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A simple approach and an algorithm are proposed to solve the qua sistatic rolling frictional contact problem between an elastic cylinder and a fiat rigid body. The discretization is based on the boundary element method. The unilateral frictional contact problem (nonsmooth but monotone) is formulated in a compact form as a nonsymmetric linear complementarity problem which is solved using Lemke's algorithm.

INTRODUCTION

In the quasistatic case of a rolling elastic cylinder in frictional contact with a flat rigid body, the relative slip velocity is a very important parameter of the problem� To compute it, a direct method is presented in Abascal et al. [6, 7, 8J, where two approaches are used considering the velocity as unknown variable in the LCP solving the frictional contact.

Here, we propose• another approach based in solving the static frictional contact problem and, afterwards, computing the velocity using an explicit appropriate re lation. The boundary element method (BEM) is used to discretize the mechanical problem. Then the elastostatic; frictional contact, rolling problem is formulated as a compact LCP . using the boundary element method and the rigid displacement approach.

MODELLING, DISCRETIZATION AND CONDENSATION OF THE PROBLEM.

Following the approach used in [START_REF] Addi | On solving a rolling fr ictional contact problem using BEM and Mathematical Programming[END_REF] the rolling problem is reduced to a plane strain state (see, e.g., [START_REF] Gonzalez | An algorithm to solve coupled 2D rolling contact problems[END_REF][START_REF] Gonzalez | An algorithm to solve 2D transient rolling contact problems[END_REF][START_REF] Gonzalez | Solving 2D rolling problems using the NORM-TANG iteration and mathematical programming[END_REF]) where the Coulomb's law describes the friction.

The friction is assumed to follow the dry Coulomb's law where normal and tan gential tractions on the boundaries of the contact zone are related via a coefficient of friction. Under this assumption, two points belonging to the •cylinder A and _the• rigid body B fall in three different states relative to each other (Fig.
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rJt == 0 , r� == 0, r: = 0, r!J. == 0, On > 0. Here, 1-L is the constant coefficient of friction, r�, r�, r� and r !J. are the normal and tangential tractions of cylinder A and rigid body B, respectively, at contacting points, U N and ur are the normal and the tangential cylinder surface displacements, St is the slip velocity and On is the normal separation given by: (4)

On== Ono-UN.

The initial separation, Ono, for a cylinder and a flat body in contact can be approx imated by [START_REF] Goeleven | Solvability Theory and Projection Methods for a Class of Singular Variational Inequalities. Elastostatic Unilateral Contact Applications[END_REF] where R is the cylinder radius and x is the Eulerian coordinate along the contact zone used to position each pair of points at each time relative to a rigid body position of the cylinder.

When applying an Eulerian description of particles moving through the contact area, the relative tangential slip velocity of each cylinder surface point is defined as

(6)
St == b t = d O t( X, T ) dr
where T is the time coordinate, X = x (r) is the Cartesian coordinate of each point relative to fixed axes and varying time r, and Ot is the tangential separation given by [START_REF] Gonzalez | An algorithm to solve 2D transient rolling contact problems[END_REF] . Ot == ( X A -X B ) + U� + u ¥ where xA and x8 are the cartesian coordinates of contacting points of the cylinder and the rigid respectively. u � and u¥ describe the tangential displacements of at contacting points of the cylinder and the rigid body, respectively. Substituting ( 7) into (6) leads to (8 )

_ VA V B VA A V B B A B 8 t - - + u T, x + UT,x + UT,r + U T,r
where va is the velocity of a point of the rigid body a (a == A, B) in the x-direction.

u � , x = 8;[. Under steady-state rolling conditions, the variation with time vanishes, so.

(

) S t = VA -V B + VA uA + V3 u 3 . �X �X 9 
which . is usually approximated [START_REF] Kalker | Three dimenensional elastic bodies in rolling contact[END_REF] by

(10) Bt = l V I ( e � sgn( V ) (u � , x + u ¥, x ) )
where V is given by (V A + v B )/2, and e is the normalized relative rigid slip ve-vA-v B .

locity (creepage) , defined as e == I V [

. In fact, we consider St, in practice, as dimensionless variable denoted by s; [START_REF] Gonzalez | Solving 2D rolling problems using the NORM-TANG iteration and mathematical programming[END_REF]:

(11) s; == � + sgn( V )(u � ,x + u ¥, x )
When the displacement derivatives are approximated using a finite difference scheme, the tangential slip velocity for a point located at the coordinate Xi is, under steady state rolling conditions, expressed as

