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Abstract

This paper discusses the use of evidence-based classifiers for the identification of

damage. In particular, a neural network approach to Dempster-Shafer theory is demon-

strated on the damage location problem for an aircraft wing. The results are compared

with a probabilistic classifier based on a multi-layer perceptron neural network and

shown to give similar results. The question of fusing classifiers is considered and it is

shown that a combination of the Dempster-Shafer and MLP classifiers gives a signifi-

cant improvement over the use of individual classifiers for the aircraft wing data.
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1 Introduction

The recent past has seen considerable use of machine learning techniques for Structural

Health Monitoring (SHM). The basic idea of the approach is to use data measured from

undamaged and damaged structures in order to train a learning machine to assign a

condition label to previously unseen data. The simplest problem of SHM is arguably

damage detection. This is most easily carried out in the machine learning context by

using a novelty detector [1]. Novelty detection involves the construction of a model of

the normal condition of a system or structure, which can then be used in a hypothesis

test on unseen data to establish whether the new data corresponds to normal condition

or not. The advantage of the novelty detection approach is that it can be carried out

using unsupervised learning, i.e. with only samples of undamaged data. If a more

detailed diagnosis of a system is required, e.g. it is necessary to specify the type or

location of damage in a structure, this can still be done using machine learning meth-

ods. For higher levels of diagnostics, algorithms based on classification or regression

are applicable; however, these must be applied in a supervised learning context and

examples of data from both the undamaged and damaged conditions can be used [2].

The most popular classifiers for damage location and quantification so far have

been those based on Multi-Layer Perceptron (MLP) neural networks [3] (although

there is growing popularity for classifiers based on the concepts of statistical learning

theory - like support vector machines [2]). Training of MLP networks as classifiers

is usually accomplished by using the 1 of M strategy [3] which implicitly assumes a

Bayesian probabilistic basis for the classification. While probability theory is only

one (but arguably the most important) of a group of theories which can quantify and

propagate uncertainty, other theories of uncertainty, perhaps with the exception of

fuzzy set theory, have been largely unexplored in the context of damage identification.

The object of this paper is to design a classifier for damage location based on the

Dempster-Shafer theory of evidence [4]. To the knowledge of the authors, DS theory

was first used in the context of SHM by researchers at El Paso as in [5]. The theory

has also been used in the context of machine condition monitoring [6]. The reason for

exploring the possibilities of DS theory is that it extends probability in a number of

ways which are potentially exploitable in an SHM context. For the moment though,
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the current paper is looking only to demonstrate that the method is competitive with

the probability-based MLP approach on an experimental case study of an aircraft wing.

The DS classifier here is also implemented using a neural network structure [7].

The layout of the paper is as follows. Section Two provides a pedagogical intro-

duction to DS theory and places its use in the context of SHM. Section Three briefly

describes the neural network implementation of the DS Classifier. Section Four de-

scribes the case study discussed in this paper and the results of the analysis are given

in Section Five and compared with existing results from a multi-layer perceptron neu-

ral network. Section Six discusses the fusion of the two classifiers in both the Bayesian

and DS frameworks. The paper ends with some discussion and conclusions.

2 Dempster-Shafer Reasoning

2.1 Theory

Dempster-Shafer Theory is a means of decision-fusion which is formulated in terms

of probability-like measures but extends probability theory in a number of important

respects. The basic idea, that of belief was introduced by Dempster in [8] and extended

in Shafer’s treatise [4].

The basic model is formulated in similar terms to probability. In the place of the

sample space is the frame of discernment Θ, which is the set spanning the possible

events for observation Ai ⊂ Θ, i = 1, . . . , Ne. On the basis of sensor evidence, each

event or union of events is assigned a degree of probability mass or Basic Belief As-

signment (BBA) m such that,

0 ≤ m(Ai) ≤ 1 ∀Ai ⊆ Θ (1)

m(φ) = 0 (2)

∑

Ai⊆Θ

m(Ai) = 1 (3)

where φ is the empty set. (Note that normalisation, as in equation (3), is not always

required in belief function theory. In particular, it is not the case in the Transferable
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Belief Model (TBM), an important variant developed by Smets [9].) The difference

between this evidential theory and probability theory is that the total probability mass

need not be exhausted in the assignments to individual events. There is allowed to be

a degree of uncertainty or ignorance. This is sometimes denoted by a probability mass

assignment to the whole frame of discernment m(Θ) or m(A1 ∪ . . . ∪AN ).

The belief in an event B is denoted Bel(B) and is defined by,

Bel(B) =
∑

Ai⊆B

m(Ai) (4)

and this is the total probability which is committed to the support of the proposition

that B has occurred.

The doubt in the proposition B is denoted by Dou(B) and is defined by

Dou(B) = Bel(B) (5)

i.e. the doubt is the total support for the negation of the proposition B (negation is

denoted by an overline).

