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We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. For Lorentzian surfaces, this generalizes a recent work of the first author in R 2,1 to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well as for spacelike and timelike immersions of surfaces of signature (0,2), hence achieving a complete spinorial description for this class of pseudo-Riemannian immersions.

Introduction

A fundamental question in the theory of submanifolds is to know whether a (pseudo-)Riemannian manifold (M p,q , g) can be isometrically immersed into a fixed ambient manifold (M r,s , g). In this paper, we focus on the case of hypersurfaces, that is, codimension 1. When the ambient space is a space form, as the pseudo-Euclidean space R p,q and the pseudo-spheres S p,q of positive constant curvature, or the pseudo-hyperbolic spaces H p,q of negative constant curvature, the answer is given by the well-known fundamental theorem of hypersurfaces:

Theorem. [START_REF] Oneill | Semi-riemannian geometry with applications to relativity[END_REF] (M p,q , g) be a pseudo-Riemannian manifold with signature (p, q), p + q = n. Let A be a symmetric Codazzi tensor , that is,

d ∇ A = 0, satisying R(X, Y )Z = δ A(Y ), Z A(X) -A(X), Z A(Y ) + κ Y, Z X -X, Z Y
with κ ∈ R for all x ∈ M and X, Y, Z ∈ T x M . Then, if δ = 1 (resp. δ = -1), there exists locally a spacelike (resp. timelike) isometric immersion of M in M p+1,q (κ) (resp. M p,q+1 (κ)).

In the Riemannian case and for small dimensions (n = 2 or 3), an other necessary and sufficient condition is now well-known. This condition is expressed in spinorial terms, namely, by the existence of a special spinor field. This work initiated by Friedrich [START_REF] Friedrich | On the spinor representation of surfaces in Euclidean 3-space[END_REF] in the late 90's for surfaces of R 3 was generalized for surfaces of S 3 and H 3 [START_REF] Morel | Surfaces in S 3 and H 3 via spinors, Actes du séminaire de théorie spectrale et géométrie[END_REF] and other 3-dimensional homogeneous manifolds [START_REF] Roth | Spinorial characterizations of surfaces into 3-homogeneous manifolds[END_REF].

The first author [START_REF] Lawn | A spinorial representation for lorentzian surfaces in R 2,1[END_REF] uses this approach to give a spinorial characterization of space-like immersions of Lorentzian surfaces in the Minkowski space R 2,1 . In this paper, we give a generalization of this result to Lorentzian or Riemannian surfaces into one of the three Lorentzian space forms, R 2,1 , S 2,1 or H 2,1 . These finally allows us to give a complete spinorial characterization for spacelike as well as for timelike immersions of surfaces of arbitrary signature into pseudo-Riemannian space forms.

We will begin by a section of recalls about extrinsic pseudo-Riemannian spin geometry. For further details, one refers to [START_REF] Bär | Generalized cylinders in semi-Riemannian and spin geometry[END_REF][START_REF] Baum | Spin-Strukturen und Dirac Operatoren über pseudo-Riemannschen Mannigfaltgkeiten[END_REF] for basic facts about spin geometry and [START_REF] Bär | Generalized cylinders in semi-Riemannian and spin geometry[END_REF][START_REF] Baum | Codazzi spinors and global ly hyperbolic manifolds with special holonomy[END_REF][START_REF] Lawson | Spin Geometry[END_REF] for the extrinsic aspect.

Preliminaries

Pseudo-Riemannian spin geometry

Let (M p,q , g), p + q = 2, be an oriented pseudo-Riemannian surface of arbitrary signature isometrically immersed into a three-dimensional pseudo-Riemannian spin manifold (N r,s , g). We introduce the parameter ε as follows: ε = i if the immersion is timelike and ε = 1 if the immersion is spacelike. Let ν be a unit vector normal to M . The fact that M is oriented implies that M carries a spin structure induced from the spin structure of N and we have the following identification of the spinor bundles and Clifford multiplications:

ΣN |M ≡ ΣM. X • ϕ |M = εν • X • ϕ) |M ,
where • and • are the Clifford multiplications, respectively on M and N . Moreover, we have the following well-known spinorial Gauss formula

(1) ∇ X ϕ = ∇ X ϕ - ε 2 A(X) • ϕ,
where A is the shape operator of the immersion. Finally, we recall the Ricci identity on M

(2) R(e 1 , e 2 )ϕ = 1 2 ε 1 ε 2 R 1221 e 1 • e 2 • ϕ,
where e 1 , e 2 is a local orthonormal frame of M and ε j = g(e j , e j ).