(12)
where hi denotes the distance between two adjacent boundary points Xi+l and Xi• To analyze coupled 2D rolling contact between two cylinders, Abascal et al. have formulated the problem considering the slip velocity as unknown variable. Indeed, in [START_REF] Gonzalez | Solving 2D rolling problems using the NORM-TANG iteration and mathematical programming[END_REF], the NORM-TANG iteration [START_REF] Panagiotopoulos | Hemivariational inequalities. Applications in mechanics and engineering[END_REF] to solve two complementarity problems. In [START_REF] Gonzalez | An algorithm to solve coupled 2D rolling contact problems[END_REF], the problem is analyzed by minimizing a function representing the equilibrium equation and the contact restrictions. In our case, the static contact-friction problem between an elastic cylinder and a flat rigid body is first solved and, subsequently, the slip velocity is computed explicitly using the above formula. The model is discretized using the boundary element method which is more suitable for this class . of problem where the nonlinearity is limited to the boundary of the body. The here adopted formulation follows the lines of [START_REF] Stavroulakis | Hard and Soft fingered robot grippers[END_REF], [START_REF] Antes | The boundary integral approach to static and dynamic contact problems[END_REF], [START_REF] Klarbring | A mathematical programming approach to three-dimensional contact problems with friction[END_REF], [12], [START_REF] Stavroulakis | Nonlinear equation approach for inequality elastostatics: a two dimensional BEM implementation[END_REF] and [START_REF] Stavroulakis | On the rigid body displacements and rotations in unilateral contact problems and applications[END_REF] where the matrix formulation of displacement boundary element in elastostatics is given by [START_REF] Brebbia | Boundary elements. An introductory course[END_REF] : [START_REF] Klarbring | A mathematical programming approach to contact problems with friction and varying contact surface[END_REF] Hu == Gt.

Here, u is the vector of the nodal boundary displacements, t is the vector of element boundary tractions, and H; G are the appropriate matrices.

The number of equations in (13) depends on the number of nodes on the dis-. cretized boundary. Let us note that the number of boundary element tractions (i.e., the dimension oft) depends on the nature of the boundary elements used. • The classical approach for the solution of the bilaterally constrained structures goes through the specification of appropriate, known boundary displacements or tractions, the rearrangement of the system (13), and finally, the formulation of a nonsymmetric system of equations, after reordering:

(14) Ay = b.
The 2n-dimensional vector y contains all the unknown boundary displacements or tractions of the problem. In the contact area, both displacements and tractions are unknown. They must be kept in the formulation and connected with the inequality and complementarity relations of the unilateral contact mechanism. After solving the arising LCP, one knows which of these . variables. vanishes. Thus, we proceed with condensation and, then, formulate the linear complementarity problem.

Let us consider Ue and te as being the boundary nodal displacements and trac tions, respectively, at the frictional unilateral contact boundary of the cylinder. After partitioning the boundary of the cylinder, the equation [START_REF] Kwack | A complementarity problem formulation for two dimensional frictional contact problems[END_REF] gives: [START_REF] Lemke | Some pivot scheme for the linear complementarity problem[END_REF] When ne is the number of the nodes at the unilateral contact boundary, then Ue and te have 2ne elements, Hee and Gee have 2ne x 2ne elements, Hff has 2(n-ne) X 2(n-ne) elements, Gje, Hje and Hef have 2(n-ne) X 2nc elements. u denotes the nodal boundary displacements of the cylinder outside the contact area. • The next step is to perform a local coordinate transformation so that normal and tangential to the unilateral boundary quantities appear in the formulation. There fore, let us consider w and r as the natural local coordinates (normal and tangential coordinates) of the displacements and. the tractions in the contact boundary, re spectively:

(16) u� = [�t], t�= [�t], w i = [��], r i = [��].
The transformation for � single unilateral boundary node i reads: [START_REF] Stavroulakis | Nonlinear equation approach for inequality elastostatics: a two dimensional BEM implementation[END_REF] with

C . i-i tUc -W, (18) 
e i = [ CO� tP i sin tP i ] .

-Sill tP i COS </Ji

Since e i -1 = e[, relations (17) can be inverted:

i T i T (19) U c == c i w , tc = -C i r.
Taking into account these transformations, one has (20)

Then, the problem will be condensed, i.e., in order to get the flexibility matrix, the unknown variable u will be reduced by considering the relation (20): We follow the formulation of [START_REF] Klarbring | A mathematical programming approach to contact problems with friction and varying contact surface[END_REF] and [START_REF] Kwack | A complementarity problem formulation for two dimensional frictional contact problems[END_REF]. Let the normal forces and the friction forces be assembled in vectors rN = {rNl, ... , rNn} T and ry == {rr1, rr2, ... , rrn} T , respectively, w�ere, e.g., rri is the frictional force of the i-th contact node.

