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STA BILITY OF LINE AR SEMI-COERCIV E VARIATIONAL 

INEQUALITIES IN
. 

HILBERT SPACES: APP LICATION TO THE 
SIGNORINI-FICHERA PROBLEM 

SAMIR ADLY 

Dedicated to the memory of Filippo Chiarenza. 

ABSTRACT. In this paper we show how recent results concerning the stability of 
semi-coercive variational inequalities in reflexive Banach spaces, obtained in [2] 
and [3] can be applied to establish the stability of the semi-coercive Signorini­
Fichera problem with respect to small perturbations. 

1. INTRODUCTION AND POSITION OF THE PROBLEM

The theory of variational inequalities go back to the introduction of the calcu­
lus of variations, their development began in the sixties with the work of Hartman 
& Stampacchia [16], Stampacchia [22] and Fichera [14]. This theory was used as 
a tool for the study of partial differential equations with applications essentially 
drawn from mechanics (Signorini problem, obstacle problems in elasticity etc ... ) . 
The study of variational inequalities became an important mathematical tools and 
have been studied intensively, after the fundamental work of Lions & Stampac­
chia [20]. With the contributions of Brezis [7], [8], Duvaut-Lions [11], Browder [9], 
Kinderlehrer & Stampacchia [19] "(among others), this field has known an increas­
ing growth in both theory and applications. This branch of applied mathematics 
covers a large spectrum of problems and is a very attractive area in the calculus 
of variations, control theory, free boundary problems with a wide range of applica­
tions. Many classes of problems in unilateral mechanics or in plasticity theory, as 
well as in finance, economics, industry and engineering are modeled by variational 
inequalities. 

Let X be a real Hilbert space with the inner product {-, · ) and the associated 
. norm 11 · 11- We shall consider the following variational inequality 

VI(A f <I> K) {Find u E K such that: . ' ' ' (Au- J,v- u) + <I>(v)- <I>(u) > 0, \:fv E K, 
We suppose that. the assumptions (1t) described below are satisfied: 

(1) A : X �·X is a bounded, symmetric and linear operator such that:
dimJR ker(A) <. +oo. We suppose also that the operator A is semi-coercive
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(1) 

i.e. 
3x: > 0 : (Au, u) > KIIQull2, VuE X,

where Q = I- p and P : X -t ker(A) is the orthogonal projection onto
ker(J\). . 

(2) K c X is a closed and nonempty convex set;

(3) f EX; ·. . . 
( 4) � E r 0 (X) i.e. <I> : X -t ffi. U { +oo} is convex, lower semi-continuous and

proper. We note: 
Dom (4>) 

· 
{vEX 4>(v) < +oo}, 

its effective domain. 

Examples 1.1. 

(i) Recall that a linear and monotone operator such that R(A) is closed, satisfies
condition (1). . 

(ii) Let A: X -t X be a linear and monotone operator. The following conditions 
are equivalent · 

(a) there exists a strongly continuous operator C : X -t X such that A+ C 
is coercive; 

(b) A is semi-coercive and dimJR ker(A) < +oo; 
(iii) Let (H, I· I} be an other Hilbert space such that the embedding X � H 

is compact. If A : X -t X is a linear, bounded and monotone operator 
satisfying the following Garding inequality 

3A > 0, 3c > 0 such that: (Au, u) + Alul2 > cllull2, Vu E X, 

then A is semi-coercive and dimR ker(A) � +oo. 
For a proof of these classical results see e.g. [15]. 

