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We consider the synthesis problem of Compressed Sensing -given s and an M ×n matrix A, extract from it an m × n submatrix A m , certified to be s-good, with m as small as possible. Starting from the verifiable sufficient conditions of s-goodness, we express the synthesis problem as the problem of approximating a given matrix by a matrix of specified low rank in the uniform norm. We propose randomized algorithms for efficient construction of rank k approximation of matrices of size m × n achieving accuracy bounds O(1) ln(mn) k which hold in expectation or with high probability. We also supply derandomized versions of the approximation algorithms which does not require random sampling of matrices and attains the same accuracy bounds. We further demonstrate that our algorithms are optimal up to the logarithmic in m, n factor, i.e. the accuracy of such an approximation for the identity matrix I n cannot be better than O(1)k -1 2 . We provide preliminary numerical results on the performance of our algorithms for the synthesis problem.

Introduction

Let A ∈ R m×n be a matrix with m < n. Compressed Sensing focuses on recovery of a sparse signal x ∈ R n from its noisy observations

y = Ax + δ,
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We call the matrix A s-good if whenever the true signal x is s-sparse (i.e., has at most s nonzero entries) and there is no observation errors (ǫ = 0), x is the unique optimal solution to the optimization program min{ w 1 : Aw = Ax}.

To the best of our knowledge, nearly the strongest verifiable sufficient condition for A to be s-good is as follows (cf [START_REF] Juditsky | On verifiable sufficient conditions for sparse signal recovery via ℓ 1 minimization[END_REF]):

There exists Y ∈ R m×n such that I n -Y T A ∞ < 1 2s (1) 
(here and in what follows X ∞ = max i,j

|X ij |, X ij being the elements of X). 1In this paper we consider the synthesis problem of Compressed Sensing as follows:

Given s and an M × n matrix A, extract from it an m × n submatrix A m , certified to be s-good, with m as small as possible.

One can think, e.g., of a spatial or planar n-point grid E of possible locations of signal sources and an M-element grid S of possible locations of sensors. A sensor in a given location measures a known, depending on the location, linear form of the signals emitted at the nodes of E, and the goal is to place a given number m ≪ M of sensors at the nodes of S in order to be able to recover the location of sources via the ℓ 1 -minimization, conditioned that there are s sources at most. Since the property of s-goodness is difficult to verify, we will look for a submatrix of the original matrix A for which the s-goodness can be certified by the sufficient condition [START_REF] Achlioptas | Fast computation of low rank matrix approximations[END_REF]. Suppose that along with A we know an M × n matrix Y M which certifies that the "level of goodness" of A is at least s, that is, we have

I n -Ȳ T M A ∞ ≤ µ < 1 2s . (2) 
Then we can approach the synthesis problem as follows:

Given M × n matrices Y M and A and a tolerance ǫ > 0, we want to extract from A, m rows (the smaller is m, the better) to get an m × n matrix A m which, along with properly chosen Y m ∈ R m×n , satisfies the relation

Y T M A - Y T m A m ∞ ≤ ǫ.
Choosing ǫ < 1 2s -µ and invoking (2), we ensure that the output A m of the above procedure is s-good. This simple observation motivates our interest to the problem of approximating a given matrix by a matrix of specified (low rank) in the uniform norm.

Note that in the existing literature on low rank approximation of matrices the emphasis is on efficient construction when the approximation error is measured in the Frobenius norm (for the Frobenius norm

A F = i,j A 2 ij 1/2
). Though the Singular Value Decomposition (SVD) gives the best rank k approximation in terms of all the norms that are invariant under rotation (e.g., the Frobenius norm and the spectral norm), its computational cost may be prohibitive for applications involving large matrices. Recently, the properties of fast low rank approximations in the Frobenius norm based on the randomized sampling of rows (or columns) of the matrix (see, e.g., [START_REF] Drineas | Fast monte carlo algorithms for matrices ii: Computing a low-rank approximation to a matrix[END_REF][START_REF] Frieze | Fast monte-carlo algorithms for finding lowrank approximations[END_REF]) or random sampling of a few individual entries (see [START_REF] Achlioptas | Fast computation of low rank matrix approximations[END_REF] and references therein) has been studied extensively. Another randomized fast approximation based on the preprocessing by the Fast Fourier Transform or Fast Hadamard Transform has been studied in [START_REF] Nguyen | A fast and efficient algorithm for low-rank approximation of a matrix[END_REF]. Yet we do not know explicit bounds available from the previous literature which concern numerically efficient low rank approximations in the uniform norm.

