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A NONSYMMETRIC LINEAR COMPLEMENTARITY PROBLEM 

TO SOLVE A QUASISTATIC. ROLLING FRICTION AL CON TACT 

PROBLEM 

KHALID ADDI, SAMIR ADLY, DANIEL GOELEVEN, AND MICHEL THERA 

Dedicated to the memory of Filippo Chiarenza. 

ABSTRACT. A simple approach and an algorithm are proposed to solve the qua­
sistatic rolling frictional contact problem between an elastic cylinder and a fiat 
rigid body. The discretization is based on the boundary element method. The 
unilateral frictional contact problem (nonsmooth but monotone) is formulated
in a compact form as a nonsymmetric linear complementarity problem which is 
solved using Lemke's algorithm. 

1. INTRODUCTION

In the quasistatic case of a rolling elastic cylinder in frictional contact with a flat 
rigid body, the relative slip velocity is a very important parameter of the problem� 
To compute it, a direct method is presented in Abascal et al. [6, 7, 8J, where two 
approaches are used considering the velocity as unknown variable in the LCP solving 
the frictional contact. 

Here, we propose· another approach based in solving the static frictional contact 
problem and, afterwards, computing the velocity using an explicit appropriate re­
lation. The boundary element method (BEM) is used to discretize the mechanical 
problem. Then the elastostatic; frictional contact, rolling problem is formulated as 
a compact LCP . using the boundary element method and the rigid displacement 
approach. 

2. MODELLING, DISCRETIZATION AND CONDENSATION OF THE PROBLEM.

Following the approach used in [1] the rolling problem is reduced to a plane strain 
state (see, e.g., [6, 7, 8]) where the Coulomb's law describes the friction. 

The friction is assumed to follow the dry Coulomb's law where normal and tan­
gential tractions on the boundaries of the contact zone are related via a coefficient 
of friction. Under this assumption, two points belonging to the ·cylinder A and _the· 
rigid body B fall in three different states relative to each other (Fig. ·1): 

( 1) Stick state 

(1) 
r� < 0, r� < 0,

A B TT= Ty,
<Sn = 0,
St = 0, 
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(2) 

(2) Slip state 

� �n=O,rO 

j
�n>O, r�>=O 

• �+-Stick/Slip�· . � X 

Separation Separation 

FIGURE 1. Potential contact zone. 

r� < 0, r� < 0, r� = r�, 
!r�l = ��r�l, lr¥1 == ��r�l, 

On= 0, 

sgn(st) = - sgn (r# ) , 

(3) Separation state 

(3) rJt == 0, r� == 0, r: = 0, r!J. == 0, On > 0.
Here, 1-L is the constant coefficient of friction, r�, r�, r� and r!J. are the normal
and tangential tractions of cylinder A and rigid body B, respectively, at contacting 
points, UN and ur are the normal and the tangential cylinder surface displacements,
St is the slip velocity and On is the normal separation given by: 

(4) On== Ono- UN. 
The initial separation, Ono, for a cylinder and a flat body in contact can be approx­
imated by 

(5) 

where R is the cylinder radius and x is the Eulerian coordinate along the contact
zone used to position each pair of points at each time relative to a rigid body 
position of the cylinder. 

When applying an Eulerian description of particles moving through the contact 
area, the relative tangential slip velocity of each cylinder surface point is defined as 

(6) St == bt = dOt(X, T)
dr 

where T is the time coordinate, X =  x(r) is the Cartesian coordinate of each point
relative to fixed axes and varying time r, and Ot is the tangential separation given 
by 

( 7) . Ot == ( XA - XB) + U� + u¥
where xA and x8 are the cartesian coordinates of contacting points of the cylinder
and the rigid respectively. u� and u¥ describe the tangential displacements of at
contacting points of the cylinder and the rigid body, respectively. 
Substituting (7) into (6) leads to 

(8) _ VA VB VA A VB B A B 8t - - + uT,x + UT,x + UT,r + UT,r 
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where va is the velocity of a point of the rigid body a (a == A, B) in the x-direction.
u�,x = 8;[. Under steady-state rolling conditions, the variation with time vanishes,
so. 