Several theoretical existence results for VI(A, f, <I>, K) (in general reflexive Banach 
spaces) are well known when the operator A is coercive. We can cite for instance 
the contributions of J.L. Lions (21], Brezis [7], (8], Browder [9] etc .. . .  However, 
the variational formulation of many engineering problems leads generally to non­
coercive variational inequalities. The theory of semi-coercive unilateral problems 
was studied first by Fichera [13] and Lions & Stampacchia [20], Duvaut & Lions
[11] (for problems with frictional type functionals). Recently many mathematicians.

and engineers has focused their attention on non-coercive unilateral problems, using 
several different approaches such as the critical point theory, the Leray-Schauder 
degree theory, the recession analysis or the regularization method by approximating 
non-coercive problems by coercive ones (see e.g. [I], [4], [25], [5], [6], (24] and ref­
erences cited therein). The main concern of these contributions is the obtainment 
of necessary or sufficient conditions for the solvability of such problems in a general 
setting by imposing some compacity conditions and some compatibility conditions 
on the right hand term f. More recently, S. Adly et al. [2], [3] has considered the 
situations in which the existence of the solution is stable with respect to small uni­
form perturbations of the data of the problem. More precisely, they characterized
all data (A, J, <I>, K) for which there is some c > 0 such that the variational inequal­
ity V I(Ac, fc, <I>c, Kc) has solutions for every bounded and semi-coercive operator
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A£, linear functional fe E X', proper lower semi-continuous convex function <I>£ that 
is bounded from below, and closed convex set Ke such that Ken Dom cl>e f= 0, and 
satisfying the following conditions 

. { IIA(x)-Ac(x)ll < c,
· 

Vx EX 
(«) llf-fcll < c

KC Ke +c-1Bx and Ke C K +c-1Bx, 
<I>(x)-c < <I>e(x) < <I>(x) + c, Vx EX, 

where lffi x is the open unit ball in X. 
This type of perturbation could be applicable in finance or in engineering science 

where the data is only known with a certain precision (due e.g. to statistical mea­
sures) and it is desired that further refinement of the data of the problem should 
not cause the emptiness of the solutions set. We note that this kind of uniform 
stability with respect to small perturbations is taken in the sense of the existence 
of solutions and is completely different from Hadamard's stability which requires 
the continuous dependance with respect to the data of the problem. Note that 
in [17] was presented also a semi-coercive unilateral boundary value problem with 
perturbed (uncertain) data (with the restriction to the case of unique solution). 

2. SOME STABILITY RESULT AND APPLICATION TO FRICTION PROBLEM 

Let us also recall first some background results from convex analysis which will 
be used later. 

Let K be a closed convex subset of X, the recession cone of K is the closed convex 
cone 

where xo is arbitrary chosen in K. 
Let <I> E r0(X), the reces.sion function <l>00 of <I> is defined by:

(2) <I> ( ) ·- 1. <I>(xo + ..\x)-<I>(xo)
oo X .- Ill \ , A�+oo A . 

· where xo E Dom <I> is an arbitrary element. We set ker <I>oo = {x E X  : . <I>oo(x) = 

0} , which is a closed convex cone in X. 
The Fenchel conjugate <I>* : X � � U { +oo} of <I> is defined by: · 

<I>*(x*) = sup { (x*, x} -<I>(x) } .
xEX 

The indicator function to a convex set K is given by: 

{0 if x E K 
IK(x) = 

+oo if (j. K. 
If K is a closed cone, its polar is defined by 

·Ko = {x* EX: (x*, x) < 0, Vx E K}.

Let us now give a necessary condition for the existence of a solution of the variational 
inequality VI(A, J, <I>, K). The following proposition is in this sense. 
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I 1 

Proposition 2.1. Suppose that the assumptions (H) hold. Then a necessary con­
dition for the existence of a solution of VI(A, J, 4?, K) is that 

(3) (/, w) < <P00(w), Vw E ker (A) n Koo.

Proof .. We remark first that VI( A, J, 4?, K) is equivalent to the following variational 
inclusion: find u E K such that

f E Au+ 8(4? + IK)(u). 
Hence, 

f EAu+ 8(<P + IK)(u) c U Au + 8(4? + IK)(u) C R(A) + R(8(<P + IK)). 
uEX 

Therefore, 

(4) 
Let us introduce the following function W : X --+ JR. U { +oo} defined by

\lf(u) == 11:IIQull2 + <I>(u) + lK(u). 
A classical result in convex analysis shows us that

Dam (W*) =Dam (IIQ ·112) *+Dam (<I> +  h) *
.