One of the fundamental differences between Dempster-Shafer and probability theory

is that the belief and doubt do not necessarily sum to unity i.e. it is not certain that

B ∪B is true. This can be illustrated diagrammatically as in Figure 1.

The uncertainty Un in the proposition B is that portion of the probability mass

which does not support B or its negation. If further evidence were provided, some of

the uncertainty could move in support of B but the mass assigned to the doubt cannot

move. This means that the possible belief in B is bounded above by the quantity

Bel(B) + Un(B) = 1 − Dou(B) and this quantity is termed the plausibility of B and

denoted Pl(B). The plausibility can also be defined by,

Pl(B) =
∑

Ai∩B �=φ

m(Ai) (6)

The belief and plausibility form the lower and upper bounds of an interval of un-

certainty for a given event. A concrete example will be useful at this point.

Consider a composite structure which may have sustained damage at one

of two internal sites A and B which are indistinguishable. It is known that
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the only possible damage mechanism at site A is delamination (denoted D),

but site B may fail by delamination or fibre fracture (denoted F ) and the

relative probabilities of the damage mechanisms are unknown. It is further

known that failure at A is twice as likely as failure at B. What can one say

about the likely damage type if a fault is found?

First of all, if damage occurs at A it is certainly by delamination, and as

damage is twice as likely to be at A as at B this forces the mass assignment,

m(D) =
2
3

the remaining mass cannot be assigned with certainty, so it is assigned to

the frame of discernment,

m(Θ) = m(D ∪ F ) =
1
3

The belief in the delamination is simply Bel(D) = 2/3 as this is the only

basic mass assignment to B. There is no such assignment to F so the belief

Bel(F ) = 0. The plausibility in D is given by,

Pl(D) = m(D) + m(D ∪ F ) = 1

and the plausibility of F is similarly calculated as 1/3. The uncertainty

interval for D is [2/3, 1] and that for F is [0, 1/3].

Note that it is not possible to use probability theory here directly as the

relative probabilities at site B are not known. It is possible to construct

bounds on the probabilities though. Suppose delamination were impossible

at site B, then the overall probability of delamination would be 2/3 and this

would be a lower bound. If delamination were certain at B, the overall prob-

ability would be 1. Note that these quantities are the belief and plausibility

respectively. For this reason, the belief and plausibility are sometimes termed

the lower and upper probabilities.

The interpretation of some common instances of the uncertainty interval for a propo-

sition B is as follows.

[0,0 ] B is impossible.
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[1,1 ] B is certain.

[0.75,0.75 ] There is no uncertainty, the belief in B (0.75) and the doubt in B (0.25)

sum to unity.

[0,1 ] There is total ignorance regarding B.

[0.25,1 ] B is plausible, there is no support for B.

[0,0.75 ] B is plausible, there is no support for B.

[0.25,0.75 ]. Both B and B are plausible.

All this suffices to establish terminology, to explain how to compute belief functions

and how to interpret the results. It does not provide a means of data fusion - that

requires the use of Dempster’s combination rule.

Suppose that one has two sensors 1 and 2. Basic probability assignments are possi-

ble on the basis of either sensor alone, denoted m1 and m2. Belief functions Bel1 and

Bel2 can be computed. Dempster’s rule allows the calculation of an overall probability

assignment m+ and a corresponding overall belief function Bel+, where this direct sum,

Bel+ = Bel1 ⊕ Bel2 (7)

is induced by m+. Suppose that sensor 1 makes assignments m1(Ai) to the propositions

Ai (which can, and usually do, include the frame of discernment), and sensor 2 makes

assignments m2(Bj) to the propositions Bj , then Dempster’s rule makes assignments

as follows.

Consider a matrix with row entries labelled by i and column entries j, then the

(i, j)th element of the matrix is an assignment of probability mass m1(Ai)×m2(Bj) to

the proposition Ai ∩Bj.

This is again best understood by an example:

Suppose a classifier is required which can assign a damage type to data

from a composite structure. The possible damage types are delamination

D, fibre fracture F , matrix cracking M or fibre pullout P . Two different

classifiers are trained, A and B, which produce different probability mass

assignments. Classifier A makes the assignments,

mA(D) = 0.25, mA(F ∪M) = 0.5 mA(Θ) = 0.25

6



and classifier B returns,

mB(D ∪M) = 0.3 mB(D ∪ F ) = 0.4 mB(Θ) = 0.3

Dempsters rule induces a mass assignment matrix,

mA(D) mA(F ∪M) mA(Θ)

mB(D ∪M) 0.25 × 0.3 = 0.075 0.25 × 0.4 = 0.1 0.25× 0.3 = 0.075

mB(D ∪ F ) 0.5 × 0.3 = 0.15 0.5 × 0.4 = 0.2 0.5× 0.3 = 0.15

mB(Θ) 0.25 × 0.3 = 0.075 0.25 × 0.4 = 0.1 0.25× 0.3 = 0.075

to the propositions,

mA(D) mA(F ∪M) mA(Θ)

mB(D ∪M) D M D ∪M

mB(D ∪ F ) D F D ∪ F

mB(Θ) D F ∪M Θ

and the direct sum m+ assigns support to the propositions D, M , F , D∪M ,

D ∪ F , F ∪M and Θ = D ∪M ∪ F ∪ P .