The complex volume element on the surface depends on the signature and is defined by

ω C p,q = i q+1 e 1 • e 2 .
Obviously ω C p,q 2 = 1 independently of the signature and the action of ω C splits ΣM into two eigenspaces Σ ± M of real dimension 2. Therefore, a spinor field ϕ can be written as

ϕ = ϕ + + ϕ -with ω C • ϕ ± = ±ϕ ± . Finally, we denote ϕ = ω C • ϕ = ϕ + -ϕ -.

Restricted Killing spinors

Let (M p,q , g), p + q = 2 be a surface of the pseudo-Riemannian space form M r,s (κ), r + s = 3, p r, q s. This space form carries a Killing spinor ϕ, that is satisfying ∇ X ϕ = λX • ϕ, with κ = 4λ 2 . From the Gauss formula (1), the restriction of ϕ on M satisfies the equation

(3) ∇ X ϕ = ε 2 A(X) • ϕ + λX • ϕ.
But we have

X • ϕ = ε 2 ν • ν • X • ϕ = -ε 2 ν • X • ν • ϕ = -εX • (ν • ϕ).
Moreover, the complex volume element ω C r,s = -i s e 1 • e 2 • ν of M r,s (κ) over M acts as the identity on ΣM r,s (κ) |M ≡ ΣM . Thus, we have

ν • ϕ = ω C r,s • ϕ = -i s ν • e 1 • e 2 • ν • ϕ = i s ν • e 1 • ν • e 2 • ϕ = i s ε 2 (εν • e 1 ) • (ενe 2 • ϕ) = i s ε 2 e 1 • e 2 • ϕ.
Hence a simple case by case computation shows that we have

X • ϕ = -i s ε 3 X • e 1 • e 2 • ϕ = iX • ω C p,q • ϕ = iX • ϕ.
in the six possible cases (for the three possible signatures (2,0), (1,1), (0,2) of the surface with respectively ε = 1 or i).

We will call a spinor solution of equation ( 3) a real special Killing spinor (RSK)spinor if ε ∈ R, and an imaginary special Killing spinor (ISK)-spinor if ε ∈ iR.

Norm assumptions

In this section, we precise the norm assumptions useful for the statement of the main result. Let (M p,q , g) be a pseudo-Riemannian surface and ϕ spinor field on M . Let ε = 1 or i and λ ∈ R or iR. We say that ϕ satisfies the norm assumption N ± (p, q, λ, ε) if the following holds:

1. For p = 2, q = 0 or p = 0, q = 2:

• If ε = 1, then X|ϕ 1 | 2 = ±2ℜe iηX • ϕ, ϕ . • If ε = i, then X ϕ, ϕ = ±2ℜe iηX • ϕ 1 , ϕ 1 . 2. For p = 1, q = 1: ϕ is non-isotropic 3 
The main result

We now state the main result of the present paper.

Theorem 1. Let (M p,q , g), p + q = 2 be an oriented pseudo-Riemannian manifold. Let H be a real-valued function. Then, the three following statements are equivalent:

1. There exist two nowhere vanishing spinor fields ϕ 1 and ϕ 2 satisfying the norm assumptions N + (p, q, λ, ε) and N -(p, q, λ, ε) respectively and

Dϕ 1 = 2εHϕ 1 + 2iλϕ 1 and Dϕ 2 = -2εHϕ 2 -2iλϕ 2 .
2. There exist two spinor fields ϕ 1 and ϕ 2 satisfying

∇ X ϕ 1 = ε 2 A(X) • ϕ 1 -iλX • ϕ 1 , and ∇ X ϕ 2 = - ε 2 A(X) • ϕ 1 + iλX • ϕ 2 ,
where A is a g-symmetric endomorphism and H = -1 2 tr (A). 3. There exists a local isometric immersion from M into the (pseudo)-Riemannian space form M p+1,q (4λ 2 ) (resp. M p,q+1 (4λ 2 )) if ε = 1 (resp. ε = i) with mean curvature H and shape operator A.

