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presented. The studied problem is the point of view of a non informed agent
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1 Introduction

This article deals with a hedging problem in an incomplete market, where the
incompleteness of the market is due to the presence of an influent informed
investor. This influent informed agent is supposed to possess an additional
information, and is also supposed to influence the market. This is a natu-
ral extension of the work of Eyraud-Loisel [12], where the informed agent is
supposed to be a small investor, who does not influence asset prices. Eyraud-
Loisel (2009) [13] studies the case of an influent informed agent, who wants to
hedge an option.

The chosen model is the same as in [13], where the market prices process
is influenced by the portfolio of an informed agent. It is more realistic to
consider large traders in the market, who may influence the evolution of asset
prices, either by their large investment depth, or by their notoriety, when a
charter phenomenon appears. Then asset prices may be influenced by certain
big agents in the market, and it is quite natural to suppose that such large
agents may have more easily access to additional information on the market.
This is the reason why it is interesting to develop a model with an influent
informed investor. The additional information is supposed to be a strong
initial information, modeled by an initial enlargement of the Brownian filtra-
tion, as developed for insider trader modeling in Grorud and Pontier [19], or
Amendinger [1]. This influenced market has been already studied in [13] from
the influent informed agent’s point of view, by solving the FBSDE appearing
when modeling the hedging problem of the large trader, under the enlarged
filtration induced by the additional information. The present article is devoted
to the study of the non-informed agent’s strategy in this influenced market.
Despite the completeness of the influenced informed market, the non-informed
market is incomplete : the common agent does not have access to the entire
information driving the prices process.

In Section 2, we present the model and quickly recall the results of [13]
about the hedging strategy of the influent informed agent, and the complete-
ness of the influenced informed market.

In Section 3 we study the incompleteness of the market from a non in-
formed trader’s point of view. As a consequence of the influence of the large
informed trader, the filtration generated by prices reflect a part of the addi-
tional information, and is not the Brownian filtration anymore. In order to
compare both strategies, of the informed influent agent, and of the small com-
mon agent, we use a quadratic hedging approach in this incomplete market.
As there is no predictable representation property in this market, we use the
local risk minimization approach, introduced by Föllmer and Sonderman [16]
in the case where prices are martingales, and developed by Schweizer [33] when
prices are only semi-martingales, and Föllmer and Schweizer [15] in terms of
minimal martingale measure. This approach shows the existence of a unique
risk-minimizing strategy, which may be expressed using the Galtchouk-Kunita-
Watanabe decomposition (as developed in Ansel and Stricker [2]). Another
possible approach would be the mean-variance hedging method, developed by
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Gouriéroux, Laurent and Pham [18], and Rheinlander and Schweizer [32], who
obtained an expression of the optimal strategy in terms of variance-optimal
martingale measure. A very clear review of the subject and of these two
quadratic hedging methods in a continuous market is provided in Pham (2000)
[30].

We have chosen the local risk-minimization approach developed in Föllmer
and Schweizer (1991) [15], as our model fits into their global idea : considering
an incomplete market where the incompleteness is due to a lack of information.
In our model, when adding the additional information, the market is complete.
We compare the hedging strategy of a non informed agent to the strategy
of the informed influent agent, in an incomplete market, under Hypothesis
(H3), which differs from classical hedging hypotheses studied in Föllmer and
Schweizer [15]. We obtain an expression of the optimal strategy in terms of
projection of the strategy of the informed influent agent, with respect of the
filtration generated by prices (Filtering Theory is used). Moreover, we give
a version of the Clark-Ocone formula in our framework of enlarged filtration,
as well as an expression of the informed agent strategy in terms of Malliavin
derivatives. We derive also an expression of the residual risk linked to the
lack of information of the non informed agent. In the last section, we give
an example of information and influence that satisfies all hypotheses of this
model, and give the expressions of the strategies and residual risk of the lack
of information of the non informed trader derived in the previous section and
applied in this case.

2 Model

We recall here the model introduced in Eyraud-Loisel [13], where an informed
and influent agent wants to hedge against a given contingent claim. The
market is supposed to be driven by a multidimensional Brownian motion.
The wealth process Xt and investment strategy �t of the influent agent are
expressed as the solution of a backward stochastic differential equation. This
investor may influence asset prices either by his wealth Xt, or by his portfolio
strategy �t, which may influence the drift b of the volatility � of prices. The
BSDE driving the wealth process and the investment strategy, modeling the
hedging problem, is then fully coupled with the forward equation of prices.
The equation to be solved for the hedging problem is the following forward-
backward stochastic differential equation (FBSDE):{

Pt = P0 +
∫ t
0
b(s, Ps, Xs, Zs)ds+

∫ t
0
< �(s, Ps, Xs, Zs), dWs >

Xt = XT −
∫ T
t
f(s, Ps, Xs, Zs)ds−

∫ T
t
< Zs, dWs >,

(2.1)

where b(s, Ps, Xs, Zs) = Psb(s, Ps, Xs, Zs), �(s, Ps, Xs, Zs) = Ps�
′(s, Ps, Xs, Zs),

and Z = �′∗(s,Xs, Ps, �s)�s.
As the influent agent has an additional information on the market, this FBSDE
has to be solved under an initial enlargement of filtration Yt of the Brownian
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filtration ℱt. The additional information is modeled by a random variable
L ∈ ℱT ′ , where T ′ > T , and the enlarged filtration is Yt :=

∩
s>t(ℱs ∨ �(L)).

The information is supposed to satisfy usual hypothesis (H3), first intro-
duced by Jeulin [25,26], and extensively used by Grorud and Pontier [19],
Amendinger [1] and Eyraud-Loisel [12] :

Definition 2.1 Hypothesis (H3)
There exists a probability measure ℚ equivalent to ℙ such that under ℚ, ℱt
and �(L) independent for all t < T ′.

The following assumptions on the coefficients (standard Lipschitz, linear growth
and integrability conditions) are made:

(A1) � is invertible dt× dIP-a.s., �′ and �′−1(b′ − r) are bounded.
(A2) Functions b, f, �, g are continuous w.r.t. p, x, z in ℝk × ℝ × ℝk, for all

(!, t) ∈ 
 × [0, T ].
(A3) ∃�1, �2 ∈ ℝ such that ∀t, p, p1, p2, x, x1, x2, z, ℙ-a.s. :

< b(t, p1, x, z)− b(t, p2, x, z), p1 − p2 > ≤ �1∣p1 − p2∣2,
< f(t, p, x1, z)− f(t, p, x2, z), x1 − x2 > ≤ �2∣x1 − x2∣2.