The belief in delamination is Bel+(D) = 0.075+0.15+0.075 = 0.3; sim-

ilarly, Bel+(M) = 0.1, Bel+(F ) = 0.2 and Bel+(P ) = 0.0. The plausibility

of delamination D is given by,

Pl+(D) = m+(D) + m+(D ∪M) + m+(D ∪F ) = 0.3 + 0.075 + 0.15 = 0.525

similarly Pl+(M) = 0.275, Pl+(F ) = 0.45 and Pl+(P ) = 0.075. Note that P

receives no explicit mass assignments and therefore only acquires plausibility

through its appearance in Θ.

In summary, the uncertainty intervals for the fused belief function are:

D [0.3, 0.525]

M [0.1, 0.275]

F [0.2, 0.45]

P [0, 0.075]

The most plausible diagnosis is clearly delamination.
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In mathematical terms, Dempster’s combination rule is expressed as

m+(C) =
∑

Ai∩Bj=C

m1(Ai)m2(Bj) (8)

and,

Bel+(C) =
∑

B⊆C

m+(B) (9)

Unfortunately things are not quite as straightforward as this. Problems arise in

using Dempster’s rule if the intersection between supported propositions Ai and Bj is

empty. In this circumstance a non-zero mass assignment will be made to the empty

set φ and this contradicts the basic definition of the mass assignment which demands

m+(φ) = 0. In order to preserve this rule, Dempster’s rule must assign zero mass to

non-overlapping propositions. However, if this is the case, probability mass is lost and

the total mass assignment for m+ will be less than unity, contradicting another rule

for probability numbers. A valid mass assignment is obtained by re-scaling m+ to take

account of the lost mass. If the mass lost on non-overlapping propositions totals k,

the remaining mass assignments should be re-scaled by a factor K = 1/(1 − k). The

combination rule (8) is modified to,

m+(C) = K
∑

Ai∩Bj=C

m1(Ai)m2(Bj) (10)

Consider the last example. Suppose the assignments made by sensor A

were as before, but those of sensor B were now,

mB(D ∪M) = 0.3 mB(P ∪ F ) = 0.4 mB(Θ) = 0.3

Dempster’s rule gives the same assignments,

mA(D) mA(F ∪M) mA(Θ)

mB(D ∪M) 0.25 × 0.3 = 0.075 0.25 × 0.4 = 0.1 0.25× 0.3 = 0.075

mB(P ∪ F ) 0.5 × 0.3 = 0.15 0.5 × 0.4 = 0.2 0.5× 0.3 = 0.15

mB(Θ) 0.25 × 0.3 = 0.075 0.25 × 0.4 = 0.1 0.25× 0.3 = 0.075

but this time to the propositions,
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mA(D) mA(F ∪M) mA(Θ)

mB(D ∪M) D M D ∪M

mB(P ∪ F ) φ F P ∪ F

mB(Θ) D F ∪M Θ

and a total mass of 0.15 is lost on the empty set. This means that the

assignments should be re-scaled by a factor K = 1/0.85 = 1.1765 (to four

decimal places). The mass matrix becomes,

mA(D) mA(F ∪M) mA(Θ)

mB(D ∪M) 0.0882 0.1176 0.0882

mB(P ∪ F ) 0.0 0.2353 0.1764

mB(Θ) 0.0882 0.1176 0.0882

and the calculation for the belief functions and uncertainty intervals proceeds

exactly as before.

The differences between the Dempster-Shafer approach and the probabilistic are

manifest. First of all, probabilistic - or rather Bayesian - approaches are unable to

accommodate ignorance. All probability must be assigned to the set of propositions

under consideration. Secondly, the Bayesian approach is unable to meaningfully assign

probabilities to the union of propositions. If the uncertainty for all propositions is

zero and the mass assigned to unions is zero, Dempster-Shafer is reduced to Bayesian

probability reasoning.

There are other frameworks which seek to extend Bayesian methods in a similar

manner to Dempster-Shafer such as the Generalised Evidence Processing (GEP) ap-

proach of [11] and that proposed in [12].

3 The DS Neural Network

The object of this section is to briefly describe the neural network implementation of

the DS-based classifier. Much more detail can be found in the original reference [7].