In this work, we aim at developing efficient algorithms for building low rank approximation of a given matrix in the uniform norm. Specifically, we consider two types of low rank approximations:

1. Let W = Y T A, where Y and A are known M × n matrices. We consider the approximation W k = Y k A T k of W such that the matrices Y k and A k of dimension m k × n, m k ≤ k ≤ M,
are composed of multiples of the rows of the matrices Y and A respectively. We show that a fast (essentially, of numerical complexity O(kMn 2 )) approximation W k can be constructed which satisfies

W -W k ∞ = O(1)L(Y, A) ln[n] k ,
where L(Y, A) = i y i ∞ a i ∞ and y T i , a T i denote the i-th rows of Y and A respectively. Note that for moderate values of L(Y, A) = O(1) and k < n/2 this approximation is "quasi-optimal", as we know (cf, e.g. [START_REF] Juditsky | On verifiable sufficient conditions for sparse signal recovery via ℓ 1 minimization[END_REF]Proposition 4.2]) that (for certain matrices W ) the accuracy of such an approximation cannot be better than O(k -1/2 ).

Let

A ∈ R m×n , A = MN T , where M ∈ R m×d and N ∈ R n×d . We consider a fast approximation A k = k i=1 η i ζ T i of A
, where η i and ζ i are linear combinations of columns of M and N respectively. We show that this approximation satisfies

A -A k ∞ ≤ O(1)D ln[mn] k
where D is the maximal Euclidean norm of rows of M and N. We show that when A is an n × n identity matrix the above bound is unimprovable up to a logarithmic factor.

In this paper we propose two types of construction of fast approximations: we consider the randomized construction, for which the accuracy bounds above hold in expectation (or with significant probability). We also supply "derandomized" versions of the approximation algorithms which does not require random sampling of matrices and attains the same accuracy bounds as the randomized method.

Low rank approximation in Compressed Sensing

In this section we suppose to be given s and an M × n matrix A and our objective is to extract from A a submatrix A k which is composed of, at most, k rows of A, with as small k as possible, which is s-good. We assume that A admits a "goodness certificate" Y . Namely, we are given an M × n matrix Y such that

µ := I n -Y T A ∞ < 1 2s , (3) 
and we are looking for A k and the corresponding

Y k such that I n -Y T k A k < 1 2s .

Random sampling algorithm

The starting point of our developments is the following simple Lemma 2.1 Let for β > 0, let

V β (z) = β ln d i=1 cosh z i β -β ln d : R d × R + → R + . ( 4 
)
Then (i) we have z ∞ -β ln[2d] ≤ V β (z) ≤ z ∞ ; (ii) if β 1 ≤ β 2 then V β 1 (z) ≥ V β 2 (z);
(iii) function V β is convex and continuously differentiable on R d . Further, its gradient V ′ β is Lipschitz-continuous with the constant β -1 :

V ′ β (z 1 ) -V ′ β (z 2 ) 1 ≤ β -1 z 1 -z 2 ∞ , (5) 
and 

V ′ β (z) 1 ≤ 1 for all z ∈ R d .
S k = k i=1 ξ k . Then E{V β (S k )} ≤ E{V β ′ (S k-1 )} + σ 2 k 2β ′ . ( 6 
)
As a result,

E { S k ∞ } ≤ 2 ln[2d] k i=1 σ 2 i . (7) 
Proof. Let β ≥ β ′ . By applying items (ii) and (iii) of the lemma we get:

V β (S k ) ≤ V β ′ (S k ) ≤ V β ′ (S k-1 ) + V ′ β ′ (S k-1 ), ξ k + 1 2β ′ ξ k 2 ∞ .
When taking the expectation (first conditional to ξ 1 , ..., ξ k-1 ), due to E{ξ k |ξ 1 , ..., ξ k-1 } = 0 a.s., we obtain

E{V β (S k )} ≤ E{V β ′ (S k-1 )} + E{ ξ k 2 ∞ } 2β ′ ≤ E{V β ′ (S k-1 )} + σ 2 k 2β ′ ,
which is [START_REF] Nguyen | A fast and efficient algorithm for low-rank approximation of a matrix[END_REF]. Now let us set

β ′ = β = k i=1 σ 2 i 2 ln[2d] . Since V β (0) = 0 we conclude that E{V β (S k )} ≤ k i=1 σ 2 i 2β .
On the other hand, by item (i) of Lemma 2.1,

E{ S k ∞ } ≤ β ln[2d] + E{V β (S k )} ≤ β ln[2d] + k i=1 σ 2 i 2β ≤ 2 ln[2d] k i=1 σ 2 i .
The random sampling algorithm. Denoting y T i and a T i , i = 1, ..., M, i-th rows of Y and A, respectively, let us set

θ i = y i ∞ a i ∞ , L = i θ i , π i = θ i L , z i = L θ i y i , (8) 
and let W = Y T A. Observe that