(9) St = VA -VB+ VAuA + V3u3 . �X �X
which. 

is usually approximated [9] by

(10) Bt = lVI (e � sgn(V)(u�,x + u¥,x))
where V is given by (VA + vB)/2, and e is the normalized relative rigid slip ve-

vA- vB . 
locity (creepage) , defined as e == 

IV[ 
. In fact, we consider St, in practice, as 

dimensionless variable denoted by s; [8]:

(11) s; == � + sgn(V)(u�,x + u¥,x) 
When the displacement derivatives are approximated using a finite difference scheme, 
the tangential slip velocity for a point located at the coordinate Xi is, under steady­
state rolling conditions, expressed as 

(12) 

where hi denotes the distance between two adjacent boundary points Xi+l and Xi· 
To analyze coupled 2D rolling contact between two cylinders, Abascal et al. have 

formulated the problem considering the slip velocity as unknown variable. Indeed, 
in [8], the NORM-TANG iteration [16] to solve two complementarity problems. In 
[6], the problem is analyzed by minimizing a function representing the equilibrium 
equation and the contact restrictions. In our case, the static contact-friction problem 
between an elastic cylinder and a flat rigid body is first solved and, subsequently, 
the slip velocity is computed explicitly using the above formula. The model is 
discretized using the boundary element method which is more suitable for this class . 
of problem where the nonlinearity is limited to the boundary of the body. The here 
adopted formulation follows the lines of [2], [3], [11], [12], [17] and [18] where the
matrix formulation of displacement boundary element in elastostatics is given by 
[4]: 

(13) Hu == Gt. 
Here, u is the vector of the nodal boundary displacements, t is the vector of element
boundary tractions, and H; G are the appropriate matrices.

The number of equations in (13) depends on the number of nodes on the dis- . 
cretized boundary. Let us note that the number of boundary element tractions 
(i.e. , the dimension oft) depends on the nature of the boundary elements used. · 

The classical approach for the solution of the bilaterally constrained structures 
goes through the specification of appropriate, known boundary displacements or 
tractions, the rearrangement of the system (13), and finally, the formulation of a 
nonsymmetric system of equations, after reordering: 

(14) Ay = b. 
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The 2n-dimensional vector y contains all the unknown boundary displacements or
tractions of the problem. In the contact area, both displacements and tractions are 
unknown. They must be kept in the formulation and connected with the inequality 
and complementarity relations of the unilateral contact mechanism. After solving 
the arising LCP, one knows which of these . variables. vanishes. Thus, we proceed 
with condensation and, then, formulate the linear complementarity problem. 

Let us consider Ue and te as being the boundary nodal displacements and trac­
tions, respectively, at the frictional unilateral contact boundary of the cylinder. 
After partitioning the boundary of the cylinder, the equation (14) gives: 

(15) 

When ne is the number of the nodes at the unilateral contact boundary, then
Ue and te have 2ne elements, Hee and Gee have 2ne x 2ne elements, Hff has
2(n- ne) X 2(n- ne) elements, Gje, Hje and Hef have 2(n- ne) X 2nc elements. u 

denotes the nodal boundary displacements of the cylinder outside the contact area. · 
The next step is to perform a local coordinate transformation so that normal and 
tangential to the unilateral boundary quantities appear in the formulation. There­
fore, let us consider w and r as the natural local coordinates (normal and tangential
coordinates) of the displacements and. the tractions in the contact boundary, re­
spectively: 

(16) u� = [�t], t�= [�t] , wi= [��], ri= [��].

The transformation for � single unilateral boundary node i reads:

(17) 

with 

C. i- i tUc -W, 

(18) ei = [ CO� tPi sin tPi] .- Sill tPi COS </Ji 

Since ei-1 = e[, relations (17) can be inverted:
i T i T (19) Uc == ci w, tc = -Ci r. 

