∈ P ; lim inf
ε→0

∫

fε(u
ε)|∂xI(uε)|2 dx = ∞}| = 0.

It follows that for t ∈ P , we have

lim inf
ε→0

|∂xI(uε)|2 dx < ∞

and so
uε(·, t) ⇀ u(·, t) in H2

N (Ω)-weak.

In particular we can pass to the limit in the flux Jε = fε(u
ε)∂xI(u

ε) and
write

lim
ε→0

Jε = J = f(u)∂xI(u) in L1(Ω), a.e. t ∈ (0, T ) .

Furthermore, we note that we recover the boundary condition in the classical
sense:

ux(x, t) = 0 for x ∈ ∂Ω and a.e. t ∈ (0, T ).
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A Proof of Proposition 7

We denote
V = H2

N (Ω).

For any u ∈ V the functional A(u) is clearly linear on V and since V is contin-
uously embedded in L∞(Ω), we have

|A(u)(v)| ≤
[

||u||
H

1
2 (Ω)

+ τ(ε+ ||u||3V )||u||V
]

||v||V . (48)

(Note that we used Proposition 4 to get this inequality). The non-linear operator
A is thus well-defined as a map from V to V ′. Moreover, it is bounded.

Next, we remark that we have

A(u)(u) ≥ −
∫

Ω

u I(u) dx+

(
∫

Ω

u dx

)2

+ ε

∫

Ω

|∂xI(u)|2 dx.

We deduce from Proposition 4 that

A(u)(u) ≥ τε||u|2H2
N
(Ω). (49)

In particular, we have

A(u)(u)

‖u‖V
→ +∞ as ‖u‖V → +∞.

The operator A is thus coercive. Proposition 7 will now be a consequence of
classical theorems if we prove that A is a pseudo-monotone operator. Since we
already know that A is bounded, it remains to prove the following lemma:

Lemma 2 (A is pseudo-monotone). Let uj be a sequence of functions in V such
that uj ⇀ u weakly in V . Then

lim inf
j

A(uj)(uj − v) ≥ A(u)(u − v).

Before we prove this lemma, let us notice that for g ∈ H
1
2 (Ω), the application

Tg : v 7→ −
∫

Ω

gI(v) dx +

(
∫

Ω

g dx

)(
∫

Ω

v dx

)

belongs to V ′. Hence, using Theorem 2.7 (page 180) of [31], we deduce that for

all g ∈ H
1
2 (Ω), there exists a function u ∈ V such that A(u) = Tg in V ′, which

completes the proof of Proposition 7.

It remains to prove Lemma 2.
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Proof of Lemma 2. We first write

A(uj)(uj − v) = −
∫

Ω

ujI(uj − v) dx+

(
∫

Ω

uj dx

)(
∫

Ω

(uj − v) dx

)

+τ

∫

Ω

fε(uj)∂xI(uj)∂xI(uj − v) dx

= ‖uj‖2
H

1
2 (Ω)

− 〈uj , v〉
H

1
2

+τ

∫

Ω

fε(uj)(∂xI(uj))
2 − τ

∫

Ω

fε(uj)∂x(Iuj)∂x(Iv) (50)

where

〈u, v〉
H

1
2
= −

∫

Ω

uI(v) dx+

(
∫

Ω

u dx

)(
∫

Ω

v dx

)

.

We need to check that we can pass to the limit in each of those terms.
Since uj converges weakly in V we immediately get

lim inf
j→+∞

‖uj‖2
H

1
2 (Ω)

≥ ‖u‖2
H

1
2 (Ω)

and
lim

j→+∞
〈uj , v〉

H
1
2
= −〈u, v〉

H
1
2
.