W = M i=1 π i z i a T i , z i a T i ∞ = L, 1 ≤ i ≤ M, M i=1 π i = 1, π i ≥ 0, 1 ≤ i ≤ M. (9) 
Now let Ξ be random rank 1 matrix taking values z i a T i with probabilities π i , and let Ξ 1 , Ξ 2 , ... be a sample of independent realizations of Ξ. Consider the random matrix

W k = 1 k k ℓ=1 Ξ ℓ . Then W k is, by construction, of the form Y T k A k , where A k is a random m k × n submatrix of A with m k ≤ k.
As an immediate consequence of Proposition 2.1 we obtain the following statement:

Proposition 2.2 One has E { W k -W ∞ } ≤ 2Lk -1/2 2 ln(2n 2 ). ( 10 
)
In particular, the probability of the event

E = {Ξ 1 , ..., Ξ k : W k -W ∞ ≤ 4Lk -1/2 2 ln[2n 2 ]} is ≥ 1/2
, and whenever this event takes place, we have in our disposal a matrix Y k and a

m k × n submatrix A k of A with m k ≤ k such that I n -Y T k A k ∞ ≤ I n -W ∞ + W k -W ∞ ≤ µ k := µ + 4Lk -1/2 2 ln[2n 2 ]. (11) 
Proof. By (19) we have z i a T i ∞ ≤ L for all i, and besides this, treating i as random index distributed in {1, ..., n} according to probability distribution π = {π i } n i=1 , we have

E{z i a T i } = W . It follows that Ξ ℓ -W ∞ ≤ 2L and E{Ξ ℓ -W } = 0. If we denote S i = i ℓ=1 (Ξ ℓ -W ), when applying Lemma 2.1 we obtain E{ S k ∞ } ≤ 2L 2k ln[2n 2 ],
and we arrive at (10).

Discussion. Proposition 2.2 suggests a certain approach to the synthesis problem. Indeed, according to this Proposition, picking at random k rows a T i ℓ , where i 1 , ..., i k are sampled independently from the distribution π, we get with probability at least 1/2 a random 

m k × n matrix A k , m k ≤ k, which is provably s-good with s = O(1)(L ln[n]/k + µ) -1 . When L = O(

Derandomization

Looking at the proof of Proposition 2.1, we see that the construction of A k and Y k can be derandomized. Indeed, [START_REF] Nguyen | A fast and efficient algorithm for low-rank approximation of a matrix[END_REF] implies that Whenever S ∈ R n×n and β ≥ β ′ there exists i such that

V β (S + (z i a T i -W )) ≤ V β ′ (S) + 2L 2 β ′ .
Specifically, the above bound is satisfied for every i such that

V ′ β ′ (S), z i a T i -W ≤ 0,
and because π i ≥ 0 and i π i (z i a T i -W ) = 0, the latter inequality is certainly satisfied for some i. Now assume that given a sequence β 0 ≥ β 1 ≥ ... of positive reals, we build a sequence of matrices S i according to the following rules:

1. S 0 = 0; 2. S k+1 = S k + (v k a T ℓ k -W ) with ℓ k ∈ {1, ..., M} and v k ∈ R n such that V β k+1 (S k+1 ) ≤ V β k (S k ) + δ k , δ k ≤ 2L 2 β k . ( 12 
)
Then for every k ≥ 1 the matrix

U k = k -1 S k is of the form Y T k A k -W , where A k is a m k × n submatrix of A with m k ≤ k, and
S k ∞ ≤ β k ln[2n 2 ] + k-1 ℓ=0 δ ℓ , whence Y T k A k -I n ∞ ≤ µ + k -1 β k ln[2n 2 ] + k ℓ=1 δ ℓ .
In particular, for the choice

β ℓ = L 2k ln[2n 2 ] , ℓ = 0, ..., k, we obtain Y T k A k -I n ∞ ≤ µ + 2L 2 ln[2n 2 ] k
One can consider at least the following three (numerically efficient) policies for choosing v k and ℓ k satisfying (12); we order them according to their computational complexity.

A. Given S k , we test one by one the options ℓ k = i, v k = z i , i = 1, ..., M, until an option satisfying (12) is met (or test all the n options and choose the one which results in the smallest V β k+1 (S k+1 )). Note that accomplishing a step of this scheme requires O(Mn 2 ) elementary operations.

A ′ . In this version of A, we test the options ℓ k = i, v k = z i when picking i at random, as independent realizations of the random variable ı taking values 1, ..., M with probabilities π i , until an option with

V ′ β k (S k ), z i a T i -W ≤ 0 is met. Since E V ′ β k (S k ), z i a T i -W ≤ 0,
we may hope that this procedure will take essentially less steps than the ordered scan through the entire range 1, ..., M of values of i.