(A4) b is globally Lipschitz w.r.t. x and z, and at most linearly increasing w.r.t.
p, and f is globally Lipschitz w.r.t. p and z, and at most linearly increasing
w.r.t. x: ∃k, ki such that ℙ-a.s. ∀t, pi, xi, zi

∣b(t, p, x1, z1)− b(t, p, x2, z2)∣ ≤ k1∣x1 − x2∣+ k2 ∥ z1 − z2 ∥,
∣b(t, p, x, z)∣ ≤ ∣b(t, 0, x, z)∣+ k(1 + ∣p∣),

∣f(t, p1, x, z1)− f(t, p2, x, z2)∣ ≤ k3∣p1 − p2∣+ k4 ∥ z1 − z2 ∥,
∣f(t, p, x, z)∣ ≤ ∣f(t, p, 0, z)∣+ k(1 + ∣x∣).

(A5) � is globally Lipschitz w.r.t. p, x and z : ∃ki such that ℙ-a.s. ∀t, pi, xi, zi

∥ �(t, p1, x1, z1)−�(t, p2, x2, z2) ∥2≤ k25∣p1−p2∣2+k26∣x1−x2∣2+k27 ∥ z1−z2 ∥2 .

(A6) g is globally Lipschitz w.r.t. p : ∃k8 such that ℙ-a.s. ∀pi

∣g(p1)− g(p2)∣2 ≤ k28∣p1 − p2∣2.

(A7) ∀p, x, z, b(., p, x, z), f(., p, x, z) and �(., p, x, z) are ℱ-adapted processes
and g(p) is ℱT -measurable. Moreover :

Eℙ

∫ T

0

∣b(s, 0, 0, 0)∣2ds+Eℙ

∫ T

0

∣f(s, 0, 0, 0)∣2ds+Eℙ

∫ T

0

∥ �(s, 0, 0, 0) ∥2 ds+Eℙ∣g(0)∣2 < +∞.

(A7’) Suppose also

Eℚ

∫ T

0

∣b(s, 0, 0, 0)∣2ds+Eℚ

∫ T

0

∣f(s, 0, 0, 0)∣2ds+Eℚ

∫ T

0

∥ �(s, 0, 0, 0) ∥2 ds+Eℚ∣g(0)∣2 < +∞.
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(A8) b is also supposed to be globally Lipschitz w.r.t. p : ∃k9 such that ℙ-a.s.
∀t, pi, x, z

∣b(t, p1, x, z)− b(t, p2, x, z)∣2 ≤ k29∣p1 − p2∣2.

We suppose also that one of the 3 following cases (I1) to (I3) is satisfied :

(I1) The influence is weak : the forward and backward equations are weakly
coupled: ∃ "0 > 0 depending on k3, k4, k5, k8, �1, �2 and T such that
k1, k2, k6, k7 ∈ [0, "0).

(I2) g, ℱT -measurable, is independent from the price process, and �1 and �2
from hypothesis (A3) satisfy also: ∃ Ci > 0, i = 1, 2, 3, 4, C4 < k−14 , � > 0
such that

�1+�2 < −
1

2

[
k3C3

(
k2C2 + k27
1− k4C4

+
k1C1 + k26

�

)
+
k1
C1

+
k2
C2

+
k3
C3

+
k4
C4

+ k25 + �

]
.

(I3) � is independent from z : the portfolio does not influence the volatility
of prices, and �1 and �2 from hypothesis (A3) satisfy also: ∃Ci > 0, i =
1, 3, 4, C4 < k−14 , � > 0, � > 0 such that

�1+�2 < −
1

2

[
(1 + �)

[
k1C1 + k26 +

k22
�(1− k4C4)

](
k28 +

k3C3

�

)
k1
C1

+
k3
C3

+
k4
C4

+ k25 + �

]
.

Under these hypotheses, Eyraud-Loisel [14,13] derived an existence and unique-
ness theorem of such FBSDE under an initial enlargement of filtration satis-
fying Hypothesis (H3) :

Theorem 2.2 (Theorem 1 of [13])
Under Hypotheses (H3), (A1) to (A8), and under one of the cases of influence
(I1) to (I3), the following forward-backward stochastic differential equation:{

Pt = P0 +
∫ t
0
b(s, Ps, Xs, Zs)ds+

∫ t
0
< �(s, Ps, Xs, Zs), dWs >

Xt = � −
∫ T
t
f(s, Ps, Xs, Zs)ds−

∫ T
t
< Zs, dWs >

(2.2)

admits in the space (
,Y, Q) a unique Y-adapted solution (P,X,Z), such that

Eℚ

∫ T

0

(
sup

0≤u≤t
∣Pt∣2 + sup

0≤u≤t
∣Xt∣2+ ∥ Zt ∥2

)
dt < +∞. (2.3)

The FBSDE has a unique adapted solution in the enlarged space. This means
that the influent agent has a unique hedging strategy adapted to his informa-
tion. As volatility is supposed to be invertible, it is possible to derive from
Zt the unique portfolio �t hedging the pay-off �. If the solution of the insider
trader is adapted to the Brownian filtration, then it is the same as if there was
no additional information.
Any contingent claim in L2(
,Y,ℚ) is attainable. The market is complete for
the informed investor, w.r.t. to the enlarged filtration. The hedging problem
in the market is reduced to a resolution of a FBSDE, whose coupling depends
on the influence of the insider in the market. The results from the insider’s

5



point of view are the same as in [12], with no influence.

What is different in the model with an influent agent, is the behavior of
the market from the point of view of a normally informed agent (for whom
the additional information is unknown). The market is incomplete for the
non informed trader. This incompleteness is due to his lack of information,
as in Föllmer and Schweizer (1991) [15]. The present model is an example
of complete market which becomes incomplete from a small non informed
investor point of view. The study of such a market uses tools of quadratic
hedging in incomplete market, or under incomplete information, and it is the
aim of this paper.