Remark 1. Note that, in this result, two spinor fields are needed to get an isometric immersion. Nevertheless, for the case of Riemannian surfaces in Riemannian space forms (Friedrich [4] and Morel [START_REF] Morel | Surfaces in S 3 and H 3 via spinors, Actes du séminaire de théorie spectrale et géométrie[END_REF]) only one spinor solution of one of the two equations is sufficient. This is also the case for surfaces of signature (0, 2) in space forms of signature (0, 3).

In order to prove this theorem, we give two technical lemmas.

Lemma 3.1. Let (M p,q , g) be an oriented (pseudo)-Riemannian surface and η, λ two complex numbers. If M carries a spinor field satisfying

∇ X ϕ = ηA(X) • ϕ + iλX • ϕ,
then, we have

ε 1 ε 2 R 1212 + 4η 2 det (A) -λ 2 e 1 • e 2 • ϕ = 2ηd ∇ A(e 1 , e 2 ) • ϕ.
Proof : An easy computation yields

∇ X ∇ Y ϕ = η∇ X A(Y ) • ϕ + η 2 A(Y ) • A(X) • ϕ + iηλA(Y ) • X • ω C • ϕ +iλ∇ X Y • ω C • ϕ + iηλY • ω C • A(X) • ϕ -λ 2 Y • ω C • X • ω C ϕ.
Hence (the other terms vanish by symmetry)

R(e 1 , e 2 )ϕ = ∇ e1 ∇ e2 ϕ -∇ e2 ∇ e1 ϕ -∇ [e1,e2] ϕ = η ∇ e1 A(e 2 ) -∇ e2 A(e 1 ) -A([e 1 , e 2 ]) ϕ + η 2 (A(e 2 )A(e 1 ) -A(e 1 )A(e 2 ))ϕ -λ 2 (e 2 • ω C • e 1 ω C -e 1 • ω C • e 2 ω C )ϕ.
Since we have A(e 2 )A(e 1 ) -A(e 1 )A(e 2 ) = -2 det(A) and

e 2 • ω C • e 1 ω C -e 1 • ω C • e 2 • ω C = e 1 • e 2 • ω C 2 -e 2 • e 1 • ω C 2 = 2e 1 • e 2 ,
by the Ricci identity (2), we get

1 2 ε 1 ε 2 R 1221 e 1 e 2 • ϕ = ηd ∇ A(e 1 , e 2 ) -2η 2 det(A)e 1 • e 2 ϕ -2λ 2 e 1 • e 2 • ϕ,
and finally

(-ε 1 ε 2 R 1212 + 4η 2 det(A) + 4λ 2 )e 1 • e 2 • ϕ = 2ηd ∇ A(e 1 , e 2 ) • ϕ. (4) 
Now, we give this second lemma Lemma 3.2. Let (M p,q , g) be an oriented (pseudo)-Riemannian surface and λ a complex number. If M carries a spinor field solution of the equation

Dϕ = ± (εHϕ + 2iλϕ) (5)
and satisfying the norm assumption N ± (p, q, λ, ε), then this spinor satisfies

∇ X ϕ = ± ε 2 A(X) • ϕ -iλX • ϕ .
Proof : We give the proof for the sign +. The other case is strictly the same .

Case of signature (1,1): We define the endomorphism B ϕ by (B ϕ ) i j = g(B ϕ (e i ), e j ) = β ϕ (e i , e j ) := ε∇ ei ϕ, e j • ϕ .

Obviously Using ei•ϕ ± ϕ + ,ϕ -as a normalized dual frame of Σ ∓ M and the same proof as in [START_REF] Lawn | A spinorial representation for lorentzian surfaces in R 2,1[END_REF] we can show that