Coulomb's law of dry friction connects the tangential (frictional) forces with the normal (contact) forces by the relation

• (25) 'Yi == fl i T Nil -/rril , i == 1, . . . , n, li � 0.
Here J.J denotes the absolute value and JL is the friction coefficient. The friction mechanism is considered to work in the following way: If lrril < fliT Nil (i.e., 'Yi > 0),. the slipping value liT must be equal to zero, and if /rr i / = JL/rN i / (i.e., 'Yi � 0), then we have slipping in the opposite direction of rr i: 

if "'/i > 0, then YTi = 0 (26) if 'Yi == 0,
.

[ 1 -1]

T � == 0 0 ' Finally, the slip value in (25), ( 26) is written as

(30) T \ .,>_0 YT == TA, /\.
where A is a vector of nonnegative slipping parameters. Then, 1 and .X fulfil the following complementarity condition:

(31) ')'TA== 0 FIGURE 2.
The mesh around the cylinder contour.

3.1. The Linear Complementarity Problem formulation. To formulate the linear complementarity problem the rigid body displacements approach is adopted. The slipping value ,\ and the tangential displacements ur are then related by the compatibility relation:

Tr.-\ur == dr where dr denotes the initial tangential distance.

The general decomposition scheme with slack variables can be found in more details for two-dimensional friction problems in [14}.

The structure is assumed linear elastic which, on the assumption that everything outside of the frictional contact interfaces has been condensed out, reads:

(33)
ii == Fr

•where

F == [FNN FNT] . FrN Frr ' ---_ [ rN ] r- .
rr

Here, F is the symmetric flexibility matrix where F N N is an n x n nonsingular matrix with the mechanical meaning of being the normal flexibility matrix, Frr is a 2n x 2n nonsingular matrix (the tangential flexibility) and F N T, FrN are the corresponding couple flexibility matrices. By using the previous relations, the unilateral kinema�ic conditions normal and tangential to the interface, take the form: Note also that (37) can be written as the variational inequality:

(39) z > 0 : (Mz + b) T ( v -z) == 0, V v � 0 4. NUMERICAL RESULTS
To discretize the rolling problem with BEM (Fig. 2), constant elements are used. In fact, Karami [START_REF] Karami | A boundary element method for two dimenensional contact problems[END_REF] and Stavroulakis et al. [START_REF] Stavroulakis | On the rigid body displacements and rotations in unilateral contact problems and applications[END_REF] remarked the existence of oscillations in the traction behaviour with quadratic elements. Young modulus and Poisson coefficient are taken to be 94500 and 0.1, respectively. The rigid body normal and tangential displacement used were dN = R/2 and dr == 0.1d N where R is the radius of the cylinder. The LCP (3 7 is solved using Lemke's algorithm [15) The results shown in the Figures 3,4,5, and 6 are obtained by applying a normal and a tangential rigid body displacements approach. Figure 3 shows the existence of a separation area in the potential contact zone. The stick/slip area is not centered because of the tangential effect. In the Figures 4 and5, the normal and the tangential tractions in the frictional contact case are plotted. Figure 6 shows the velocity behaviour only in the effective contact zone. 

u[

  == Hj} f1 -Hj}G fee T r-Hj} H1cCT w Then, (22) [HccCT-HcJHj}HJcCT] w = [!c-HcJHj}fJ] -[ccccr-HcJH j }GJcCT] r Thus, w can be written as: Wn] == [Wno] + [Fnn Fnt] [r N] . . Wt ww Ftn Ftt rr 3. THE FRICTIONAL CONTACT FORMULATION

  then there exists a> 0 such that YTi = -aT T i• By assembling the contributions of all (n) unilateral nodes, relation (26) reads: (27) with the matrices Tr and T N (28) Tr == diag [T}, Tf, ... , Tr] , • T N == diag [T}v, TJv, . .• . , TN] . These matrices are obtained from the linearized friction law considered in 2D [2, 13].
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 45 FIGURE 4. Normal and tangential tractions in the frictional contact case (!-l == 0.1).
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 56 FIGURE 6. Tangential velocity in the effective contact zone: Depen dence on the friction coefficient
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