3 Quadratic hedging in this incomplete market

3.1 Introduction of a non informed agent

In this model, the market prices are influenced by the insider’s investment
process. We suppose from now on that hypotheses of Theorem 2.2 are satisfied.
We consider a non informed agent, who wants to hedge against an option in
this market. This non informed agent is supposed to be a small investor,
which means that she can not influence asset prices. This can be viewed as
a problem of hedging in partial information, or lack of information : the non
informed agent can only observe prices. The historic of prices of the risky
assets is the only available information. The non informed agent knows the
filtration generated by prices :

ℱ̃t := ℱPt := �(Ps, 0 ≤ s ≤ t)

As the coefficients in the diffusion of prices are adapted to the enlarged filtra-
tion, due to the influence of the informed agent, even the Brownian filtration
is not available to the small trader. Other processes that appear in the BSDE
of the hedging problem of the non informed trader, in particular Brownian
motion, are not directly observable on the market. Her portfolio strategy and
wealth processes have to be ℱ̃-adapted. As the investment strategies of the
informed and non informed traders are adapted to different filtrations, their
sets of admissible strategies differ. Even if the insider market is complete, it
may not be complete from the non informed trader’s point of view. If the non
informed trader has a hedging strategy, it may be different from the strategy
of the influent informed trader, whose exact replicating strategy is Y-adapted.
Completeness of a market (defined as "any square integrable contingent claim
is attainable") depends on the considered filtration and probability measure :
everything depends on the existence f a martingale representation Theorem. In
our context, under Hypothesis (H3), there exists a martingale representation
Theorem in the enlarged space Y, under probability ℚ, and in the Brownian
filtration ℱ under probability ℙ, but not under filtration ℱ̃ (see Jacod and
Shiryaev [23] Eyraud-Loisel [12]). The problem becomes a hedging problem
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in an incomplete market. We will use a quadratic local risk-minimization
approach for this study.

We first study in Subsection 3.2 Proposition 3.5 the Kunita-Watanabe
decomposition of the contingent claim in the prices filtration. In Subsection
3.3 a Clark-Ocone formula is obtained in the enlarged space, from which we
derive an expression of the integrand of the representation Theorem in this
space. Finally we give an expression of the residual quadratic risk linked to the
lack of information of the non informed trader, successively under two families
of risk-neutral probabilities : the risk-neutral probabilities from the informed
trader’s point of view in Paragraph 3.4.1, and the risk-neutral probabilities
from the non informed trader’s point of view in Paragraph 3.4.2.

3.2 Hedging strategy and Kunita-Watanabe decomposition

The different considered �-fields are linked by the following relations :

ℱ̃t ⊂ Yt , and ℱt ⊂ Yt

Yt =
∩
s>t

ℱs ∨ �(L) =
∩
s>t

ℱ̃s ∨ �(L).

To keep notations as light as possible, we consider only one risky asset here,
but all results may be generalized to the d-dimensional case. The dynamics of
the risky asset satisfies the following forward equation :

Pt = P0 +

∫ t

0

Psb
′(s, Ps, X

L
s , �

L
s )ds+

∫ t

0

Ps�
′(s, Ps, X

L
s , �

L
s )dWs (3.1)

where Ps, XL
s and �Ls are respectively the price of the risky asset, and the

wealth and hedging strategy of the informed agent, deduced from the unique
solution of FBSDE (2.1) in the enlarged space (Theorem 2.2).
The non informed trader wants to hedge against a European contingent claim
H = ℎ(PT ) ∈ ℒ2(
, ℱ̃ ,ℚ). This contingent claim is not necessarily the same
as the contingent claim replicated by the informed trader. This point of view
may be used to compare investments strategies of two small agents, one who
has access to the additional information and the other who can only observe
prices and has just a part of the total information. If the same contingent claim
is considered, it may lead to a comparison of the strategies of both agents, the
first one being influent and informed and the other one not influent and not
informed.

Under ℚ, probability measure defined in the previous section (Definition
2.1) Hypothesis (H3) is satisfied, Wt is a Y-Brownian motion, and Pt is a
(Y, Q)-semimartingale. As Pt is ℱ̃-adapted, it is also a (ℱ̃ ,ℚ)-semimartingale.
The market is not complete: as H is attainable in (Y,ℚ), the replicating
strategy is adapted to filtration Y, and so is not admissible for the non informed
trader in the smaller space. We will develop quadratic hedging arguments in
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order to find the hedging strategy of the non informed trader that minimize
the intrinsic residual risk of the contingent claim, risk linked to the lack of
information on this influenced informed market.

Denote by Q the set of all equivalent martingale measures under filtration
Y, i.e. the set of all probability measures equivalent to ℚ (and so equivalent
to ℙ) under which Pt is a Y-martingale. Financially speaking it is the set of
all risk-neutral probability measures from the informed trader’s point of view.
Denote also by QN the set of all equivalent martingale measures under filtra-
tion ℱ̃ , equivalent to ℙ, i.e. the set of all probability measures equivalent to
ℙ (and so equivalent to ℚ) under which Pt is a ℱ̃-martingale. It is the set of
all risk-neutral probability measures from the non informed trader’s point of
view.
We have clearly

Q ⊂ QN .

Indeed, intuitively, from her lack of information, the non informed agent will
have a larger range of risk-neutral probability measures. Some of the risk-
neutral probability measures will appear to be risk-neutral from the non in-
formed agent’s point of view, whereas with the additional information, they
will appear not to be risk-neutral. Conversely, any risk-neutral probability
measure for the informed trader is always also risk-neutral for the non informed
trader: if P is a Y-martingale, as it is ℱ̃-adapted, it is a ℱ̃-martingale. More-
over, Q is not empty: from Assumption (A1), �′ is invertible and ℰ(−�′−1(b′−
r)W ) is integrable, which are classical arguments implying no arbitrage op-
portunities (see Delbaen and Schachermayer [11]).

Recall the definition of orthogonality for two martingales (see Protter [31], and
Pham [30]):

Definition 3.1 Two martingales L,N are (strongly) orthogonal if their prod-
uct LN is a local martingale with initial value L0N0 = 0.
If L and N ∈ℳ2

loc, this is equivalent to < L,N >= 0.

We now give the definition of the decomposition of Kunita-Watanabe (see
Ansel and Stricker [2] or Pham [30]) on a general probability space (
,ℱ , IP)
:

Definition 3.2 Let N be a real-valued (ℱ , IP)-local martingale, and M a
ℝd-valued (ℱ , IP)-local martingale. If N ∈ ℳ2

(loc)(ℱ , IP) (square-integrable
(ℱ , IP)-local martingale locale under IP) andM ∈ℳ2

(loc)(ℱ , IP), then we have
the following projection result, calledKunita-Watanabe decomposition of
the (ℱ , IP)-martingale N with respect to M :

Nt = N0 +

∫ t

0

�udMu + Lt, IP− a.s. 0 ≤ t ≤ T (3.2)

where � ∈ L2
(loc)(M), L ∈ℳ2

0,(loc)(ℱ , IP) (square integrable (ℱ , IP)-local mar-
tingale with initial value 0) and L orthogonal to M in (ℱ , IP).
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Remark 3.3 Decomposition (3.2) is unique in the sense that if

Nt = N0 +

∫ t

0

�udMu + Lt = Ñ0 +

∫ t

0

�̃udMu + L̃t

with (N0, �, L) et (Ñ0, �̃, L̃) satisfying the Kunita-Watanabe hypotheses, then
N0 = Ñ0,

∫ t
0
�udMu =

∫ t
0
�̃udMu and Lt = L̃t IP-a.s. ∀0 ≤ t ≤ T .