B.

Given S k we solve M one-dimensional convex optimization problems

t * i ∈ Argmin t∈R + V β k (S k + tz i a T i -W ), 1 ≤ i ≤ M, (13) 
then select the one, let its index be i * , with the smallest value of

V β k (S k +t * i z i a T i -W ), and put v k = t * i * z i * , ℓ k = i * .
If the bisection algorithm is used to find t * i , solving the problem (13) for one i to the relative accuracy ǫ requires O(n 2 ln ǫ -1 ) elementary operations. The total numerical complexity of the step of the method is O(Mn 2 ln ǫ -1 ).

C. Given S k , we solve M convex optimization problems

u * i ∈ Argmin u∈R n V β k (S k + ua T i -W ), 1 ≤ i ≤ M, (14) 
then select the one, let its index be i * , with the smallest value of V β k (S k +u * i a T i -W ), and set v k = u * i , ℓ k = i * . Note that due to the structure of V β to solve (14) it suffices to find a solution to the system

n ℓ=1 γ ℓ sinh(α jℓ + γ ℓ u j ) = 0, α jℓ = [S k ] jℓ -[W ] jℓ β k , γ ℓ = [A] ℓi β k , 1 ≤ j, ℓ ≤ n. ( 15 
)
Since the equations of the system (15) are independent, one can use bisection to find the component u j of the solution. 2 Finding a solution to the relative accuracy ǫ to each equation then requires O(n ln ǫ -1 ) arithmetical operations, and the total complexity of solving (14) becomes O(Mn 2 ln ǫ -1 ).

Selecting Y and W . Note that the numerical schemes of this section should be initialized with matrices Y and W = Y T A. We can do as follows:

1. We start with solving the problem

Y ∈ Argmin Z=[z T 1 ;...;z T M ]∈R M ×n M i=1 z i ∞ a T i ∞ : I n -Z T A ∞ ≤ µ ,
where µ is a certain fraction of 1 2s . Assuming the problem is feasible for the chosen µ, we get in this way the "initial point" -the matrix W = Y T A.

2. Then we apply the outlined procedure to find A k and Y k . At each step ℓ of this procedure, we get certain m ℓ × n submatrix A ℓ of A and a matrix Y ℓ . When I n -Y T ℓ A ℓ ∞ becomes less than 1 2s we terminate. Alternatively, we can solve at each step ℓ an auxiliary problem min U ∈R m ℓ ×n I n -U T A ℓ ∞ and terminate when the optimal value in this problem becomes less than 1 2s .

Choosing the sequence (β ℓ ). When the number k of steps of the iterative schemes of this section is fixed, the proof of Proposition 2.1 suggests the fixed choice of the "gain sequence" (β ℓ ):

β ℓ = L 2k ln[2n 2 ] , ℓ = 1, ..., k.
When the number k is not known a priori, one can use the sequence, computed recursively according to the rule

β ℓ = β ℓ-1 + 2L 2 ln[2n 2 ]β ℓ-1 , β 0 = 2L 2 ln[2n 2 ] ,
or, what is essentially the same, the sequence

β ℓ = 2L ℓ+1 ln[2n 2 ]
, ℓ = 0, 1, .... Another possible choice of β ℓ 's is as follows: observe first that the function V β (z) is jointly convex in β and z. Therefore, we may modify the above algorithms by adding the minimization in β. For instance, instead of the optimization problems (13) in item B we can consider M two-dimensional optimization problems

(t * i , β * i ) ∈ Argmin t,β∈R + β ln[2n 2 ] + V β (S k + tz i [A T ] T i -W ) , 1 ≤ i ≤ M;
we select the one with the smallest value of the objective

V β * i (S k +t * i z i a T i -W )+β * i ln[2n 2
], and set, as before, v k = t * i * z i * , ℓ k = i * . Note that such a modification does not increase significantly the complexity estimate of the scheme.

Numerical illustration

Here we report on preliminary numerical experiments with the synthesis problem as posed in the introduction. In our experiment, A is square, specifically, this is the Hadamard matrix H 11 of order 2048.