The basic idea will be to assign one of M classes C1,. . . ,CM (these form the frame

of discernment), to a feature vector x on the basis of a set of Nt training examples

x1, . . . , xNt
. Suppose the vector x is close to a training example xi with respect to an
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appropriate distance measure d (di = ||x − xi||). It is then appropriate that the class

of the vector xi influences ones beliefs about the class of x. One has evidence about

the class of xi. The approach to the classification taken in [13] is to allocate belief to

the event Cq (the possible class of x), according to the distances di(x).

mi(Cq) = αφq(di) (11)

where 0 < α < 1 is a constant and φq is an appropriate monotonically decreasing

function. Each training vector close to x will contribute some degree of belief. For each

training vector, a degree of belief is also assigned to the whole frame of discernment Θ

as follows,

mi(Θ) = 1− αφq(di) (12)

The function φq used here is the basic Gaussian,

φq(di) = exp(−γq(di)2) (13)

where γq is a positive constant associated with class q. To simplify matters, one confines

the construction of the belief assignment for the vector x to a sum of the beliefs induced

by its nearest neighbours. The sum is computed using Dempster’s combination rule as

described in Section Two. Actually, a further simplification is made to speed up the

processing. Rather than summing over the nearest neighbours from the whole training

set in order to assign the belief, one sums over a set of prototypes constructed from

the training set by a clustering algorithm. Each prototype p
i

is assigned a degree of

membership to the class q denoted by ui
q with the constraint

∑M
q=1u

i
q = 1. These

are used to compute the belief in the class q for x given the distances di from the

prototypes.

Although it is a gross simplification, the algorithm can be summed up as follows:

1. Construct the prototypes p
i
from the training data using a clustering algorithm.

2. Given a vector x, compute the distances from the vector to the prototypes. Using

the parameters di and ui
q assign a degree of belief for each class q.

3. Use Dempster’s combination rule to compute the total belief in each class from

all the contributing prototypes.
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The algorithm extends the probabilistic classifier by also making an assignment to

the frame of discernment and this quantifies the degree of uncertainty of the classifi-

cation. The reference [7] explains how the algorithm can be implemented in terms of

a four-layer neural network. The network has a feed-forward structure, but is not as

simple as an MLP. Despite the fact that DS network is superficially more complicated

than the MLP, it has essentially the same computational expense. It is shown in [13],

that forward propagation of a given input pattern through the DS network involves

the same order of arithmetic operations as for a MLP network. In terms of training

time, the issue becomes the expense of making a gradient calculation, and it is shown

in Appendix A of [7] that this expense is the same for the DS network and the MLP.

In order to assign a class to the vector x, one selects that with the largest overall

belief assignment induced by the training data (There are other decision strategies as

in [14]).

4 A Damage Location Example

In the two papers [15, 16], methods of novelty detection were applied to the damage

detection problem for experimental structures. In [15], the structure of interest was an

idealised laboratory model of an aircraft wingbox, while in [16], the problem was to

detect damage in an inspection panel of a Gnat aircraft wing. In both cases, a novelty

detection approach was adopted based on the statistical method of outlier analysis. The

next stage of the programme was to investigate the possibilities for damage location in

the Gnat wing. Due to restrictions on actually damaging the structure, it was decided

to investigate if a method could be developed to see which of a number of inspection

panels had been removed. As there were a small number of distinct panels, the problem

of damage location was cast as one of classification. Only a short summary of the study

will be given here, the interested reader can refer to [17] for more details.

Due to the success of using novelty detectors for the damage detection problem,

it was decided to attempt to extend this approach to see whether it could be used

for the location problem. A network of sensors was used to establish a set of novelty

detectors, the assumption being that each would be sensitive to different regions of the

wing. Once the relevant features for each detector had been identified and extracted,
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a neural network was used to interpret the resulting set of novelty indices.

4.1 Test Set-up and Data Capture

As described above, damage was simulated by the sequential removal of nine inspection

panels on the starboard wing. Figure 2 shows a schematic of the wing and panels.

The area of the panels varied from about 0.008 m to 0.08 m with panels P3 and

P6 the smallest. Measured transmissibilities were used as the basic features for con-

struction of the novelty indices and were recorded in three groups, A, B and C as

shown in Figure 2. Each group consisted of four sensors (a centrally placed reference

transducer and three others). In each case, the transmissibility was the ratio of the

acceleration spectrum at a receiver transducer divided by the acceleration spectrum at

the reference transducer for the group. Only the transmissibilities directly across the

plates were measured in this study. One 16-average transmissibility and 100 one-shot

measurements were recorded across each of the nine panels for seven undamaged con-

ditions (to increase robustness against variability) and the 18 damaged conditions (two

repetitions for the removal of each of the nine panels).