Remark also that if M and N are in ℳ2(ℱ , IP), then � ∈ L2(M) and L ∈
ℳ2

0(ℱ , IP).

Let ℚ̃ ∈ Q be risk-neutral from the informed agent, ℚ̃ equivalent to ℚ,
under which P is a (Y, ℚ̃)-martingale. As Pt is ℱ̃-adapted, it is a (ℱ̃ , ℚ̃)-
martingale.

H ∈ ℒ2(
, ℱ̃ , ℚ̃) is attainable with respect to the largest filtration. The
martingale representation Theorem in (
,Y,ℚ) gives the existence of �Ls ∈
L2(
 × [0, T ], ℚ̃⊗ d⟨P ⟩) such that

H = Eℚ̃(H∣Y0) +
∫ T

0

�Ls dPs

= Eℚ̃(H∣�(L)) +
∫ T

0

�Ls dPs. (3.3)

Remark 3.4 This decomposition does not depend on the choice of the risk
neutral probability ℚ̃ ∈ Q from the informed agent’s point of view. Indeed,
according to Grorud and Pontier [20], if ℚ̃1 and ℚ̃2 are two risk neutral proba-
bilities in Q, then ℚ̃1 = f(L)ℚ̃2, where f(L) is a nonnegative random variable,
with mean 1 under ℚ̃2. One can then write :

Eℚ̃1
(H∣�(L)) =

Eℚ̃2
(f(L)H∣�(L))

Eℚ̃2
(f(L)∣�(L))

=
f(L)Eℚ̃2

(H∣�(L))
f(L)

= Eℚ̃2
(H∣�(L)) .

Hence, Eℚ̃(H∣�(L)) does not depend on the choice of ℚ̃ risk neutral proba-
bility in Q. Then, �Ls does not either depend on the considered risk-neutral
probability measure in Q.

H represents the contingent claim hedged by the informed agent, and �Ls = �Ls
the unique Y-adapted hedging strategy of the informed agent (see Eyraud-
Loisel [13]). In this continuous framework, all martingales are locally square
integrable. So the unique Kunita-Watanabe decomposition of H w.r.t. the
(ℱ̃ , ℚ̃)-martingale P , for any ℚ̃ ∈ QN , is the following:

H = Eℚ̃(H) +

∫ T

0

�ℚ̃s dPs + Lℚ̃
T . (3.4)
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Moreover,

Vt := Eℚ̃(H∣ℱ̃t) = Eℚ̃(H) +

∫ t

0

�ℚ̃s dPs + Lℚ̃
t , (3.5)

where �ℚ̃s is ℱ̃s-measurable and belongs to L2(
× [0, T ], ℚ̃⊗d⟨P ⟩) and where
the rest (Lℚ̃

t ) is a (ℱ̃ , ℚ̃)-local martingale orthogonal to the stable space gen-
erated by P , such that Eℚ̃(L

ℚ̃
t ) = 0.

We can derive the expression of the integrand (see [15]):

�ℚ̃s =
d < V, P >s
d < P >s

.

This expression is not easily exploitable in our case. By using filtering Theory,
we derive another expression in terms of projection on the space of all ℱ̃-
adapted processes under any risk neutral probability measure ℚ̃ ∈ Q.

Theorem 3.5 Under any equivalent martingale measure ℚ̃ ∈ Q, the Kunita-
Watanabe decomposition of H w.r.t. (ℱ̃ , ℚ̃) and process P is the following:

H = Eℚ̃[H] +

∫ T

0

Eℚ̃

(
�Ls ∣ℱ̃s

)
dPs + Lℚ̃

T a.s. ,

or in other terms

�ℚ̃s = Eℚ̃

(
�Ls ∣ℱ̃s

)
.

Proof If Eℚ̃(�
L
s ∣ℱ̃s) satisfies hypothesis of Kunita-Watanabe decomposition

given in Definition 3.2, by uniqueness of this decomposition, it is �ℚ̃s .
First of all,

(
Eℚ̃(�

L
s ∣ℱ̃s)

)
0≤s≤T

is ℱ̃-adapted. Define :

Lt = Eℚ̃(H∣ℱ̃t)− Eℚ̃(H)−
∫ t

0

Eℚ̃(�
L
s ∣ℱ̃s)dPs.

It is sufficient to prove that L is a (ℱ̃ , ℚ̃)-martingale with mean 0, orthog-
onal to P . L is indeed a (ℱ̃ , ℚ̃)-martingale: P is a (ℱ̃ , ℚ̃)-martingale, so∫ t
0
Eℚ̃(�

L
s ∣ℱ̃s)dPs is a (ℱ̃ , ℚ̃)-martingale as integral of a ℱ̃-adapted square

integrable process against a (ℱ̃ , ℚ̃)-martingale, and Eℚ̃(H∣ℱ̃t) is a (ℱ̃ , ℚ̃)-
martingale. Moreover,

Eℚ̃(Lt) = Eℚ̃(H)− Eℚ̃(H)− Eℚ̃

(∫ t

0

Eℚ̃(�
L
s ∣ℱ̃s)dPs

)
= 0

the last term being the expectation of a (ℱ̃ , ℚ̃)-martingale null in 0.
It remains to prove that L is orthogonal to all martingales generated by dP ,
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stable space generated by P , denoted byℳ(dP ). Using decomposition (3.3)
of H in (Y, ℚ̃), we obtain:

Lt = Eℚ̃

(
Eℚ̃(H∣L) +

∫ T

0

�Ls dPs

∣∣∣∣∣ ℱ̃t
)
− Eℚ̃(H)−

∫ t

0

Eℚ̃(�
L
s ∣ℱ̃s)dPs

= Eℚ̃

[∫ T

0

�Ls dPs∣ℱ̃t

]
−
∫ t

0

Eℚ̃

[
�Ls ∣ℱ̃s

]
dPs

+Eℚ̃

(
Eℚ̃(H∣�(L))∣ℱ̃t

)
− Eℚ̃(H)︸ ︷︷ ︸

Nt

, (3.6)

where the last term Nt is ℱ̃t-measurable.
The following lemma is a classical result of Filtering Theory (see for example
the Saint Flour summer school in Probability Theory course by Pardoux in
1989 on non linear filtering theory [29]).

Lemma 3.6 (Pardoux (1989) [29])
Let M be a (ℱ , ℚ̃)-martingale, � ∈ L2

loc(M) on the filtered probability space
(
,Y, ℚ̃), such that ℱ satisfied ℱt ⊂ Yt ∀t ∈ [0, T ]. Then we have:

Eℚ̃

(∫ t

0

�sdMs

∣∣∣∣ℱt) =

∫ t

0

Eℚ̃ (�s∣ ℱs) dMs.