∇ X ϕ, e i • ϕ ± = ε∇ X ϕ, εe i • ϕ ± = - 1 2ε ϕ + , ϕ -B ϕ (X) • ϕ, e i • ϕ ∓ . and hence ∇ X ϕ = - 1 2ε ϕ + ,ϕ -B ϕ (X) • ϕ. Moreover β ϕ (e 1 , e 2 ) = ∇ e1 ϕ, e 2 • ϕ = -ε∇ e1 ϕ, e 2 1 • e 2 • ϕ = -εe 1 • ∇ e1 ϕ, e 1 • e 2 • ϕ = -εDϕ + εe 2 • ∇ e2 ϕ, e 1 • e 2 • ϕ = -ε 2 H ϕ, e 1 • e 2 • ϕ -2iελω C • ϕ, e 1 • e 2 • ϕ + β ϕ (e 2 , e 1 ) = -2iελω C • ϕ, e 1 • e 2 • ϕ + β ϕ (e 2 , e 1 ), since for any ϕ, ψ ∈ Γ(ΣM ) ϕ, e 1 • e 2 • ψ = e 2 • e 1 • ϕ, ψ = -e 1 • e 2 • ϕ, ψ = -ϕ, e 1 • e 2 • ψ = 0.
Let now consider the decomposition β ϕ (X, Y ) = S ϕ (X, Y ) + T ϕ (X, Y ) in the symmetric part S ϕ and antisymmetric part T ϕ . Hence, we see easily that if λ/ε ∈ iR, then β ϕ is symmetric, i.e., T ϕ = 0. and if λ/ε ∈ R, then T ϕ (X) = 2iλ/ε ω C • X. In the two cases, we have

∇ X ϕ = ε 2 A(X) • ϕ -iλX • ϕ,
by setting A = 2S ϕ . We verify easily that tr(A) = 2tr(S ϕ ) = 2tr(B ϕ ) = -2H.

Case of signature (2, 0) or (0, 2): The proof is fairly standard following the technique used in [START_REF] Friedrich | On the spinor representation of surfaces in Euclidean 3-space[END_REF], [START_REF] Morel | Surfaces in S 3 and H 3 via spinors, Actes du séminaire de théorie spectrale et géométrie[END_REF] and [START_REF] Roth | Spinorial characterizations of surfaces into 3-homogeneous manifolds[END_REF]. We consider the tensors Q ± ϕ defined by

Q ± ϕ (X, Y ) = ℜe ε∇ X ϕ ± , Y • ϕ ∓ .
Then, we have

tr (Q ± ϕ ) = -ℜe εDϕ ± , ϕ ∓ = -ℜe ε(εH ± 2iλϕ ∓ , ϕ ∓ = -ε 2 H ± 2ℜe(λ) |ϕ ∓ | 2 .
Moreover, we have the following defect of symmetry of Q ± ϕ ,

Q ± ϕ (e 1 , e 2 ) = ℜe ε∇ e1 ϕ ± , e 2 • ϕ ∓ = ℜe εe 1 • ∇ e1 ϕ ± , e 1 • e 2 • ϕ ∓ = ℜe εDϕ ± , e 1 • e 2 • ϕ ∓ -ℜe ε∇ e2 ϕ ± , e 1 • e 2 • ϕ ∓ = ℜe (ε 2 H ± 2iελ)ϕ ∓ , e 1 • e 2 • ϕ ∓ + ℜe ε∇ e2 ϕ ± , e 1 • ϕ ∓ = 2ℜe(ελ)|ϕ ∓ | 2 + Q ± ϕ (e 2 , e 1 ).
Then, using the fact that εe

1 • ϕ ± |ϕ ± | 2 and εe 2 • ϕ ± |ϕ ± | 2 form
a local orthonormal frame of Σ ∓ M for the real scalar product ℜe •, • , we see easily that

∇ X ϕ + = ε Q + ϕ (X) |ϕ -| 2 • ϕ -and ∇ X ϕ -= ε Q - ϕ (X) |ϕ| + | 2 • ϕ + . We set W = Q + ϕ |ϕ -| 2 - Q - ϕ |ϕ + | 2 .
From the above computations, we have immediately that W + ℜe (iλ/ε) Id is symmetric and trace-free. Now, we will show that W + ℜe (iλ/ε) Id is of rank at most 1. First, we have

X|ϕ + | 2 + ε 2 X|ϕ -| 2 = 2ℜe εW (X) • ϕ -, ϕ + .
Moreover, from the norm assuption N (p, q, λ, ε), we have

X|ϕ + | 2 + ε 2 X|ϕ -| 2 = 2ℜe iλX • ϕ, ϕ = 4ℜe iλX • ϕ -, ϕ + .
We deduce immediately that W + 2ℜe (iλ/ε) Id is of rank at most 1 and hence vanishes identically since it is symmetric and trace-free. Thus, we have the following relation

|ϕ + | 2 Q + ϕ -|ϕ -| 2 Q - ϕ = -2ℜe(iλ/ε)|ϕ + | 2 |ϕ -| 2 g.
From now on, we will distinguish two cases.