4.2 Feature Selection and Novelty Detection

The feature selection process for the novelty detectors was conducted by inspecting the

transmissibility functions to find small regions of the frequency range of each which

distinguished between damage conditions. An exhaustive visual classification of poten-

tial features as weak, fair or strong was made with the intention of only selecting fair

or strong features, the details can be found in [17]. In order to simplify matters, only

the group A transmissibilities were considered to construct features for detecting the

removal of one of the group A panels; similarly for groups B and C.

Initially 44 candidate features were evaluated using outlier analysis. The best fea-

tures were chosen according to their ability to correctly identify the 200 (per panel)

damage condition features as outliers while correctly classifying as inliers, those fea-

tures corresponding to the undamaged condition. Figure 3 shows the results of the

outlier analysis for a feature that was clearly able to recognise removal of inspection

panel 4. Once the 44 features had been selected by the empirical approach, a Genetic
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Algorithm was used to select the best subset of location features by optimising the

classification error using an MLP as the classifier [18]. The first set of results given

here will consider the case of the best 4 features; the reduction to 4 features was made

to ensure that the MLP network used for comparison with the DS network later was

unlikely to suffer from overtraining. The case of the optimal 9-feature set will also

be considered later. In the latter case, the possibility of overtraining was more of a

concern; a detailed discussion of the issues with the particular training sets can be

found in [18]

The data was divided into training, validation and testing sets in anticipation of

presentation to the classifier. As there were 200 patterns for each damage class, the

total number of patterns was 1800. These were divided evenly between the training,

validation and testing sets, so (with a little wastage) each set received 594 patterns,

comprising 66 representatives of each damage class. The plot in Figure 3 shows the

discordancy (novelty index) values returned by the novelty detector over the whole set

of damage states. The horizontal dashed lines in the figures are the thresholds for 99%

confidence in identifying an outlier, they are calculated according to the Monte Carlo

scheme described in [19]. The novelty detector substantially fires only for the removal

of panel for which it has been trained. This was the case for most panels but there

were exceptions (e.g. there were low sub-threshold discordancies for the smaller panels

and some novelty detectors were sensitive to more than one damage type).

Note that there are now two layers of feature extraction. At the first level, cer-

tain ranges of the transmissibilities were selected for sensitivity to the various damage

classes. These were used to construct novelty detectors for the classes. At the second

level of extraction, the 9 indices themselves were used as features for the damage local-

isation problem. This depends critically on the fact that the various damage detectors

are local in some sense, i.e., they do not all fire over all damage classes. This was found

to be true in this case.

5 Networks for Damage Location

The final stage of the analysis was to produce a classifier based on the DS neural

network algorithm which could serve as a damage location system. As with a standard
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MLP network, the specification of the DS network structure requires hyperparameters;

in this case, the number of prototypes (analagous to the number of hidden units in

the first layer of the network) and the starting values of the weights before training.

These were computed by a cross-validation procedure as for the MLP [20]. Many

neural networks were trained with the same training data but with differing numbers

of prototypes and initial weights. Up to 30 prototypes were considered, and in each

case 10 randomly chosen initial conditions were used. The best network was selected

by observing which produced the minimum misclassification error on the validation

set. The final judgement of the network capability was made by using the independent

testing set.

The results for the presentation to the classifier are summarised in the confusion

matrix given in Table 1. (The confusion matrix simply counts how many times the

classifier makes a certain assignment when the data is from the true class indicated by

the row; a perfect classifier would generate a diagonal matrix i.e. the predicted class

is always the true class.) The best DS network used 29 prototypes. The probability of

correct classification was 89.7%. There were 4 events associated with the frame of dis-

cernment, corresponding to probability mass of 0.007. (Note that there are other ways

to implement rejection, [14].) This means that allowing for the fact that the network

indicates when it has insufficient evidence to make a classification, the classification

error is 9.6%.

The main source of confusion is in locating damage to the two smallest panels, 3

and 6, and of course this was anticipated.

In order to make a comparison with the standard approach, the algorithm chosen

was a standard Multi-Layer Perceptron (MLP) neural network. The neural network

was presented with 4 novelty indices at the input layer and required to predict the

damage class at the output layer.

The procedure for training the neural network again followed the guidelines in

[20]. The training set was used to establish weights, whilst the network structure and

training time etc. were optimised using the validation set. The testing set was then

presented to this optimised network to arrive at a final classification error. For the

network structure, the input layer necessarily had four neurons, one for each novelty

index, and the output layer had nine nodes, one for each class.
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Prediction 1 2 3 4 5 6 7 8 9 Θ

True Class 1 54 5 5 0 0 0 2 0 0 0

True Class 2 0 63 0 0 2 0 0 0 0 1

True Class 3 6 1 56 2 0 0 0 0 0 1

True Class 4 5 0 1 55 0 3 0 2 0 0

True Class 5 0 0 0 0 65 0 0 1 0 0

True Class 6 2 2 2 4 0 54 1 0 0 1

True Class 7 0 1 1 0 0 0 61 2 1 0

True Class 8 0 0 1 0 1 0 0 62 1 1

True Class 9 0 0 0 0 0 0 0 3 63 0

Table 1: Confusion matrix for best DS network using 4 log features - testing set.