As a consequence of the lemma, we can write

Eℚ̃

(∫ t

0

�Ls dPs∣ℱ̃t
)

=

∫ t

0

Eℚ̃(�
L
s ∣ℱ̃s)dPs

Using the law of iterated expectations, together with the previous lemma, we
can simplify the expression of Lt in Equation (3.6):

Lt = Eℚ̃

[∫ T

0

�Ls dPs∣ℱ̃t

]
−
∫ t

0

Eℚ̃(�
L
s ∣ℱ̃s)dPs +Nt

= Eℚ̃

[
Eℚ̃

[∫ T

0

�Ls dPs

∣∣∣∣∣ ℱ̃T
]∣∣∣∣∣ ℱ̃t

]
−
∫ t

0

Eℚ̃(�
L
s ∣ℱ̃s)dPs +Nt

= Eℚ̃

[∫ T

0

Eℚ̃

(
�Ls
∣∣ ℱ̃s) dPs

∣∣∣∣∣ ℱ̃t
]
−
∫ t

0

Eℚ̃(�
L
s ∣ℱ̃s)dPs +Nt

=

∫ t

0

Eℚ̃

(
�Ls
∣∣ ℱ̃s) dPs − ∫ t

0

Eℚ̃

(
�Ls
∣∣ ℱ̃s) dPs +Nt

= Nt. (3.7)

The third equality is obtained because
∫ .
0
Eℚ̃

(
�Ls
∣∣ ℱ̃s) dPs is a (ℱ̃t, ℚ̃)-martingale.

Let (�s) be a ℱ̃-adapted bounded process. Equation (3.7) leads to:

Eℚ̃

(
Lt

∫ t

0

�sdPs

)
= Eℚ̃

(
Nt

∫ t

0

�sdPs

)
.

11



Recall that Nt may be written as:

Nt = Eℚ̃

⎛⎜⎜⎝Eℚ̃(H∣�(L))︸ ︷︷ ︸
f(L)

∣∣∣∣∣∣∣∣ ℱ̃t
⎞⎟⎟⎠− Eℚ̃(H).

As Eℚ̃(H∣�(L)) is measurable with respect to the �-algebra generated by L,
it may be written as f(L), where f is a measurable function. Hence :

Eℚ̃

[
Nt

∫ t

0

�sdPs

]
= Eℚ̃

[[
Eℚ̃

(
f(L)∣ℱ̃t

)
− Eℚ̃(H)

] ∫ t

0

�sdPs

]
= Eℚ̃

(
Eℚ̃

(
f(L)

∫ t

0

�sdPs

∣∣∣∣ ℱ̃t))− Eℚ̃(H)Eℚ̃

(∫ t

0

�sdPs

)
= Eℚ̃

(
f(L)

∫ t

0

�sdPs

)
.

Literature on initial enlargement of filtration (see Grorud and Pontier [20]) has
already established that if there are two risk neutral probability measures ℚ1

and ℚ2, then there exists z measurable such that ℚ2 = z(L)ℚ1, where z(L) is
a Y0-measurable nonnegative random variable, with expectation 1 under ℚ1,
and conversely any such probability measure is risk neutral. For this reason,
the previous computations do not depend on the choice of the risk neutral
probability measure ℚ̃ ∈ Q. Then let ℚ∗ be the probability measure defined
as followed:

ℚ∗ =
f(L)

Eℚ̃(f(L))
ℚ̃ ∈ Q.

As ℚ∗ is a risk neutral probability measure, from the previous argument,∫ t
0
�sdPs is a ℱ̃-martingale under ℚ∗. We get

0 = Eℚ∗

(∫ t

0

�sdPs

)
=

1

Eℚ̃(f(L))
Eℚ̃

(
f(L)

∫ t

0

�sdPs

)
.

We deduce

Eℚ̃

(
f(L)

∫ t

0

�sdPs

)
= 0

and we have finally

Eℚ̃

[
Nt

∫ t

0

�sdPs

]
= 0,∀� ℱ̃ −measurable.

Under any equivalent martingale measure ℚ̃ ∈ Q, we have the expected or-
thogonality. This proves that the Kunita-Watanabe decomposition of H has
integrand Eℚ̃

(
�Ls ∣ℱ̃s

)
under any risk-neutral probability measure ℚ̃ in Q,

which ends the proof of Theorem 3.5. □
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Remark 3.7 As this integrand determines the unique Kunita-Watanabe de-
composition, and as it is the same under any risk-neutral probability measure
of Q, then the orthogonal rest is the same and the quadratic residual risk is
the same : it may be interpreted as the intrinsic risk of the contingent claim
H.

Remark 3.8 This also proves that Eℚ̃(�
L
s ∣ℱ̃s) does not depend on the choice

of ℚ̃ ∈ Q. This can also be proved by the following way :
Let Ys ∈ ℱ̃s, Q2 = z(L)Q1, from the previous argument, it follows that

EQ1 [YsEQ2 [�
L
s /ℱ̃s]EQ1 [z(L)/ℱ̃s]] = EQ1 [Ys�

Lz(L)].

The main consequence of the previous Theorem is then:

Proposition 3.9 Prices are the same under two different risk-neutral proba-
bility measures.

Remark 3.10 We obtain here a result which is coherent with the result of
Grorud and Pontier [20] in a different framework, according to whom all risk-
neutral probability measures in an incomplete market (where incompleteness
is due to additional information) give the same market price.

Remark 3.11 Our study is also coherent with Föllmer and Schweizer’s work
in [15], but several points differ: their hypothesis of invariance of the de-
composition of Doob-Meyer of the prices does not remain valid in our case.
They suppose that the decomposition of Doob-Meyer of the prices under fil-
tration ℱ̃ and probability ℚ, P = P0 +M +A where A is ℱ̃-predictable, and
whereM is a (ℱ̃ ,ℚ)-martingale, stays the decomposition of Doob-Meyer of the
prices in the larger filtration, in other words, M remain a (Y,ℚ)-martingale,
although adapted to ℱ̃ (See Hypotheses (4.1) to (4.3) in [15]). These hypothe-
ses, although weaker, are similar to the so-called Hypothesis (H) in Filtering
Theory (used also in progressive enlargement of filtration, in models as those
of Jeanblanc [24,4]). Instead of such hypothesis, our study takes place under
Hypothesis (H3). Furthermore, we distinguish here three different filtrations:
the filtration of the Brownian motion, the filtration of prices, and the filtra-
tion enlarged with the information. On the other hand, as pointed out before,
our study joins perfectly within the framework of incompleteness that they
studied: the incompleteness due to a lack of information.