Recall that the Hadamard matrix H ν , ν = 0, 1, ... is a square matrix of order 2 ν given by the recurrence

H 0 = 1, H s+1 = H s H s H s -H s ,
whence H ν is a symmetric matrix with entries ±1 and

H T ν H ν = 2 ν I 2 ν .
The goal of the experiment was to extract from A = H 11 an m × 2048 submatrix A m which satisfies the relation (cf. (1))

Opt(A m ) := min

Ym∈R m×n I n -Y T m A m ∞ < 1 2s
, n = 2048 (16) with s = 10; under this requirement, we would like to have m as small as possible. In Compressed Sensing terms, we are trying to solve the synthesis problem with A = H 11 ; in low rank approximation terms, we want to approximate I 2048 in the uniform norm within accuracy < 0.05 by a rank m matrix of the form Y T m A m , with the rows of A m extracted from H 11 . The advantages of the Hadamard matrix in our context is twofold:

1. The error bound (10) is proportional to the quantity L defined in (8). By the origin of this quantity, we clearly have [START_REF] Drineas | Fast monte carlo algorithms for matrices ii: Computing a low-rank approximation to a matrix[END_REF]. On the other hand, with A = H ν being an Hadamard matrix, setting Y = 2 -n Y H ν , so that Y T A -I 2 ν , we ensure the validity of (3) with µ = 0 and get L = 1, that is, µ is as small as it could be, and L is nearly as small as it could be.

Y T A ∞ ≤ L, whence L ≥ 1 -µ > 1 -1 2s ≥ 1/2 by
2. Whenever A m is a submatrix of H ν , the optimization problem in the left hand side of ( 16) is easy to solve.

Item 2 deserves an explanation. Clearly, the optimization program in (16) reduces to the series of n = 2048 LP programs

Opt i (A m ) = min y∈R m e i -A T m y ∞ , 1 ≤ i ≤ n, (17) 
where e i is the standard basic orth in R n ; and Opt(A m ) = max i Opt i (A m ). The point is (for justification, see Appendix B) that when A m is an m × n submatrix of the n × n Hadamard matrix, Opt i (A m ) is independent of i, so that checking the inequality in (16) requires solving a single LP program with m variables rather than solving n LO programs of the same size.

The experiment was organized as follows. As it was already mentioned, we used ν = 11 (that is, n = 2048) and s = 10 (that is, the desired uniform norm of approximating I 2048 by Y T m A m was 0.05). We compared two approximation policies:

• "Blind" approximation -we choose a random permutation σ( 8) in the case of A = H ν ), we look for the best approximation of the form Y T k A k , where A k is the submatrix of A with the row indices σ(1), ..., σ(k).

• "Active" approximation, which is obtained from algorithm A ′ by the same refinement as in the previous item.

In our experiments, we ran every policy 6 times. The results were as follows: "Blind" policy B: the rank of 0.05-approximation of W = I 2048 varied from 662 to 680.

"Active" policy A: the rank of 0.05-approximation of W varied from 617 to 630. Note that in both algorithms the resulting matrix A m is built "row by row", and the certified levels of goodness of the intermediate matrices A 1 , A 2 , ... are computed. In the below table we indicate, for the most successful (resulting in the smallest m) of the 6 runs of each algorithm, the smallest values of k for which A k was certified to be s-good, s = 1, 2, ..., 10: Finally, we remark that with A being the Hadamard matrix H ν , the "no refinement" versions of our policies would terminate according to the criterion

s
I n -1 k A T k A k ∞ < 1 2s
, which, on a closest inspection, is nothing but a slightly spoiled version of the goodness test based on mutual incoherence [START_REF] Donoho | Stable recovery of sparse overcomplete representations in the presence of noise[END_REF] 3 . In the experiments we are reporting, this criterion is essentially weaker that the one based on (16): for the best, over the 6 runs of the algorithms A and B, 10-good submatrices A m of H 11 matrices we got the test based on mutual incoherence certifies the levels of goodness as low as 5 (in the case of B) and 7 (in the case of A).

3 Low rank approximation of arbitrary matrices ...; p T m ] ∈ R m×d and Q = [q T 1 ; ...; q T n ] ∈ R n×d be such that the Euclidean norms of the vectors p i and q j of P and Q are bounded by √ D. Let an m × n matrix A be represented as

A = P Q T

Given a positive integer k, consider the random matrix

A k = 1 k P k i=1 ξ i ξ T i Q T 1 k k i=1 η i ζ T i , η i := η[ξ i ] = P ξ i , ζ i := ζ[ξ i ] = Qξ i , (18) 
where

ξ i ∼ N (0, I d ), i = 1, ..., k are independent standard normal random vectors from R d . Then k ≥ 8 ln(4mn) ⇒ Prob{ A k -A ∞ ≤ 8 ln(4mn)D √ k } ≥ 1 2 . ( 19 
)
For the proof, see Appendix C.