The training phase used the 1 of M strategy [3]. This approach is simple, each

pattern class was associated with a unique network output; on presentation of a pattern

during training, the network was required to produce a value of 1.0 at the output

corresponding to the desired class and 0.0 at all other outputs.

It is known that MLP networks trained using a squared-error cost function with

the 1 of M strategy for the desired outputs, actually estimate Bayesian posterior prob-

abilities for the classes with which the outputs are associated [3]. This means that

such a network actually implements a Bayesian decision rule if each pattern vector is

identified with the class associated with the highest output.

The best neural network had 19 hidden units and resulted in a testing classification

error of 0.118 i.e. 89.2% of the patterns were classified correctly. This means that the

misclassification probability is of course 10.8%. The confusion matrix is given in Table

2. Again, the main errors were associated with the two small panels P3 and P6.

The next illustration used the optimal 9-feature set from the GA [18] in order to

demonstrate a much better classification accuracy, albeit with the concerns about over-

training discussed in [18]. The results for the test set are summarised in the confusion

matrix given in Table 3. The best DS network used 28 prototypes. The probability of

correct classification was 98.3%. This is approaching the level of classification which
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Prediction 1 2 3 4 5 6 7 8 9

True Class 1 61 1 0 0 0 0 1 0 0

True Class 2 0 63 0 0 3 0 0 0 0

True Class 3 1 0 48 8 0 5 7 2 0

True Class 4 0 1 3 56 0 2 0 4 0

True Class 5 0 0 0 0 66 0 0 0 0

True Class 6 4 1 0 9 0 52 0 0 0

True Class 7 1 0 0 0 0 0 59 5 1

True Class 8 1 0 0 0 1 0 1 59 4

True Class 9 0 0 0 0 0 0 0 5 61

Table 2: Confusion matrix for best MLP neural network using 4 log features - testing set.

would be required for a credible SHM systems There were 10 misclassifications, but

only one of these events was associated with the frame of discernment, corresponding

to a probability mass of 0.0017.

Prediction 1 2 3 4 5 6 7 8 9 Θ

True Class 1 66 0 0 0 0 0 0 0 0 0

True Class 2 0 64 0 1 0 0 0 0 1 0

True Class 3 1 0 64 1 0 0 0 0 0 0

True Class 4 0 0 0 65 0 1 0 0 0 0

True Class 5 0 0 0 0 66 0 0 0 0 0

True Class 6 0 0 0 0 1 65 0 0 0 0

True Class 7 0 0 0 0 0 0 66 0 0 0

True Class 8 0 0 0 0 0 0 0 65 0 1

True Class 9 1 0 0 0 0 2 0 0 63 0

Table 3: Confusion matrix for best DS network using 9 log features - testing set.

The corresponding results from a MLP network are given in Table 4. The network

concerned had 10 hidden units and gave a test classification rate of 98.2%. This

16



 

 

corresponds to 11 misclassifications. However, a close look at the confusion matrices

shows that there are at most only two misclassified data points which are common.

This raises the possibility that one might profitably fuse the two classifiers, and this

possibility is explored in the next section.

Prediction 1 2 3 4 5 6 7 8 9

True Class 1 65 0 0 0 0 0 0 0 1

True Class 2 0 65 0 1 0 0 0 0 0

True Class 3 1 0 62 0 0 1 0 1 1

True Class 4 0 0 0 66 0 0 0 0 0

True Class 5 0 0 0 0 66 0 0 0 0

True Class 6 0 3 0 0 0 62 0 1 0

True Class 7 0 0 0 0 0 0 66 0 0

True Class 8 1 0 0 0 0 0 0 65 0

True Class 9 0 0 0 0 0 0 0 0 66

Table 4: Confusion matrix for best MLP neural network using 9 log features - testing set.

6 Data Fusion

As indicated in the last section, there might be some advantage in fusing the results of

the MLP classifier and the DS classifier. As both networks see the same feature data,

this is an example of fusion through methodological diversity [21]. Having decided to

fuse the classifiers, one is presented with the question of which uncertainty framework

to use: the (Bayesian) probabilistic or the evidence-theoretic; both will be considered

here.