Finally, our results are coherent with those in previous literature, whereas the
model is a bit different. The present study illustrates in a different framework
the same kind of incompleteness already studied in this literature: incomplete-
ness due to a lack of information.

3.3 Clark-Ocone Formula

Since �ℚ̃s may be expressed from �Ls , it is important to study how to obtain
�Ls . We express it as a function of the Malliavin derivative of H, via the use of
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a Clark-Ocone Formula. We can not use directly the standard formula in our
case, under enlarged filtration Y, as Y0 = �(L) is not trivial. Nevertheless,
thanks to a transformation and the independence of �(L) and ℱ under ℚ, we
will use the existing Clark-Ocone Formula under filtration ℱ , and obtain an
expression of �Ls .

Theorem 3.12 If H ∈ L2(
,Y, Q) and ∀x,H(., x) ∈ D1,2, we have

�Ls =
(
Eℚ [Ds(H(., x))∣ℱs]∣x=L

)
(�Ls )

−1. (3.8)

Proof In the enlarged space Y, under (H3), �(L) and ℱt are independent.
Moreover, ℚ∣ℱ = ℙ and ℚ∣�(L) = ℙL (law of L).
H is measurable w.r.t. YT , so H may be written as H = H(W,L) (thanks
to the independence and because YT is generated by ℱ and �(L)). Then, at
fixed L = x, H(W,x) is ℱT -measurable. So its representation is given by the
standard Clark-Ocone Formula:

H(W,x) = Eℙ (H(W,x)) +

∫ T

0

Eℙ (Ds(H(W,x))∣ℱs) dWs ℙ a.s.

= Eℚ (H∣L) ∣L=x +
∫ T

0

Eℚ (Ds(H(W,x))∣ℱs) dWs.

Indeed, derive H w.r.t. W with L = x has a sense under ℚ as W and L are
independent, and derive W 7→ H(W,L) under ℚ or ℙ is the same, asW is a ℙ-
and also a ℚ-Brownian motion. Again using independence between �(L) and
ℱt, we can write

H(W,L) = H(W,x)∣x=L
and an identification leads to:

�Ls �
L
s = Eℚ [Ds(H(W,x))∣ℱs]∣x=L . (3.9)

Equation (3.8) directly comes from Equation (3.9) and the fact that �Ls is
invertible, which ends the proof of Theorem 3.12. □

3.4 Residual Risk

3.4.1 Expression of the residual risk under a risk neutral probability in QN

We derivean expression of the intrinsic residual risk of the contingent claim H
under a risk neutral probability in QN .

Proposition 3.13 Let ℚ∗ ∈ QN .
The residual risk Lℚ∗

t has the following expression:

Lℚ∗
t =

∫ t

0

[
Eℚ∗

(
�Ls ∣ℱ̃s

)
− �ℚ

∗

s

]
dPs + Eℚ∗

[
Eℚ∗(H∣�(L))∣ℱ̃t

]
− Eℚ∗(H).

(3.10)

14



A measure of the risk of detaining the contingent claim H in this incomplete
market is given by the variance of Lℚ∗

T at terminal time:

V arℚ∗(L
ℚ∗
T ) = Eℚ∗

(∫ T

0

[
Eℚ∗

(
�Ls ∣ℱ̃s

)
− �ℚ

∗

s

]
dPs ×

(
Eℚ∗

[
Eℚ∗(H∣�(L))∣ℱ̃T

]
− Eℚ∗(H)

))

+Eℚ∗

((
Eℚ∗

[
Eℚ∗(H∣�(L))∣ ℱ̃T

]
− Eℚ∗(H)

)2)
. (3.11)

Proof Let ℚ∗ ∈ QN a risk neutral probability measure for the non informed
agent. The expression of the residual risk Lℚ∗

t at time t is given by Equations
(3.4) and (3.5), which are true under any ℚ∗ ∈ QN :

Lℚ∗
t = Eℚ∗

[∫ T

0

�Ls dPs∣ℱ̃t

]
−
∫ t

0

�ℚ
∗

s dPs+Eℚ∗
[
Eℚ∗(H∣�(L))∣ℱ̃t

]
−Eℚ∗(H).

The second part of this expression corresponds to the difference of prices of
the contingent claim under ℚ∗, whether the agent has or does not have the
additional information, which is the difference of prices on the informed (com-
plete) market and the non informed (incomplete) market. In the first case, the
price will be Eℚ∗(H∣�(L)) projected on the ℱ̃t-measurable random variables
(which means attainable prices), and in the other case, the price is Eℚ∗(H).
The first part may be rewritten thanks to Lemma 3.6:

Eℚ∗

[∫ T

0

�Ls dPs∣ℱ̃t

]
= Eℚ∗

[
Eℚ∗

(∫ T

0

�Ls dPs∣ℱ̃T

)
∣ℱ̃t

]

= Eℚ∗

[∫ T

0

Eℚ∗
(
�Ls ∣ℱ̃s

)
dPs∣ℱ̃t

]

=

∫ t

0

Eℚ∗
(
�Ls ∣ℱ̃s

)
dPs,

as P is a (ℱ̃ ,ℚ∗)-martingale.
The residual risk may be rewritten as:

Lℚ∗
t =

∫ t

0

[
Eℚ∗

(
�Ls ∣ℱ̃s

)
− �ℚ

∗

s

]
dPs + Eℚ∗

[
Eℚ∗(H∣�(L))∣ℱ̃t

]
− Eℚ∗(H).

The sum of these two terms forms the residual risk due to the lack of informa-
tion of the non informed agent. This risk is the minimal risk under ℚ∗ which
the non informed agent can hope to take by holding the option (see Föllmer
and Schweizer [15] and Pham [30]). It is the constituent of the option which
is orthogonal to the market prices (see Kunita-Watanabe decomposition).
A measure of this risk, represented by Lℚ∗

t , martingale with null expectation,
is its variance V arℚ∗(Lℚ∗

T ), which represents the quadratic residual risk at
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terminal time T .
At terminal time, we can write:

Lℚ∗
T =

∫ T

0

[
Eℚ∗

(
�Ls ∣ℱ̃s

)
− �ℚ

∗

s

]
dPs + Eℚ∗

[
Eℚ∗(H∣�(L))∣ℱ̃T

]
− Eℚ∗(H).

So

V arℚ∗(L
ℚ∗
T ) = Eℚ∗

⎛⎝(∫ T

0

[
Eℚ∗

(
�Ls ∣ℱ̃s

)
− �ℚ

∗

s

]
dPs

)2
⎞⎠

+2Eℚ∗

(∫ T

0

[
Eℚ∗

(
�Ls ∣ℱ̃s

)
− �ℚ

∗

s

]
dPs ×

(
Eℚ∗

[
Eℚ∗(H∣�(L))∣ℱ̃T

]
− Eℚ∗(H)

))

+Eℚ∗

((
Eℚ∗

[
Eℚ∗(H∣�(L))∣ ℱ̃T

]
− Eℚ∗(H)

)2)
.