• Case 1: iλ/ε ∈ R.

Then we are in one of these two possible situations: ε = i and λ ∈ R or ε = 1 and λ ∈ iR. The second situation was studied by Morel [START_REF] Morel | Surfaces in S 3 and H 3 via spinors, Actes du séminaire de théorie spectrale et géométrie[END_REF]. So we define the following tensor

F := Q + ϕ -Q - ϕ + 2iελ(|ϕ + | 2 -|ϕ -| 2 )g. We have then ∇ X ϕ = ∇ X ϕ + + ∇ X ϕ -= ε Q + ϕ (X) |ϕ -| 2 • ϕ + + ε Q - ϕ (X) |ϕ -| 2 • ϕ - = ε F (X) |ϕ| 2 • (ϕ + + ϕ -) -iλX • ϕ --iλX • ϕ + = ε 2 A(X) • ϕ -iλX • ϕ,
where we have set A = 2F |ϕ 2 | . We conclude by noticing that A is a symmetric tensor with tr (A) = -2H. • Case 2: iλ/ε ∈ iR.

Then we are in one of these two possible situations: ε = i and λ ∈ iR or ε = 1 and λ ∈ R. The second situation was studied by Morel [START_REF] Morel | Surfaces in S 3 and H 3 via spinors, Actes du séminaire de théorie spectrale et géométrie[END_REF]. In this case, we have from the previous computations that W vanishes identically. So we set

F = Q + ϕ |ϕ -| 2 = Q - ϕ |ϕ + | 2
and then we have Finally, we conclude that

∇ X ϕ = F (X) • ϕ, where F (X) is defined by g(F (X), Y ) = F (X, Y ). Nevertheless, F is not symmetric. We define the following symmetric tensor A(X, Y ) = 1 |ϕ| 2 (F (X, Y ) + F (Y, X)).
∇ X ϕ = ε 2 A(X) • ϕ + λX • ω • ϕ = ε 2 A(X) • ϕ -iλX • ϕ.
Now, we can give the proof of Theorem 1. We have already proven that 3. implies 2. which implies 1. Moreover, Lemma 3.2 shows that 1. implies 2. Now, we will prove that 2. implies 3. For this, we use Lemma 3.1, but we need to distinguish the three cases for the different signatures. Let ϕ = ϕ + + ϕ -.

Case of signature (2,0):

Here, ω C = ie 1 e 2 , hence e 1 • e 2 • ϕ = -iω C • ϕ = -i φ.
Hence formula (4) becomes

-i (-R 1212 + ε 2 det(A) + 4λ 2 ) G2,0 φ = ε d ∇ A(e 1 , e 2 )
C2,0

•ϕ.

or equivalently εC 2,0 • ϕ ± = ±iG 2,0 ϕ ∓ . Applying two times this relation we have finally

ε 2 ||C 2,0 || 2 ϕ ± = -G 2 2
,0 ϕ ± . Again we have two cases.

• Spacelike immersion: ε = 1, M 2,0 ֒→ M 3,0 . We refer to [START_REF] Friedrich | On the spinor representation of surfaces in Euclidean 3-space[END_REF] for the immersion in R 3,0 and to [START_REF] Morel | Surfaces in S 3 and H 3 via spinors, Actes du séminaire de théorie spectrale et géométrie[END_REF] for S 3 and H 3 . Only one (RSK)-spinor is needed.

• Timelike immersion: ε = i, M 2,0 ֒→ M 2,1 . Two (ISK)-spinors are needed. We deduce from the above relations between ϕ ± 1 and ϕ ± 2 that C 2,0 • ϕ 1 , ϕ 2 = 0. Moreover, in this case we have ϕ 1 , ϕ 2 = 0. Thus, since the spinor bundle ΣM is of complex rank 2, we have C 2,0 • ϕ 1 = f ϕ 1 where f is a complex-valued function over M . By taking the inner product by ϕ 1 , we see immediately that f only takes imaginary values, that is f = ih with h real-valued. Thus, we have ±G 2,0 ϕ ± 1 = ihϕ ± 1 . Since ϕ ± 1 do not vanish simultaneously, we deduce that h and G 2,0 vanish identically. Thus C vanishes too and the Gauss and Codazzi equation are satisfied. Then, we get the conclusion by the fundamental theorem of hypersurfaces given above.