Since uj is bounded in H2
N (Ω), it is compact in L∞(Ω), and so fε(uj) converges

to fε(u) strongly in L∞(Ω). We thus write

∫

Ω

fε(uj)(∂xI(uj))
2 =

∫

Ω

(

fε(uj)− fε(u)
)

(∂xI(uj))
2 +

∫

Ω

fε(u)(∂xI(uj))
2

≥ −‖fε(uj)− fε(u)‖L∞(Ω)‖uj‖2V +

∫

Ω

fε(u)(∂xI(uj))
2.

The first term goes to zero and we have

√

fε(u)∂xI(uj) ⇀
√

fε(u)∂xI(u) in L2(Ω).

Again, the lower semicontinuity of the L2-norm gives

lim
j→∞

τ

∫

Ω

fε(u)(∂xI(uj))
2 ≥

∫

Ω

fε(u)(∂xI(u))
2.

Finally, we have

fε(uj)∂xI(v) → fε(u)∂xI(v) in L2(Ω) strong,

∂xI(uj) ⇀ ∂xI(u) in L2(Ω) weak

which gives the convergence of the last term in (50) and completes the proof of
the lemma.
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B Proof of Proposition 5

The proof of Proposition 5 is divided in three steps.

Step 1: a priori estimates. We summarize the a priori estimates in the
following lemma:

Lemma 3 (A priori estimates). The solution uτ constructed in Corollary 2
satisfies

‖uτ‖
L∞(0,T,H

1
2 (Ω))

≤ ‖uε
0‖H 1

2 (Ω)
, (51)

√
ε‖∂xI(uτ )‖L2(Q) ≤ C , (52)

∥

∥

∥

∥

uτ − Sτu
τ

τ

∥

∥

∥

∥

L2(τ,T,W−1,r′ (Ω))

≤ C, (53)

for all r′ ∈ (2,+∞) where C does not depend on τ > 0 (but does depend on r′).

Proof. Estimate (51) and (52) are direct consequences of (41) and (42).
Next, we note that

uτ − Sτu
τ

τ
= ∂x

(

− fε(u
τ )∂xI(u

τ )

)

.

The bound (51) and Sobolev embedding theorems imply that the sequence
(uτ )τ>0 is bounded in L∞(0, T, Lp(Ω)) for all p < ∞ and so fε(u

τ ) is bounded
in L∞(0, T, Lp(Ω)) for all p < ∞. Since ∂xI(u

τ ) is bounded in L2(Q), we deduce
that fε(u

τ )∂xI(u
τ ) is bounded in L2(τ, T, Lr(Ω)) for all r ∈ [1, 2). It follows

that
∂x (fε(u

τ )∂xI(u
τ )) is bounded in L2(τ, T,W−1,r′(Ω))

for all r′ ∈ (2,∞).

Step 2: Compactness result. Thanks to the following imbeddings

H
1
2 (Ω) →֒ Lq(Ω) → W−1,r′(Ω)

for all q < ∞, we can use Aubin’s lemma to obtain that (uτ )τ is relatively
compact in C0(0, T, Lq(Ω)) for all q < ∞.

Remark that (∂xI(u
τ ))τ is bounded in L2(Q) and (uτ )τ is bounded in

L∞(0, T ;L1(Ω)). It follows that (uτ )τ is bounded in L2(0, T,H2
N(Ω)). Since

H2
N (Ω) →֒ H

3
2

N (Ω) → W−1,r′(Ω)

we deduce that (uτ )τ is relatively compact in L2(0, T ;H
3
2

N(Ω)). Up to a subse-
quence, we can thus assume that as τ → 0, we have the following convergences:

• uτ → uε ∈ L∞(0, T,H
1
2 (Ω)) almost everywhere in Q;

• uτ → uε in L2(0, T,H1(Ω)) strong;

• ∂xI(u
τ ) ⇀ ∂xI(u

ε) in L2(Q) weak.
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Step 3: Derivation of Equation (28). We want to pass to the limit in (40).
We fix ϕ ∈ C1

c ([0, T ), H
1(Ω)). Then

∫∫

Qτ

uτ − Sτu
τ

τ
ϕ =

∫∫

Q

uτ (x, t)
ϕ(x, t) − ϕ(t+ τ, x)

τ

− 1

τ

∫ τ

0

∫

Ω

uτ (x, t)ϕ(x, t) dx +
1

τ

∫ T

T−τ

∫

Ω

uτ (x, t)ϕ(x, t) dx.