A simple calculation of the Fenchel conjugate of the function (! 11 Q · 112) , gives us

GIIQ ·112)* = �11·112 + Jker(A)L
Therefore, 

(5) Dam (W*) = ker(A)j_ +Dam (<I>+ h) • = R(A) +Dam (<I>+ h) ·
.

Using ( 4), v-·e have 
f E Dom (\lf*).

It is "�en known in convex analysis that

Dom ('11*) == {g EX : {g, w) < W00(w), Vw EX}. 

It can be easily checked that the recession function w 00 associated to W is given by 
Woo(w) == Iker(A)(w) + <I>oo(w) + IKoo (w).

Consequently f must satisfies the following compatibility condition

(/, w) < <Poo(w), Vw E ker(A) n K00,
"·hicl1 completes the proof of the proposition. D 

In the sequel, "� shall study the stability of the variational inequality
\'I{ A,/, <I>,/{) in the sense of (<r) i.e. 've characterize the data (A, J, <I>, I<) for which
there is some E > 0 such that Sol(Ae:, fe:, <Pe:, /(e) -=/= 0 for every (Ae:, fe, 4le:, Ke:)satisf)ing (<I: ) "ith A� bounded, linear ·symmetric and semi-coercive operator,
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<I>e E ro(X) and Ke a closed convex set. The following resolvent set will play
an important role 

· · 

R(A, <I>, K) = {f E X : Sol( A, J, <I>, K) # 0}. 
The stability of VI(A, J, <I>, K) is related to the characterization of the interior (with
respect to the strong topology) of the resolvent set R(A, <I>, K). Before starting our
study, let us give some simple examples to motivate the stability of VI (A, J, <I>, K)
with respect to small perturbations. 

Examples 2.1. 

(i) We consider the following classical Neumann problem 

N(J) { -Llu = J, in n g� = 0 on an
where n is an open bounded domain of JRn with smooth boundary an and
J E L2(n). 

It is well-known that N(J) has a solution if and only if fn fdx = 0. 
It is clear that if we remplace f by fe = f + c with c > 0, then the new

problem N (fe) has no solution. Hence, the N eumann problem is instable in
the sense of (er ) . 

(ii) Consider now the obstacle problem without friction which consists to deter­
mine the equilibrium position of an elastic thin membrane n c JRn submitted
to loads f E L2(D.) and required to stay on or above an obstacle w. The
classical formulation, assuming that linear elasticity applies, is to find the 
displacement u of the membrane such that

{-Llu > J, in D.
O(f) ( -Llu-J)(u- w) . 0, on D. 

u > w on D. . and g� == 0 in an 
� ,,::,. 

- - - - - - - - - -�;��;;;�� : _________ _ ""'---------.,--,.�-_\..: _l _----------- -- � 
/ ,' X ,',," ,, 

FIGURE 1. Frictionless obstacle problem 

The weak formulation of problem O(f) is a variational inequality of
the form VI(A,j,K,O).where X== H1(0), K = {v E H1(0) : v > 
w a. e. in D.} , the operator A : X --+.X' is defined by

(Au, v) == 
. f \lu · \lvdx, Vu, v E X. · ln · 
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(6) 

(7) 

(8) 

(9) 

By Proposition 2.1, we have the following necessary  condition for the exis­
tence of a solution_ to V I(A, J, K, 0) 

f E ( ker(A) nKoo r 
Since ker(A) =:::: JR. and Koo = {v E H1(n) : V > 0 a.e. inn}, then
ker(A) n K00 ==1ft+. Hence, condition (6) becomes

In f(x)dx < 0.