Case of signature (1,1): ω

C = -e 1 e 2 , hence e 1 • e 2 • ϕ = -ω C • ϕ = -φ. Hence formula (4) becomes -(R 1212 + ε 2 det(A) + 4λ 2 ) G1,1 φ = ε d ∇ A(e 1 , e 2 ) C1,1 •ϕ. or equivalently εC 1,1 • ϕ ± = G 1,1 ϕ ∓ . Applying two times this relation we have finally ε 2 ||C 1,1 || 2 ϕ ± = G 2 1,1 ϕ ± . • Spacelike immersion: ε = 1, M 1,1 ֒→ M 2,1 .
We refer to [START_REF] Lawn | A spinorial representation for lorentzian surfaces in R 2,1[END_REF] for the immersion in R 2,1 . Let us consider the other space forms.

Here again, we need two (RSK)-spinors. Since ϕ ± 1 do not vanish at the same point, we have clearly that ||C 1,1 || = G 2 1,1 0. Moreover, we have

-||C 1,1 || 2 ϕ 1 , ϕ 2 = C 1,1 • ϕ 1 , C 1,1 • ϕ 2 = -G 2 1,1 e 1 • e 2 ϕ 1 , e 1 • e 2 • ϕ 2 = G 2 1,1 ϕ 1 , ϕ 2 . Since ϕ 1 , ϕ 2 never vanishes, we deduce that ||C 1,1 || = -G 2 1,1 0. Conse- quently, ||C 1,1 || = G 1,1 = 0. Moreover, C 1 
,1 is not isotropic. Indeed, since G 1,1 = 0, we have C 1,1 • ϕ 1 = 0 and thus C 1,1 automatically vanishes as proved in [START_REF] Lawn | A spinorial representation for lorentzian surfaces in R 2,1[END_REF].

• Timelike immersion: ε = i, M 1,1 ֒→ M 1,2 . It is easy to see that computations similar to the one for the previous case give the result. Two (ISK)-spinors are needed. or equivalently εC 0,2 • ϕ ± = ±iG 0,2 ϕ ∓ . Applying two times this relation we have finally ε 2 ||C 0,2 || 2 ϕ ± = -G 2 0,2 ϕ ± . • Spacelike immersion: ε = 1, M 0,2 ֒→ M 1,2 . Similar computations to the case M 2,0 ֒→ M 2,1 give the result. Two (ISK)spinors are needed.

• Timelike immersion: ε = i, M 0,2 ֒→ M 0,3 . We get ||C 0,2 || 2 ϕ ± = G 2 0,2 ϕ ± , hence C 0,2 = G 2 0,2 = 0 as the norm of C 0,2 is negative definite. This is a similar computation to the case M 2,0 ֒→ M 3,0 . Only one (ISK)-spinor is needed.

Let us summarize these results. In the tabular below we give the number of (RSK)-(resp. (ISK)-)spinors on the surface M p,q solutions of the special Killing equation (3), or equivalently of the Dirac equation [START_REF] Lawn | A spinorial representation for lorentzian surfaces in R 2,1[END_REF], which is sufficient for the surface to be immersed, depending on the signature (p, q) and on the type ε of the immersion.

  We compute immediately A(e 1 , e 1 ) = 2F (e 1 , e 1 )/|ϕ| 2 , A(e 2 , e 2 ) = 2F (e 2 , e 2 )/|ϕ| 2 , A(e 1 , e 2 ) = 2F (e 1 , e 1 )/|ϕ| 2 -2λ/ε and A(e 2 , e 2 ) = 2F (e 2 , e 2 )/|ϕ| 2 + 2λ/ε.

  Case of signature (0,2)ω C = -ie 1 e 2 , hence e 1 • e 2 • ϕ = iω C • ϕ = i φ. Hence formula (4) becomes i (-R 1212 + ε 2 det(A) + 4λ 2 ) G0,2 φ = ε d ∇ A(e 1 , e 2 )