The norm associated with Proposition 3.1

Some remarks are in order. The result of Proposition 3.1 brings to our attention to the smallest D such that a given matrix A can be decomposed into the product P Q T of two matrices with the Euclidean lengths of the rows not exceeding √ D. On the closest inspection, D turns out to be an easy-to-describe norm on the space R m×n of m × n matrices. Specifically, let A , A ∈ R m×n , be

A = min t,M,N t : M A A T N 0, M ii ≤ t ∀i, N jj ≤ t ∀j
This relation clearly defines a norm, and one clearly has A = A T .

Proposition 3.2 For every A ∈ R m×n , there exists representation m+n) and Euclidean norms of rows in P, Q not exceeding A . Vice versa, if A = P Q T with the rows in P, Q of Euclidean norms not exceeding √ D, then A ≤ D.

A = P Q T with P ∈ R m×(m+n) , Q ∈ R n×(
The next result summarizes the basic properties of the norm we have introduced.

Proposition 3.3 Let A be m × n matrix. Then (i) A ∞ ≤ A ≤ min[m, n] A ∞ . (ii) A ≤ A 2,2
, where A 2,2 is the usual spectral norm of A (the maximal singular value).

(iii

) If A is symmetric positive semidefinite, then A = A ∞ .
(iv) If the Euclidean norms of all rows (or all columns) of A are ≤ D, then A ≤ D.

For the proof, see Appendix D.

Lower bound

We have seen that if A ∈ R m×n , then the • ∞ -error of the best in this norm approximation of A by a matrix of rank k is at most O(1) ln[mn] A k -1/2 . We intend to demonstrate that in general this bound is unimprovable, up to a logarithmic in m and n factor. Specifically, the following result holds:

Proposition 3.4 When n ≥ 2k, the • ∞ error

of any approximation of the unit matrix

I n by a matrix of rank k is at least 1 2 √ k . ( 20 
)
Note that I n = 1.

Proof [cf. [START_REF] Juditsky | On verifiable sufficient conditions for sparse signal recovery via ℓ 1 minimization[END_REF]Proposition 4.2]] Let α(n, k) be the minimal • ∞ error of approximation of I n by a matrix of rank ≤ k; this function clearly is nondecreasing in n. Let ν be an integer such that k < ν ≤ n, and A be an ν × ν matrix of rank ≤ k such that

I ν -A ∞ = α := α(ν, k). By variational characterization of singular values, at least ν -k singular values of I ν -A are ≥ 1, whence Tr([I ν -A][I ν -A] T ) ≥ ν -k. On the other hand, I ν -A ∞ ≤ α, whence Tr([I ν -A][I ν -A] T ) ≤ ν 2 α 2 . We conclude that α 2 ≥ ν-k
ν 2 for all ν with k < ν ≤ n, whence α 2 ≥ 1 4k when n ≥ 2k. We have seen that when A ∈ R m×n , A admits rank-k approximations with the approximation error, measured in the • ∞ -norm, of order of ln[mn] A k -1/2 . Note that the error bound deteriorates as A grows. A natural question is, whether we could get similar results with a "weaker" norm of A as a scaling factor. Seemingly the best we could hope for is A ∞ in the role of the scaling factor, meaning that whenever all entries of an m × n matrix A are in [-1, 1], A can be approximated in • ∞ -norm by a matrix of rank k with approximation error which, up to a logarithmic in m, n factor, depends solely on k and goes to 0 as k goes to infinity. Unfortunately, the reality does not meet this hope. Specifically, let A = H ν be the n×n Hadamard matrix (n = 2 ν ), so that A ∞ = 1. Since A Proof of Lemma 2.1 Properties (i) and (ii) are immediate consequences of the definition of V β . Observe that V β is convex and continuously differentiable with

d dt t=0 V β (x + th) = d i=1 sinh(x i /β)h i d i=1 cosh(x i /β) ≤ h ∞ ∀h, whence V ′ β (x) 1 ≤ 1 for x ∈ R d .
Verification of (5) takes one line: V β is twice continuously differentiable with

d 2 dt 2 t=0 V β (x + th) = β -1 d i=1 cosh(x i /β)h 2 i d i=1 cosh(x i /β) -β -1 d i=1 sinh(x i /β)h i 2 d i=1 cosh(x i /β) 2 ≤ β -1 h 2 ∞ .
B Problems (17) in the case of Hadamard matrix A

We claim that if A m is an m × 2 ν submatrix of the Hadamard matrix H ν of order n = 2 ν , then the optimal values in all problems (17) are equal to each other. The explanation is a s follows. Let G be a abelian group of cardinality n. Recall that a character of G is a complex-valued function ξ(g) such that ξ(0) = 1 and ξ(g 

+ h) = ξ(g)ξ(h)
ξ(h)]| = max h∈G |ℜ[e 0 (h -g) -ξ∈Q [y ξ ξ(g)]ξ(h -g)]| = max f =h-g∈G |ℜ[e 0 (f ) -ξ∈Q [y ξ ξ(g)]ξ(f )|.
As applied to G = Z ν 2 , this observation implies that all quantities given by (17) are the same.