Taking into account these transformations, one has 

(20) 

Then, the problem will be condensed, i.e., in order to get the flexibility matrix, the 
unknown variable u will be reduced by considering the relation (20): 

(21) u == Hj} f1 - Hj}G feeT r- Hj} H1cCT w 

Then, 

(22) [HccCT- HcJHj}HJcCT] w = [!c- HcJHj}fJ] 
- [ccccr- HcJHj}GJcCT] r 
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Thus, w can be written as: 

(23) w == wo + Fr

where 

and 

or 

(24) [Wn] == [Wno] + [Fnn Fnt] [r N] .
. Wt ww Ftn Ftt rr 

3. THE FRICTIONAL CONTACT FORMULATION 

We follow the formulation of [13] and [14]. Let the normal forces and the friction 
forces be assembled in vectors rN = {rNl, ... , rNn}T and ry == {rr1, rr2, ... , rrn}T,
respectively, w�ere, e.g. , rri is the frictional force of the i-th contact node. 

Coulomb's law of dry friction connects the tangential (frictional) forces with the 
normal (contact) forces by the relation 

· 

(25) 'Yi == fl iT Nil - /rril , i == 1, . . . , n, li � 0.

Here J.J denotes the absolute value and JL is the friction coefficient. The friction
mechanism is considered to work in the following way: If lrril < fliT Nil (i.e. , 'Yi > 0),. 
the slipping value liT must be equal to zero, and if /rri/ = JL/rNi/ (i.e., 'Yi � 0), then
we have slipping in the opposite direction of rri: 

if "'/i > 0, then YTi = 0
(26) if 'Yi == 0, then there exists a> 0 such that YTi = -aTTi·

By assembling the contributions of all (n) unilateral nodes, relation (26) reads:

(27) 

with the matrices Tr and T N
(28) Tr == diag [T}, Tf, ... , Tr] , ·T N == diag [T}v, TJv, . . ·. , TN] .
These matrices are obtained from the linearized friction law considered in 2D [2, 13]. 

(29) 
. [1 -1] T� == 0 0 '

Finally, the slip value in (25), (26) is written as 

(30) T \ .,>_0 YT == TA, /\. 

where A is a vector of nonnegative slipping parameters. Then, 1 and .X fulfil the
following complementarity condition: 

(31) ')'TA== 0 
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FIGURE 2. The mesh around the cylinder contour.

3.1. The Linear Complementarity Problem formulation. To formulate the 
linear complementarity problem the rigid body displacements approach is adopted. 
The slipping value ,\ and the tangential displacements ur are then related by the 
compatibility relation: 

(32) Tr.-\- ur == dr 
where dr denotes the initial tangential distance. 

The general decomposition scheme with slack variables can be found in more 
details for two-dimensional friction problems in [14}. 

The structure is assumed linear elastic which, on the assumption that everything 
outside of the frictional contact interfaces has been condensed out, reads: 

(33) ii == Fr 
·where

F == [FNN FNT]. FrN Frr ' 
--- _ [rN]r- . 

rr 
Here, F is the symmetric flexibility matrix where F N N is an n x n nonsingular
matrix with the mechanical meaning of being the normal flexibility matrix, Frr 
is a 2n x 2n nonsingular matrix (the tangential flexibility) and F NT, FrN are the
corresponding couple flexibility matrices. 

By using the previous relations, the unilateral kinema�ic conditions normal and 
tangential to the interface, take the form: 

(34) YN- FNNrN- FNrrr == dN,
Tr.A- FrNrN- Frrrr == dr. 