\Ve can also show (see e.g. [1) or Theorem 2.1) that a sufficient condition 
for the existence of at least one solution of problem V I(A, J, K, 0) is given 
by 

fEInt [( ker(A) nKoo rJ, 
or equivalently, 

In f(x)dx < 0.

Consequently, the frictionless obstacle 
problem is stable with respect to small 
perturbation in the sense of ( « ) if and 
only if I Eint ( ker{A) n Koo r. 

FIGURE 2. Stability cone 
of the frictionless obstacle 
problem. 

(iii) Set X = JR2, A= (� �), K1 . {(x, y) E JR2 : y > 0} and <I> = 0. In this 

case the resolvent set is given by 

'R.(A,O,K1) = {(x,y) E 1R2 : x = 0 and y < 0}.
Note that in this case Int 'R(A, 0, K1) == 0 and hence problem IV(A, J, 0, K1)
is instable if the right hand term f is perturbed by fc: such that 11/- !c:ll <c.

Consider now, the new convex and closed subset K2 given by 
K 2 = { ( x, y) E JR2 : y > x2}.

In this case the resolvent set is given by 

R(A,O, K2) = {(x,y) Em? : y < 0} U {(0,0)}. 
Since Int R(A, 0, K2) =/= 0, then problem IV(A, f, 0, K2) is stable. 

\\ye note that in this example the geometry of the convex and closed subset 
/{ plays an important role for the stability of problem V I(A, /, K, <P) with 
respect to small perturbation� 1Iore generally, the notion of well-positioned 
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sets (introduced in [2]) and the coercivity of an associated energy-type func­
tional to the problem play a crucial role for the stability the variational prob­
lem V I (A, j, K, <I>) with respect to small uniform perturbation (see T�eorem
4.1 [2]). 

·We have the following the following existence and stability result related to the
linear variational inequality VI( A, j, cl>, K) (for the proof we refer to Theorem 2.2
in [3]). 

Theorem 2.1. The linear variational inequality VI( A, j, <I>, K) is stable in the sense 
of (CC ) if and only if the following two conditions are satisfied 

(i) ker (A) n Koo n ker( <I>00) contains no lines; (ii) (j, w) < <I>oo(w), \/wE ker(A) n K00, w #- 0 . . · 

Example 2.1. Application to an elastic unilateral contact problem with 
friction. 

Let an elastic body represented by a 
bounded domain n c JRd (d = 1, 2, 3)
with smooth boundary r. We sup­
pose that r = rN U re where re
is the part of r over which the body
may come into contact with a rigid 
foundation S. We assume that the
body n is subjected to body forces 

f = (fl' ... ' !d) on n and surface trac­
tion G = (Gt, .. .  , Gd) acting on rN. 
Let u = (ui)l<i<d be the displacement 
of the body a;d Ui,j . z�� · 

J 
FIGURE 3. Elastic body in
contact with a rigid founda­
tion. 

We denote by cij ( u) and aij ( u) the �omponents of the strain and the stress tensor
respectively. Assuming that linear elasticity holds, then we have as usual 

' 1 
aij = Cijkl ckz(u) and cij(u) = 2(ui,j + Uj,i),

where the elasticity coefficients Cijkl satisfy the usual conditions of boundriess, sym-
metry and uniform ellipticity. 

· 

Let n denotes the unit outward normal vector to r. We set UN = u · n, ur = 

u-uNn the normal and tangential displacement respectively, aN and ar the normal 
and tangential stress respectively. 