C Proof of Proposition 3.1

The reasoning to follow is completely standard. Let us fix i, 1 ≤ i ≤ m, and j, 1 ≤ j ≤ n, and let ξ ∼ N (0, I d ), µ = D -1/2 p T i ξ, ν = D -1/2 q T j ξ, and α = D -1 A ij . Then [µ; ν] is a normal random vector with E{µ 2 } ≤ 1, E{ν 2 } ≤ 1 and E{µν} = α. We can find a normal random vector

z = [u; v] ∼ N (0, I 2 ) such that µ = au, ν = bu + cv; note that a 2 ≤ 1, b 2 + c 2 ≤ 1 and ab = E{µν} = α. Note that µν = z T Bz with B = ab ac/2 ac/2 0 .
Denoting λ 1 , λ 2 the eigenvalues of B, we have

λ 1 + λ 2 = Tr(B) = ab = α, λ 2 1 + λ 2 2 = Tr(BB T ) = a 2 (b 2 + c 2 /2) ≤ 1. (21) 
Now let γ ∈ R be such that |γ| ≤ 1/4. By (21) we have I 2 -2B ≻ 0, whence

E{exp{γµν}} = E{exp{γz T Bz}} = Det -1/2 (I 2 -2γB) = [(1 -2γλ 1 )(1 -2γλ 2 )] -1/2 .
Let t = 8 ln(4mn) and k ≥ t, and let [µ ℓ ; ν ℓ ], 1 ≤ ℓ ≤ k, be independent random vectors with the same distribution as that of [µ; ν]. Then for every γ ∈ (0, 1/4] we have

κ + := Prob{k[A k ] ij > D[αk + tk 1/2 ]} = Prob{ ℓ=1 µ ℓ ν ℓ ≥ αk + tk 1/2 } ≤ E{exp{γ k ℓ=1 µ ℓ ν ℓ }} exp{-γk(α + k -1/2 t)} = [E{exp{γµν}}] k exp{-γk(α + k -1/2 t)} = [(1 -2γλ 1 )(1 -2γλ 2 )] -k/2 exp{-γk(α + k -1/2 t)}, so that ln κ + ≤ k 2 -2γ(α + k -1/2 t) -ln(1 -2γλ 1 ) -ln(1 -2γλ 2 ) ≤ k 2 -2γ[λ 1 + λ 2 ] -2γk -1/2 t -ln(1 -2γλ 1 ) -ln(1 -2γλ 2 ) ≤ k 2 -2γk -1/2 t + 4γ 2 (λ 2 1 + λ 2 2 )
where the last inequality follows from |2γλ s | ≤ 1/2, for s = 1, 2, andln(1r)r ≤ r 2 when |r| ≤ 1/2. Using (21) we obtain,

ln κ + ≤ k 2 -2γk -1/2 t + 4γ 2 .
Setting γ = t 4k 1/2 (this results in 0 < γ ≤ 1/4 due to k 1/2 ≥ t), we get

Prob{k[A k ] ij > A ij k + Dtk 1/2 } = κ + ≤ exp{-t 2 /8} = (4mn) -1 . Letting κ -= Prob{k[A k ] ij < A ij k -Dk 1/2 t}, we have κ -≤ E{exp{-γ k ℓ=1 µ ℓ ν ℓ }} exp{-γk(-α + k -1/2 t)}
for all γ ∈ (0, 1/4], whence, same as above,

Prob{k[A k ] ij < kA ij -Dk 1/2 t} = κ -≤ (4mn) -1 .
We see that Prob{|

[A k ] ij -A ij | > Dtk -1/2 } ≤ 1 2mn
.

Since this relation holds true for all i, j, we conclude that 

Prob{ A k -A ∞ > Dk
L ii |W ij |R jj = 2 i L ii j |W ij |R jj ≤ 2 [|W |] i,j 2,2 i L 2 ii j R 2 jj ≤ ( * ) 2 min[m, n] ( i λ i )( j ρ j ) ≤ D, (22) 
where the concluding ≤ is due to (b), and ( * ) is given by the following reasoning: w.l.o.g. we can assume that n ≤ m. Since W is of the matrix norm ≤ 1, the columns U j of U = [|W ij |] i,j satisfy U j 2 ≤ 1, whence

Ux 2 ≤ n i=1 |x j | j 2 ≤ √ n x 2 ∀x.
The resulting inequality in ( 22) contradicts (c); we have arrived at a desired contradiction. (i) is proved.