As Lℚ∗
T is orthogonal to P , this expression may be slightly simplified, and the

variance may be rewritten as:

V arℚ∗(L
ℚ∗
T ) = Eℚ∗

(∫ T

0

[
Eℚ∗

(
�Ls ∣ℱ̃s

)
− �ℚ

∗

s

]
dPs ×

(
Eℚ∗

[
Eℚ∗(H∣�(L))∣ℱ̃T

]
− Eℚ∗(H)

))

+Eℚ∗

((
Eℚ∗

[
Eℚ∗(H∣�(L))∣ ℱ̃T

]
− Eℚ∗(H)

)2)
.

This is the general expression of the quadratic residual risk under a probability
measure in QN . □

In the case of a measure in QN but not in Q, we can not simplify better the
previous expression. Nevertheless, with orthogonality arguments we obtain a
simpler expression.

Proposition 3.14 A measure of the residual risk under a risk neutral proba-
bility measure ℚ∗ ∈ QN∖Q is given by:

V arℚ∗
(
Lℚ∗
T

)
= Eℚ∗

(
(H − Eℚ∗(H))2

)
− Eℚ∗

⎛⎝(∫ T

0

�ℚ
∗

s dPs

)2
⎞⎠ . (3.12)

Proof Let ℚ∗ ∈ QN be a probability measure that does not belong to Q. Then
the Kunita-Watanabe decomposition may be written as follows:

H − Eℚ∗(H) =

∫ T

0

�ℚ
∗

s dPs + Lℚ∗
T ,

P being a (ℱ̃ ,ℚ∗)-martingale, but not a (Y,ℚ∗)-martingale (otherwise ℚ∗
would belong to Q). There is no martingale representation Theorem.
As Lℚ∗

T is orthogonal to the price process, we get Equation (3.12) and the
expected expression of the quadratic residual risk. □

16



3.4.2 Expression of the residual risk under a risk neutral probability in Q

In the case of a measure inQ ⊂ QN , Equations (3.10) and (3.12) of Proposition
?? may be simplified. We obtain the following result:

Proposition 3.15 A measure of the residual risk under a risk neutral proba-
bility measure ℚ∗ in Q is:

V ar(Lℚ∗
T ) = Eℚ∗

(
Eℚ∗

[
Eℚ∗(H∣�(L))∣ ℱ̃T

]2)
− Eℚ∗(H)2, (3.13)

Proof In the case of a risk neutral probability ℚ∗ in Q, the first term of Lℚ∗
T

in Equation (3.10) nullifies, in application of Proposition 3.5. The expression
becomes simpler, and we deduce Equation (3.13), which gives a measure of
the residual risk under a risk neutral probability ℚ∗ ∈ Q. □

Remark 3.16 V ar(Lℚ∗
T ) measures the revelation of the information in the

prices, because the not informed agent does not possess the whole informa-
tion, but she "sees" all the same a part of the information showing through in
market prices.
A minimal risk exists, which is taken over all possible equivalent martingale
measures in Q and it is the following:

inf
Q∗∈Q

{
Eℚ∗

(
Eℚ∗

[
Eℚ∗(H∣�(L))∣ ℱ̃T

]2)
− Eℚ∗(H)2

}
.

It can be approached by a minimizing sequence.

Remark 3.17 We can notice that measuring the residual risk under a risk-
neutral probability is arbitrary, because choosing this equivalent martingale
measure is already an arbitrary choice, and also because at first, the model
took into account a historic probability, which we do not take into account
in this measure of risk. Moreover the estimated risk is the risk of this model
under this measure, and not the intrinsic risk.

3.5 Existence of a minimal martingale measure

Let us write the Doob-Meyer decomposition of the (ℱ̃ ,ℚ)-semi-martingale of
prices P :

Pt = P0 +Mt +At,

where M is a (ℱ̃ ,ℚ)-martingale of null expectation (as a uniformly integrable
local martingale, from Assumption (A1), see Lépingle and Mémin [28] Theo-
rems II-2 and III-7), and A is a ℱ̃-predictable finite-variations process, whose
increments are square integrable under ℚ and satisfy A0 = 0.
By Girsanov Theorem, and as Assumption (A1) ensures the existence of an
equivalent martingale measure, A may be written as follows:

At =

∫ t

0

�ud < M >u , 0 ≤ t ≤ T,
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where � is a ℱ̃-predictable process.
Define

Kt =

∫ t

0

�′ud < M >u �u , 0 ≤ t ≤ T

and denote by Ẑ the process solution of the following SDE:

dẐt = −Ẑt�tdMt , 0,≤ t ≤ T, Ẑ0 = 1.

Then:

Ẑt = exp

(
−
∫ t

0

�udMu −
1

2
Kt

)
, 0 ≤ t ≤ T. (3.14)

Ẑ is a positive uniformly integrable (ℱ̃ ,ℚ)-local martingale, so it is a (ℱ̃ ,ℚ)-
martingale. This process defines a probability measure ℚ̂ equivalent to ℚ
by

dℚ̂
dℚ

= ẐT ∈ L2(ℚ). (3.15)

As P is a continuous process and Ẑ ∈ ℳ2(ℚ), Proposition 4.3 of Pham [30]
may apply, and we establish the following result in our case:
Proposition 3.18 Probability measure ℚ̂ is an equivalent martingale mea-
sure, called minimal martingale measure. It satisfies the following property:
any square integrable (ℱ̃ ,ℚ)-martingale orthogonal to M under ℚ remains a
(ℱ̃ , ℚ̂)-martingale:

L ∈ℳ2(ℱ̃ ,ℚ), L ⊥ℚ M ⇒ L is a martingale under (ℱ̃ , ℚ̂).

Also following Pham [30] (Paragraph 4.3 Theorem 4.2), we can mention the
following result, which gives an expression of the strategy minimizing the local
risk, in the case where K is uniformly bounded:
Proposition 3.19 If K is uniformly bounded, there exists a strategy mini-
mizing the local risk, given by:

V ∗t = Eℚ̂

(
H∣ℱ̃t

)
�∗t = �Ht ,

where �Ht is the integrand of the Föllmer-Schweizer decomposition of H under
ℚ, which is:

H = H0 +

∫ T

0

�Ht dPt + LHt

H0 ∈ ℝ, �H ∈ L2(M) ∩ L2(A), LH ∈ℳ(ℱ̃ ,ℚ) ⊥M.