6.1 Bayesian Fusion

Using Bayes’ rule, the fused a posterio probability will be,

p(Ci|MLP,DS) =
P (MLP,DS|Ci)P (Ci)

P (MLP,DS)
(14)
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The only way to progress at this point is to make an assumption of conditional inde-

pendence of the classifiers. This is to say that,

P (MLP,DS|Ci) = P (MLP |Ci)P (DS|Ci) (15)

which means that the assignments of the MLP and DS classifiers, given that the data

belongs to class Ci are independent or uncorrelated; this is unlikely to be true, but

is necessary. Note that this does not amount to an assumption that P (MLP,DS) =

P (MLP )P (DS). This assumption yields,

P (Ci|MLP,DS) =
P (MLP |Ci)P (DS|Ci)P (Ci)

P (MLP,DS)
(16)

but Bayes’ rule also gives,

P (MLP |Ci) =
P (Ci|MLP )P (MLP )

P (Ci)

P (DS|Ci) =
P (Ci|DS)P (DS)

P (Ci)

and substituting these into equation (16) yields,

P (Ci|MLP,DS) =
P (Ci|MLP )P (Ci|DS)P (MLP )P (DS)

P (Ci)P (MLP,DS)

=
P (MLP )P (DS)
P (MLP,DS)

× P (Ci|MLP )P (Ci|DS)
P (Ci)

= k
P (Ci|MLP )P (Ci|DS)

P (Ci)
(17)

The normalisation constant k is not needed here as the decision rule selects the

highest posterior probability over the classes. However, if needed, k is fixed by the

condition,

∑

i

P (Ci|MLP,DS) = 1 =
∑

i

k
P (Ci|MLP )P (Ci|DS)

P (Ci)
(18)

or,

k =
∑

i

P (Ci)
P (Ci|MLP )P (Ci|DS)

(19)

The only problem which remains now is the fact that equation (17) contains a

probability P (Ci|DS) and the DS theory has returned a probability mass assignment
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rather than a probability. The answer here is to use the pignistic probability defined

by [14],

BetP (Ci) = m(Ci) +
m(Θ)

M
(20)

where M is the number of classes.

At this point a note about the MLP probabilities is needed. Bishop [3] states that

the MLP outputs can be interpreted as posterior probabilities when the cross-entropy

function is used as an objective function for network training and a softmax function

is applied to the outputs. In fact, in the original work by Richard and Lippman [22] it

was shown that the interpretation holds if a squared-error cost function is used and the

output transfer functions are hyperbolic tangents. This is the situation here; however,

because of small fluctuations in the outputs, they can sometimes have small negative

values and the sum of the outputs can show small deviations from unity. This is not

a problem when the usual decision rule is used for the MLP classifier; however, if the

results are to fused with other classifiers, one should force an interpretation of the

outputs as probabilities. In order to do this here, the small negative values are zeroed

and the outputs are scaled by a common factor to make them sum to unity.

When the classifiers for the 4-feature test data of the previous section are fused,

the confusion matrix in Table 5 is obtained.

The classification rate is 92.6%, a small but significant improvement of 2.9% over

the DS classifier, that which performed best on its own. When the classifiers on the

9-feature data were fused, the result was the confusion matrix given in Table 6.

The classification rate is 98.5%, an improvement of 0.2% over the best lone classifier.

6.2 Dempster-Shafer fusion

In order to fuse the classifiers in the DS framework, one uses Dempster’s combination

rule (10), re-stated here as,

m+(C) = K
∑

Ai∩Bj=C

mDS(Ai)mMLP (Bj) (21)

where one takes mMLP (Ci) to be P (Ci|MLP ). In this particular case, one has Θ =

C1 ∪C2 ∪ . . . ∪CN . It follows from the assignment above that mMLP (Θ) = 0. As it is
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Prediction 1 2 3 4 5 6 7 8 9

True Class 1 62 2 0 0 0 0 2 0 0

True Class 2 0 64 0 0 2 0 0 0 0

True Class 3 0 1 57 6 0 0 2 0 0

True Class 4 0 1 2 60 0 1 0 2 0

True Class 5 0 0 0 0 65 0 0 0 1

True Class 6 1 2 0 5 0 57 1 1 0

True Class 7 0 0 0 0 0 0 60 5 1

True Class 8 1 0 0 0 1 0 0 63 2

True Class 9 0 0 0 0 0 0 0 4 62

Table 5: Confusion matrix for Bayes-fused classifiers using 4 log features - testing set.