A standard LCP formulation is derived by means of the following change of 
variables. First, from the second relation in (34), rr is expressed as follows: 

(35) ry == -Fr}FrNrN + FT� Ty.-\- Fr}dr
Then, by eliminating rr from equations (34), we obtain 

(36) YN- (FNN- FNrFr�FTN) rN- FNrFr�Ty.:\ == dN- FNrFr�dy

I+ (T�Fr�FTN- Tk) rN- TfFr�Tr.A == -T�Fr�dr 
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FIGURE 3. Distribution of stick/slip and normal separation in the 
potential contact zone. 

Finally, a standard LCP is obtained from equations (36): 

(37) z � 0, Mz + b > 0, (Mz + b)T z = 0
with 

(38) 

[rN] b = [dN- FNrFT�dr]z = .\ ' 
-T�Fr�dr ' 

M_ [(FNN- FNrFy�FrN) FNrFT�Tr]
- -(T�Fy�FrN- Th) TtFr�Tr ' 

Mz+b= [y;]

Note also that (37) can be written as the variational inequality: 

(39) z > 0 : (Mz + b) T ( v - z) == 0, V v � 0 

4. NUMERICAL RESULTS

To discretize the rolling problem with BEM (Fig. 2), constant elements are 
used. In fact, Karami [10] and Stavroulakis et al. [18] remarked the existence of 
oscillations in the traction behaviour with quadratic elements. Young modulus and 
Poisson coefficient are taken to be 94500 and 0.1, respectively. The rigid body 
normal and tangential displacement used were dN = R/2 and dr == 0.1dN where 
R is the radius of the cylinder. The LCP (37 is solved using Lemke's algorithm
[15) The results shown in the Figures 3, 4, 5, and 6 are obtained by applying a 
normal and a tangential rigid body displacements approach. Figure 3 shows the 
existence of a separation area in the potential contact zone. The stick/slip area is
not centered because of the tangential effect. In the Figures 4 and 5, the normal and 
the tangential tractions in the frictional contact case are plotted. Figure 6 shows 
the velocity behaviour only in the effective contact zone. 

7



0.5 

0 

ll( liE liE ll( 

Tt--+­
-muTn ---><--­
muTn 

-1 �----�--�----�ll(ll(��------�------� 
0.5 -1 -0.5 0 

x/a 

FIGURE 4. Normal and tangential tractions in the frictional contact 
case (!-l == 0.1). 
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FIGURE 5. Normal and tangential tractions in the frictional contact 
case (1-l == 0.3).

Acknowledgements. The first author expresses his thanks to the Alexander von 
Humboldt-Stiftung, Bad Godesberg, Bonn, for the financial support and to Prof. 
H. Antes and Prof. G.E.· Stavroulakis for their guidance. 

The research of Samir Adly and Michel Thera has been supported by the "Fan­
dation EADS" and the ANR project "Guidage". 

REFERENCES 

[1] Addi K.; Antes H., Stavroulakis G.E., On solving a rolling fr ictional contact problem using
BEM and Mathematical Programming, International Journal of Applied Mathematical Sci­
ences, 2004, 1:73-95. 

[2] Al-Fahed AM, Stavroulakis GE, Panagiotopoulos PD. Hard and Soft fingered robot grippers. 
Zeitschrift fiir Angewandte Mathematik und Mechanik (ZAMM) 1991;71(7 /8):257-66. 

8



0.12 

1 
0.1 

0.08 

0.06 ,.. .. i 

0 

::\ 
�\ 

"'x-x-x 

0.04 

0.02 

-0.02 

-0.04 

-0.06 

-1 -0.5 

········· · · ·  / 
J 

)j-�-�\ 

0 
x/a 

\ 
\ 
X 

SI' with mu=0.1 -
St' with mu-0.2 

0.5 

FIGURE 6. Tangential velocity in the effective contact zone: Depen­
dence on the friction coefficient 

[3] Antes H, Panagiotopoulos PD. The boundary integral approach to static and dynamic contact
problems. Equality and inequality methods. Basel/Boston/Berlin:Birkhauser, 1992. 