(ii): This is evident, since A 2,2 I m A A T A 2,2 I n 0.

(iii): This is evident, since for A 0 we have A A A A 0.

(iv): Since A = A T , it suffices to consider the case when the rows of A are of the norm not exceeding D. In this case, the result is readily given by the fact that D -1 AA T A A T DI n 0.

  1), this is nearly as good as it could be, since the sufficient condition for sgoodness stated in (1) can justify s-goodness of an m × n sensing matrix with n > O(1)m only when s ≤ O(1) √ m, see [5, Proposition 4.2].
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 1 Randomized approximation Proposition 3.1 Let D ≥ 0, and let P = [p T 1 ;

- 1 / 2 t} ≤ 1/ 2 .D Proofs for section 3. 2 Proof of Proposition 3 . 2 .λ

 122232 First claim: there exist M, N such that the matrix A = M A A T N is positive semidefinite and has all diagonal entries, and then all entries, in [-A , A ]. Let A = BB T ; then the rows in B have Euclidean norms ≤ . Representing B = [P ; Q] with m rows in P and n rows in Q, the relation [P ; Q][P ; Q] T = A implies that A = P Q T . Second claim: Let A = P Q T with the Euclidean norms of rows in P, Q not exceeding √ D. T and the diagonal entries in M = P P T and N = QQ T do not exceed D. Proof of Proposition 3.3. (i): The first inequality in (i) is evident. Let us prove the second. W.l.o.g. we can assume A ∞ ≤ 1. In this case our statement reads Opt := min t,M,N t :M A A T N 0, t -M ii ≥ 0∀i, t -N jj ≥ 0 ∀j ≤ D = min[m, n].Assume, on the contrary, that Opt > D. Since the semidefinite problem defining Opt is strictly feasible, the dual problem max ≥ 0, ρ ≥ 0, i λ i + j ρ j = 1 Tr(XM) + Tr(Y N)+ i λ i (t -M ii ) + j ρ j (t -N jj ) ≡ t ∀M, N, t           has a feasible solution with value of the objective > D. In other words, there exist nonnegative vectors λ ∈ R m , ρ ∈ R n and a matrix V = -Z ∈ R m×n such that i λ i + j ρ j = 1 (c) 2Tr(V T A) > D.By (a), letting L = Diag{ √ λ i }, R = Diag{ √ ρ j }, we have V = LW R with certain W , W 2,2 ≤ 1 ( • 2,2 is the usual matrix norm, the maximum singular value), thus 2Tr(V T A) = 2Tr(RW T LA) ≤ 2 i,j |[RW T L] ij | = 2 i,j

  for all g, h ∈ G; from this definition it immediately follows that |ξ(g)| ≡ 1. The characters of a finite abelian group G form abelian group G * , the multiplication being the pointwise multiplication of functions, and this group is isomorphic to G. The Fourier Transform matrix associated with G is the n×n matrix with rows indexed by ξ ∈ G * , columns indexed by g ∈ G and entries ξ(g). For example, the usual DFT matrix of order n corresponds to the cyclic group G = Z n := Z/nZ, while the Hadamard matrix H ν is nothing but the Fourier Transform matrix associated with G = [Z 2 ] ν (in this case, all characters take values ±1). For g ∈ G let e g (h) stands for the function on G which is equal to 1 at h = g and is equal to 0 at h = g. Given an m-element subset Q of G

* , consider the submatrix A = [ξ(g)] ξ∈Q g∈G of the Fourier Transform matrix, along with n optimization problems min y∈C m ℜ[e g -A T y] ∞ = min y ξ ∈C max h∈G |ℜ[e g (h) -ξ∈Q y ξ ξ(h)]| (P g ) These problems clearly have equal optimal values, due to max h∈G |ℜ[e g (h) -ξ∈Q y ξ

We address the reader to[START_REF] Juditsky | On verifiable sufficient conditions for sparse signal recovery via ℓ 1 minimization[END_REF] for details concerning the derivation, the link to the necessary and sufficient condition of s-goodness and its comparison to traditional non-verifiable sufficient conditions for s-goodness based on Restricted Isometry or Restricted Eigenvalue Property and a verifiable sufficient condition based on mutual incoherence.

Note that due to the convexity of the left-hand side of the equation in (15), even faster algorithm of Newton family can be used.

The mutual incoherence test is as follows: given a k × n matrix B = [b 1 , ..., b n ] with nonzero columns, we compute the quantity µ(B) = max i =j |b T i b j |/b T i b i and claim that B is s-good for all s such that s < 1+µ(B) 2µ(B). With the Hadamard A, the "no refinement" criterion for our scheme is nothing but s < 1 2µ(A k ) .