The displacement u of the body n satisfies the following equations

(10) 
(11) 

-aij,j = fi inn, i = 1, . . . 'd 

O"ij(u)nj = Gi on rN, i = 1, . . . d 
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The classical Signorini's unilateral contact conditions are expressed as follows

(12) UN < 1/J, O"N < 0, aN(UN- 1/J) = 0 on re,

where 'ljJ E L00(rc) is the initial gap between re and the foundation. . 
Assuming that frictional effects are governed by a modified version of Coulomb's

law with a prescribed bound [11], the friction conditions are expressed as follows 

(13) 
(14) 
(15) 

larl <gonre 

larl < g =} ur = 0 
I ar I = g ::::::::} there exists A > 0 : ur = -A.ar 

where g E L00(re) is a non-negative function representing a friction bound. 
The weak formulation of this problem is a variational inequality of the form 

V I(A, l, �' K) with 

X= H1(f2;Rd), K = {v E H1(n;Rd) : vN < 'tf; on re},

(Au, v) == f Cc:(u) : c:(v)dx, q)(v) == f g lvrl da, (l, v) = f f. vdx + { G.vda.Jn lrc ln lrN 
Note that the operator A is semi-coercive since Korn's inequality is not satisfied 
(no prescribed boundary displacements is imposed on any part of r). Let n = {V E

H1(f2;1Rd) : Eij(v) = 0} be the space of rigid motions, e.g. ford= 2, we have

(16) 'R = { v = (v�, v2) E H1(0; ll�_2) 
: VI (x�, x2) = a1 + bx2 et v2(x1, x2) = a2- bx1},

where at, a2 and bare arbitrary real constants. 
Since the functional� is positively homogeneous, we have cpoo = cp_ 
Using Proposition 2.1, we have the following necessary condition for the existence

of a solution of problem VI(A, l, �' K) 

(17) (l, w) < �(w) , Vw E K00 n R,

where J(oo = {v E H1(!1;Rd) : VN < 0 on re}.
Using now Theorem 2.1, the Signorini-Fichera problem V I(A, l, <1>, K) is stable_

with respect to small uniform perturbations in the sense of(« ) if and only if

{i) Rn K00 n ker(ci-) contains no line;
(ii) {l,w} < cp(w), \lw ERn K00, w #- 0, i.e. 

{ f·wdx+ { G·wda< { gjwrlda, VwE'RnK00, wf:-0.ln lrN lrc 
'Ye now discuss how to apply this stability result to some simple situation where.
the body n is a rectangle of lR2 and the contact surface are as in Figures 4 and 
5. 'Ye consider first the case of Figure 4. Using (16), it is clear that in this case
the space 'R n I<oo = {0}. Hence, the Signorini-Fichera problem V I(A, l, ci-, K) is
stable ·with respect to small uniform perturbations in the sense of ( <! ) for every

lE ( H1(!l;JRd) ) '. 
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In the case of Figure 5, we have RnKoo == {0} x JR+. Hence, the Signorini-Fichera
problem V I(A, l, <P, K) is stable with respect to small uniform perturbations in the

sense of («) for every l such that (l, e2 ) < 0 where e2 = ( � } 

FIGURE 4. Contact sur­
face·l 

FIGURE 5. Contact sur­
face 2 

For a discussion about the solvability of the semi-coercive contact problem with 
Coulomb friction, we refer to [12] and references therein. 

REFERENCES 

[1] S. ADLY, D. GOELEVEN, M. THERA, Recession mappings and noncoercive variational inequal-
ities. Nonlinear Anal. 26 (1996), no. 9, 1573-1603. . 

[2] S. ADLY, E. ERNST, M. THERA, Stability in frictional unilateral elasticity revisited: an appli­
cation of the theory of semi-coercive variational inequalities, Amer. Inst. of Physics to appear. 

[3] S. ADLY, E. ERNST, M. THERA, Stability of Non-coercive Variational Inequalities, Communi­
cations in Contemporary Mathematics Vol. 4, 1, 145-160 (2002) .

[4] D. D. ANG, K. SCHMIDT, K. VY, Noncoercive variational inequalities: some applications,
Nonlinear Anal., T. M. A., 15, N°6, 497-512, 1990. 

. 

[5] C. BAIOCCHI, G. BUTTAZZO, F. GASTALDI, F. TOMARELLI, General Existence Theorems for
Unilateral Problems in Continum Mechanics, Arch. Rat. Mech. Anal. 100, 2, 149-180, 1988. 