Proof It is the Kunita-Watanabe decomposition of the (ℱ̃ , ℚ̂)-martingale V ∗

against the (ℱ̃ , ℚ̂)-martingale P . Indeed, LH is a (ℱ̃ ,ℚ)-martingale orthogo-
nal to M , and so remains a martingale under ℚ̂. □

Remark 3.20 By uniqueness of the Kunita-Watanabe decomposition under ℚ̂,
we have H0 = Eℚ̂(H), which is the right term of the Föllmer-Schweizer de-
composition.

18



4 Example

Let us give an example satisfying all hypotheses of the previous model. This
example was first introduced in the last section of [13]. Suppose that the price
process is driven by the following dynamics (stochastic volatility model) :

dPt = b′(Pt, Xt, �t)Ptdt+ �′t(�)PtdWt, (4.1)

where
�′t(�) = �0ℐ[0,�[(t) + �1ℐ[�,T ](t) , �

0, �1 ∕= 0. (4.2)

The volatility of this model is piecewise constant, taking two possible values
�0 and �1 fixed by the model, � is a random variable satisfying Hypothesis
(H3), taking its values in [0, T + "].
The information of the insider trader is the following strong initial information:
L = �, ℱT+" −measurable . The drift parameter is chosen as the following:

b′(Xt, Pt, �t) = b0 +
b1

(1 + Pt)(1 + �2
t )

, b0, b1 ∈ ℝ fixed.

Interest rate r is supposed to be constant.
Drift b′ is bounded, and may vary between two thresholds b0 and b0 + a. Two
cases may appear, depending on the sign of b1. If b1 < 0, the influence is
a positive influence: the bigger is the investment portfolio, the higher is the
drift of the prices. This is moderated by the level of prices: the higher are the
prices, the lower is the influence. If b1 > 0, it is the converse principle: when
the level of the portfolio increases, the drift of the prices decreases, and the
influence is stronger when the level of prices is high. Remark that the case
b1 = 0 is the case treated in the previous section, without influence.
Depending on the sign of b1, representing the amplitude of the influence, this
influence will have either a leverage effect or a return effect on the drift of the
price process around the value b0. The influence is from the insider’s portfolio
on the price process, which remains bounded according to the hypotheses.
We can also notice that

�′−1s (b′s − rs) = �′−1s (b0 − r +
b1

(1 + Pt)(1 + �2
t )
)

is bounded, as well as �′. So there exists a risk-neutral probability measure ℚ̃
under which dPt = �′tPtdW̃t is a positive uniformly integrable martingale.

Remark 4.1 We don’t have here constraints on the signs of b0 or b1, whereas
it is often the case in previous influence models developed in the literature,
such as in the model introduced by Cuoco and Cvitanic (1998) [9], and treated
deeply in Grorud and Pontier (2005) [21] (their influence form is slightly dif-
ferent from the one treated in this work). This may be explained by the fact
that we consider a hedging problem, whereas they considered an optimization
problem, and therefore we do not need the convexity of the parameters here.
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For the present model, considering the hedging of a European call option with
maturity T and strike K, the parameters are the following :

f(s, Ps, Xs, �s) = Xsr +

(
b0 − r +

b1
(1 + Pt)(1 + �2

t )

)
�s ,

g(PT ) = (PT −K)+ .

This leads to the following FBSDE modeling the hedging problem of the in-
formed agent :{
Pt = P0 +

∫ t
0

(
b0 +

b1
(1+Pt)(1+�2

t )

)
Psds+

∫ t
0
�s(�)PsdWs

Xt = (PT −K)+ −
∫ T
t
(Xsr + (b0 + aℎ(�s))�s − r�s)ds−

∫ T
t
�s(�)�sdWs.

According to [13], hypotheses of Theorem 2.2 are satisfied, and the influent
informed agent has a unique hedging strategy in this market. As explained
before, the informed market is complete, whereas the non informed market is
incomplete.
From Subsection 3.3, we derive an expression of the strategy of the informed
agent:

�Ls �
L
s = Eℚ[Ds(H(W,x))∣ℱs]∣x=L.

In the case of a European call option H(W,x) = (P xT −K)+, where P xT is the
price at terminal time when the volatility jump appeared at time x,

�Ls �
L
s = Eℚ[1lPx

T>K
DsP

x
T ∣ℱs]x=L.

We obtain an expression of the optimal hedging strategy of a non informed
agent in the market, thanks to results of Section 3 (Equation (3.8)):

�ℚ
∗

s = Eℚ∗
[(
�Ls
)−1

Eℚ[1lPx
T>K

DsP
x
T ∣ℱs]x=L

∣∣ ℱ̃s] .
We derive also the expression of the quadratic residual risk from Equation
(3.13):

V ar(Lℚ∗
T ) = Eℚ∗

(
Eℚ∗

[
Eℚ∗((P

L
T −K)+∣L)

∣∣ ℱ̃T ]2)− Eℚ∗((P
L
T −K)+)

2.

Remark 4.2 We have in this example

�t(L)
2 =

1

P 2
t

d < P >t
dt

.

So �t(L)2 is ℱ̃-measurable, hence observable.
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5 Conclusion

As a consequence of the last remark, imagine a weak informed agent, who only
knows the law of L (such information is commonly called weak information).
Then, as soon as the agent observes the jump in the volatility process, she
has the same information as the strong informed agent. This would mean
intuitively that in this example, the weak information would be enough to
complete the market, because it would be sufficient to hedge against this con-
tingent claim. A possible continuation of this model would be the study of
BSDE or FBSDE with other types of additional information (weak, progres-
sive), and thus under other types of enlargement of filtration. Other techniques
were proposed to study the presence of asymmetry of information, as Malliavin
calculus (Imkeller [22], Nualart et al. [27]), either models of weak information
(Baudoin [3]) or models of punters (Corcuera, Imkeller, Kohatsu-Higa and Nu-
alart [8]).

Several studies have been developed on discretization schemes for BSDE
and FBSDE, from Chevance (1997) [7], to Delarue (2002) [10], Gobet, Lemor
and Warin (2005) [17], or more recently Bouchard and Elie (2008) [5], or
Bouchard, Elie and Touzi (2009) [6]. Even if these new schemes may open a
way to simulate and use more extensively such study, and even if these new
works and their future extensions give interesting tracks for efficient schemes
for FBSDEs, there is still a difficulty that leaves in the use of such equations.
The main difficulty is to express explicitly the solutions, especially when the
filtration is not easy to express as an enlarged filtration of the Brownian filtra-
tion. Since then, the risk minimization and the quadratic hedging approaches
allows to have all the same an expression of the hedging strategy, and of the
minimal risk a non informed trader is taking by detaining the contingent claim.
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