[4] Brebbia CA, Dominguez J. Boundary elements. An introductory course. Southampton: Com­
putational Mechanics Publications and McGraw-Hill, 1989. 

[5] Goeleven D., Stavroulakis G.E, Salmon G., Panagiotopoulos P.D. Solvability Theory and
Projection Methods for a Class of Singular Variational Inequalities. Elastostatic Unilateral 
Contact Applications, Journal of Optimization Theory and Applications, 1997;95:263-293. 

[6) Gonzalez JA, Abascal R. An algorithm to solve coupled 2D rolling contact problems, Interna-
tional Journal for Numerical Methods in Engineering 2000;49:1143-1167. 

[7] Gonzalez JA, Abascal R. An algorithm to solve 2D transient rolling contact problems, Euro­
pean Congress on Computational Methods in Apllied Sciences and Engineering ECCOMAS 
2000 Barcelona, 11-14 September 2000. 

[8] Gonzalez JA, Abascal R. Solving 2D rolling problems using the NORM-TANG iteration and
mathematical programming, Computers and Structures 2000;78:149-160. 

[9] Kalker JJ. Three dimenensional elastic bodies in rolling contact. Dordrecht: Kluwer Academic
Publishers, 1990. . 

[10] Karami G. A boundary element method for two dimenensional contact problems. In: Brebbia
CA and Orszag S,.A. editors. Lectures Notes in Engineering: Springer-Verlag, Berlin1989. 

[11] Klarbring A. A mathematical programming approach to three-dimensional contact problems
with friction. Comp Meth Appl Mech Eng 1986;58(2):175-200. 

[12} Klarbring A. A mathematical programming in contact problems. In: Aliabadi MH, Breb­
bia CA, editors. Southampton: .Computational Mechanics Publications and Elsevier Applied 
Science, 1993.p.233-64. 

[13] Klarbring A, Bjorkman G. A mathematical programming approach to contact problems with
friction and varying contact surface. Computers and Structures 1988;30:1185-98. 

(14] Kwack BM, Lee SS. A complementarity problem formulation for two dimensional frictional
contact problems. Computers and Structures 1988;28:469-80. 

[15] Lemke CA. Some pivot scheme for the linear complementarity problem. In: Balinsky
ML;Cottle RW (eds): Mathematical programming studies 1978;7:15-35. 

[16] Panagiotopoulos PD. Hemivariational inequalities. Applications in mechanics and engineering.
Berlin: Springer, 1993. 

[17] Stavroulakis GE, Antes H. Nonlinear equation approach for inequality elastostatics: a two­
dimensional BEM implementation. Computers and Structures 2000;75:631-646. 

9



[18] Stavroulakis GE, Panagiotopoulos PD, Al-Fahed AM. On the rigid body displacements 
and rotations in unilateral contact problems and applications. Computers and Structures 
1991 ;40:599-614. 

KHALID ADD! 
Institut de REcherche en Mathematiques et Informatique Appliquees, Universite de La Reunion, 
15, avenue Rene Cassin 97715 Saint Denis Messag. Cedex 9, France

E-m ail address: khalid. addiCOuni v-reunion. fr 

SAMIR ADLY 
Departement Mathematiques-Informatique, Institut XLIM (UMR-CNRS 6172) Universite de Limo­
ges, 123, Avenue Albert Thomas, 87060 Limoges Cedex, France. 

E-mail address: samir. adlyCOunilim. fr 

DANIEL GOELEVEN 
Institut de REcherche en Mathematiques et Informatique Appliquees, Universite de La Reunion, 
15, avenue Rene Cassin 97715 Saint Denis Messag. Cedex 9, France 

E-mail address: daniel.goeleven@univ-reunion.fr 

MICHEL THERA 
Departement Mathematiques-Informatique, Institut XLIM (UMR-CNRS 6172) Universite de Limo­
ges, 123, Avenue Albert Thomas, 87060 Limoges Cedex, France. 

E-mail address: michel. thera@unilim. fr 

10