We deduce:
∫∫

Qτ

uτ − Sτu
τ

τ
ϕ → −

∫∫

Q

uε(∂tϕ)−
∫

Ω

uε(0, x)ϕ(0, x) dx + 0.

It remains to pass to the limit in the non-linear term. Let η > 0. Since uτ → uε

almost everywhere in Q, Egorov’s theorem yields the existence of a set Aη ⊂ Q
such that |Q \Aη| ≤ η and

uτ → uε uniformly in Aη .

In particular,
√

fε(uτ )∂xϕ →
√

fε(uε)∂xϕ in L2(Aη)

and
√

fε(uτ )∂xI(u
τ ) ⇀

√

fε(uε)∂xI(u
ε) in L2(Aη) . (54)

Hence
∫

Aη

fε(u
τ )∂xI(u

τ )∂xϕ →
∫

Aη

fε(u
ε)∂xI(u

ε)∂xϕ

as τ goes to zero.
Finally, we look at what happens on Q \ Aη. Choose p1, p2, p3 such that

∑

i p
−1
i = 1 and write

∫

Q\Aη

|fε(uτ )∂xI(u
τ )∂xϕ|

≤ ‖∂xϕ‖L∞(0,T,Lp1(Ω))

∫ T

0

‖fε(uτ )∂xI(u
τ )‖Lp2(Ω)‖1Q\Aη

‖Lp3(Ω)

≤ ‖∂xϕ‖L∞(0,T,Lp1(Ω))‖fε(uτ )∂xI(u
τ )‖L2(0,T,Lp2(Ω))‖1Q\Aη

‖L2(0,T,Lp3(Ω)) .

We now choose p2 ∈ [1, 2) (and so p1 > 2 and p3 > 2).

∫

Q\Aη

|fε(uτ )∂xI(u
τ )∂xϕ| ≤ C(ϕ)‖1Q\Aη

‖Lp3(Q) ≤ C(ϕ)η
1
p3 .

Since η is arbitrary, the proof is complete.
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Step 4: Inequalities. Since uτ → uε in L∞(0, T, L1(Ω)), mass conservation
equation (29) follows from (41).

Estimate (30) follows from (42). Indeed, since uτ → uε almost everywhere,
Proposition 4 and Fatou’s lemma imply that for almost t ∈ (0, T )

‖uε(t)‖2
Ḣ

1
2 (Ω)

≤ lim inf
τ→0

‖uτ(t)‖2
Ḣ

1
2 (Ω)

.

Thanks to (54), we also have

∫ T

0

∫

Ω

fε(u
ε)|∂xI(uε)|2 dx dt ≤ lim inf

τ→0

∫ T

0

∫

Ω

fε(u
τ )(∂xI(u

τ ))2 dx dt

+

∫ T

0

∫

Ω\Aη

fε(u
ε)|∂xI(uε)|2 dx dt.

Letting η → 0 permits to conclude.

To derive (31) we note that Gε(u
τ ) → Fε(u

ε) almost everywhere. So Fatou’s
Lemma implies for almost every t ∈ (0, T )

∫

Ω

Gε(u
ε(x, t)) dx ≤ lim inf

τ→0

∫

Ω

Gε(u
τ (x, t)) dx ≤

∫

Ω

Gε(u0) dx.

Finally, since (uτ )τ is relatively compact in L2(0, T ;H
3
2

N(Ω)), we have

∫ t

0

||uε(s)||2
Ḣ

3
2

ds = lim
τ→0

∫ t

0

||uτ (s)||2
Ḣ

3
2

ds

and so (31) follows from (43).
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