Prediction 1 2 3 4 5 6 7 8 9

True Class 1 65 0 0 0 0 0 0 0 1

True Class 2 0 65 0 1 0 0 0 0 0

True Class 3 1 0 63 0 0 1 0 0 1

True Class 4 0 0 0 66 0 0 0 0 0

True Class 5 0 0 0 0 66 0 0 0 0

True Class 6 0 3 0 0 0 63 0 0 0

True Class 7 0 0 0 0 0 0 66 0 0

True Class 8 0 0 0 0 1 0 0 65 0

True Class 9 0 0 0 0 0 0 0 0 66

Table 6: Confusion matrix for Bayes-fused classifiers using 9 log features - testing set.

assumed that the damage locations are disjoint here, it further follows that Ci∩Cj = φ

for i 	= j. The expression (21) reduces to,

m+(Ci) = KmMLP (Ci)mDS(Ci) + KmMLP (Θ)mDS(Ci) + KmMLP (Ci)mDS(Θ)

= KmMLP (Ci)[mDS(Ci) + mDS(Θ)] (22)
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As the classifier assigns the class with the highest M+(Ci), the normalisation con-

stant K is not needed here.

When the fusion rule in equation (22) is applied to the 4-feature data of the previous

section, the results are as shown in Table 7.

Prediction 1 2 3 4 5 6 7 8 9

True Class 1 63 2 0 0 0 0 1 0 0

True Class 2 0 64 0 0 2 0 0 0 0

True Class 3 0 1 55 6 0 0 2 2 0

True Class 4 0 1 2 59 0 1 0 3 0

True Class 5 0 0 0 0 65 0 0 0 1

True Class 6 1 2 0 6 0 57 0 0 0

True Class 7 0 0 0 0 0 0 60 5 1

True Class 8 1 0 0 0 1 0 0 63 2

True Class 9 0 0 0 0 0 0 0 4 62

Table 7: Confusion matrix for DS-fused classifiers using 4 log features - testing set.

The fused classification rate is 92.3%, an improvement of 2.6% over the lone DS

classifier. This is slightly below the result obtained using Bayes-based fusion. When

the results for the classifiers were fused on the 9-feature data, the confusion matrix in

Table 8 was obtained.

The results are almost identical to those obtained using Bayesian fusion, only one

misclassification is different. The classification rate is 98.5%.

7 Conclusions

The main conclusion here is that the Dempster-Shafer approach to classification im-

plemented as a neural network gives comparable results to the standard analysis using

a MLP neural network. The data used is from a full-scale experimental test on an

aircraft wing and is therefore a stringent test of algorithms from the point of view of

SHM. In fact on 4-feature data the DS network shows a slight improvement, giving a
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Prediction 1 2 3 4 5 6 7 8 9

True Class 1 65 0 0 0 0 0 0 0 1

True Class 2 0 65 0 1 0 0 0 0 0

True Class 3 1 0 63 0 0 1 0 0 1

True Class 4 0 0 0 66 0 0 0 0 0

True Class 5 0 0 0 0 66 0 0 0 0

True Class 6 0 3 0 0 0 63 0 0 0

True Class 7 0 0 0 0 0 0 66 0 0

True Class 8 1 0 0 0 0 0 0 65 0

True Class 9 0 0 0 0 0 0 0 0 66

Table 8: Confusion matrix for DS-fused classifiers using 9 log features - testing set.

classification probability of 89.7% compared to 89.2% for the MLP. On 9-feature data

the DS network gives a classification rate of 98.3%, compared with 98.2% for the MLP.

One possible advantage of the DS approach is the fact that it can assign patterns

to the frame of discernment and thus indicate to the analyst that there is insufficient

evidence to make a classification. The effect is small here, with only 0.7% of the

probability mass assigned to Θ in the case of the 4-feature data. Taking this effect

into account, one can say that the probability of misclassification of the DS network

is 9.6% compared to 10.8% for the MLP network. It is conceivable that situations in

SHM could arise where this scale of difference could be important.

Another advantage of using the DS approach is to provide the possibility of method-

ological diversity in order to use data fusion with the results from a MLP classifier.

When the two classifiers are fused on the 4-feature set here, the classification rate is

increased by 2.9% to 92.6%. This is small but significant change in the context of SHM

problems and is much larger here than the improvement in rate seen by exploiting the

ignorance from the DS-classifier. When the classifiers are fused on the 9-feature data,

the improvement is smaller, giving an overall classification rate of 98.5

The overall goal in SHM must be a zero misclassification rate, in the sense that

the classifier will reject the data rather than produce an error. Further work on the
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classifiers shown here will consider strategies for data rejection other than the value of

the ignorance in the DS-classifier.
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Figure Captions

Figure 1. The Dempster-Shafer uncertainty interval.

Figure 2. Schematic of the starboard wing inspection panels and transducer

locations.

Figure 3. Outlier statistic for all damage states for the novelty detector trained to

recognise panel 1 removal.
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Figure 1: The Dempster-Shafer uncertainty interval.
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Figure 2: Schematic of the starboard wing inspection panels and transducer locations.
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Figure 3: Outlier statistic for all damage states for the novelty detector trained to recognise

panel 1 removal.
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