[6] C. BAIOCCHI, F. GASTALDI, F. TOMARELLI , Some Existence Results on Noncoercive Varia­
tional Inequalities, Ann. Scuola Norm. Sup. Pisa, ( 4) 13, 617-659, 1986.

[7] H. BREZIS, Equations et inequations non-lineaires dans les espaces vectoriels en dualite, Ann.
Inst. Fourier, Grenoble, 18, 1, 115 -175, 1968. 

[8] H. BREZIS, Problrhes unilateraux, J. Math. Pures et Appl., 51, 1-168, 1972.
[9] F. BROWDER, Nonlinear maximal monotone mappings in Banach spaces, Math. Ann. 175, 81-

113 (1968) .
[10] P. Daniele, A. Maugeri,Equilibrium problems and variational inequalities: a continuum trans­

portation model, Computational fluid and solid mechanics, Vol. 1, 2, 1543-1545, Elsevier, Am­
sterdam, (2001) .

[11] G. DUVAUT, J.L. LIONS, Les inequations en mecanique et en physique, Dunod (1972) .
[12] C. EcK, J. JARUSEK, Existence results for the semicoercive static contact problem with coulomb

friction, Nonlinear Analysis 42, pp 961-976 (2000).
[13] G. FICHERA, Boundary value problems in elasticity with unilateral constraints, Handbuch der

Physik, Springer-Verlag, Berlin Heidelberg New York, (1972), Vla.2, 347-389.
[14] G. FICHERA, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con am­

bigue condizioni al contorno, Atti. Accad .. Naz. Lincei Mem. Sez. I (8), 7, 71-140 (1964) .
[15] D. GOELEVEN, J. GWINNER, On semicoerciveness, a class of variational inequalities, and an

application to von Kaman plates. Math. Nachr. 244 (2002), 89..:..109. · 

9



·�. 

[16] P. HARTMAN, G. STAMPACCHIA , On some nonlinear elliptic differential functional equations, 
Act� Mathematica 115, 271-310 (1966). 

[17] I. HLAVACEK, J. LOVISEK, Semi-coercive variational inequalities with uncertain input data.
Applications to shallow shells, Mat. Mod. and Meth. in Applied Se. Vol 15, No 2, pp 273-299 
(2005). 

[18] G. !DONE, A. MAUGERI, C. VITANZA, Variational inequalities and the elastic-plastic torsion 
problem, J. Optim. Theory Appl. 117, no. 3, 489501 (2003). 

( 19] D. KINDERLEHERE, G. STAMPACCHIA, An introduction to variational inequalities and their 
applications, Academic Press, New-York (1980). 

[20] J .L. LIONS, G. STAMPACCHIA,. Variational inequalities, Comm. Pure Appl. Math., 20, pp 
493-519 {1967). . .. 

(21] J.L. LIONS, Quelques methodes de resolution des problemes aux limites non-lineaires, Dunod 
(1969). 

[22] G. STAMPACCHIA , Formes bilineires coercitives sur les ensembles convexes, C.R. Acad. Sci. 
Paris, 258, (1964), pp 4413-4416. 

[23] G. STAMPACCHIA , Variational inequalities, Theory and Applications of Monotone Operators, 
A. Ghizetti Oderisi Gubbio, 1969. 

[24] F. TOMARELLI, N oncoercive variational inequalities for pseudomonotone operators, Preprint 
1993. 

[25] L.K. VY, D. D. ANG, Frictional contact of an elastic body with a rigid support, Nonlin. Anal. 
TMA, Vol. 25, No. 24, pp 339-343 {1995). 

SAMIR ADLY 
Departement Mathematiques-Informatique, Institut XLIM (UMR-CNRS 6172) Universite de Limo­
ges, 123, Avenue Albert Thomas, 87060 Limoges CEDEX, FRANCE. 

E-mail address: samir. adly<Ounilim.fr 

10




