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In this paper a model with an influent and informed investor is presented from a hedging point of view. The financial agent is supposed to possess an additional information, and is also supposed to influence the market prices. The problem is modeled by a forward-backward stochastic differential equation (FBSDE), to be solved under an initial enlargement of the Brownian filtration. An existence and uniqueness Theorem is proved under standard assummptions. The financial interpretation is derived, together with an example of such influenced informed model.

Introduction

In this article a hedging problem is studied from an influent informed investor's point of view. The agent is supposed to possess an additional information on the market, and is also supposed to influence market prices. This is a natural extension of the work of Eyraud-Loisel [START_REF] Eyraud-Loisel | Backward stochastic differential equations with enlarged filtration. option hedging of an insider trader in a financial market with jumps[END_REF], where the informed agent was only supposed to be a small investor, with no influence on asset prices. We now study an influent informed agent, who wants to hedge against an option.

The presence of an asymmetrical information will be modeled by an initial enlargement of the Brownian filtration, as developed by the German school to model insider proof in the Brownian filtration case by [START_REF] Pardoux | Forward-backward stochastic differential equations and quasilinear parabolic PDEs[END_REF] [START_REF] Pardoux | Forward-backward stochastic differential equations and quasilinear parabolic PDEs[END_REF], whose details have been put in Appendix A. We prove, under similar hypotheses on the driver, coupled with hypothesis (H 3 ) on the additional information, that the FBSDE has a unique solution in the enlarged space. This result is obtained in 3 cases of influence on the drift and volatility of prices. The first case is a case of "weak influence", where the Lipschitz coefficient of the drift and volatility of prices with respect to the wealth process and the investment strategy are not too large; the second one is satisfied when the payoff is independent of the price process, and the last case concerns models where the investment strategy of the large trader do not influence the volatility of prices.

Under such conditions, the influent informed agent has a unique hedging strategy, and we give in Section 4 a financial interpretation of this result in terms of completeness of the informed market, and incompleteness of the market for a non informed trader's point of view.

Finally in Section 5, we present an example of influence satisfying all our hypotheses.

Model

Market model with influence

Let be a -dimensional standard Brownian motion, and (Ω, (ℱ ) 0≤ ≤ , ℙ) filtered probability space, where Ω = ([0, ]; R ). (ℱ ) ∈[0, ] denotes the natural Brownian filtration , completed with the -null sets. On the market, there are risky assets and a riskless asset. The asset prices dynamics is supposed to be influenced by the wealth and portfolio strategy of an agent, called the large investor, or influent investor.

denotes the wealth at time or this agent and her portfolio.

Prices of risky assets are driven by the following diffusion :

= ( , , , ) + ( ( , , , ),

), 0 = > 0, ∀ ∈ [1, ], (1) 
where and are supposed to satisfy :

( , , , ) = ′ ( , , , ) , ( , , , ) = ′ ( , , , ) .

The riskless asset evolves according to the following equation :

0 = 0 ( , , ) , 0 0 = 1. (3) 
Functions ′ , ′ and defined on Ω × [0, ] × ℝ × ℝ × ℝ are supposed to be ℱ-adapted for fixed , , , respectively ℝ , ℝ × , ℝ-valued.

The financial agent wants to hedge against a given contingent claim. She tries to determine her positive initial wealth, and her portfolio between 0 and maturity in order to possess as terminal wealth the payoff of the contingent claim.

In the standard self-financing framework, the wealth of the agent may be written as the solution of the following stochastic differential equation :

= ( ( - ∑ =0 ) ( , , ) 
) + ∑ =1 ′ ( , , , ) + ∑ =1 < ′ ( , , , ), > .
As prices satisfy > 0, ⊗ ℙ almost surely, thanks to the exponential form of SDE

(1) and (3), and from the hypothesis on the form of coefficients and in Equation

(2), this is equivalent to

= - ∫ ( , , , ) - ∫ < , >, (4) 
where

( , , , ) = ( , , )+ < ′ * -1 , ′ ( , , , ) -( , , ).1I >, and = ′ * ( , , , )
The forward equation of prices [START_REF] Amendinger | Initial enlargement of filtrations and additionnal information of financial markets[END_REF] and the backward equation of wealth ( 4) are now fully coupled, because of the influence hypothesis :

⎧  ⎨  ⎩ = 0 + ∫ 0 ( , , , ) + ∫ 0 < ( , , , ), > = - ∫ ( , , , ) - ∫ < , > . (5) 
Hypotheses are still to be specified in order to ensure such that this system admits a unique solution. This is the aim of Section 3.

Informed agent

The influent agent described in the previous section is also supposed to be an insider trader. She has an additional information at time = 0. This information is supposed to be ℱ ′ -measurable, where < ′ : it will be public at time ′ . The global information available at time to the informed agent is not ℱ any more, but it has been augmented with information . To model it, we introduce the enlarged filtration

:= ∩ > (ℱ ∨ ( )). (6) 
It is an initial enlargement of the Brownian filtration (as developped by Jacod [START_REF] Jacod | Grossissement Initial, Hypothèse H' et Théorème de Girsanov[END_REF]).

This kind of information is known as strong initial information. We will work under the following usual hypothesis, introduced by Jeulin [START_REF] Jeulin | Grossissement d'une filtration et applications[END_REF][START_REF] Jeulin | Comportement des semi-martingales dans un grossissement de filtration[END_REF], and extensively used by Grorud and Pontier [START_REF] Grorud | Insider trading in a continuous time market model[END_REF] and Eyraud-Loisel [START_REF] Eyraud-Loisel | Backward stochastic differential equations with enlarged filtration. option hedging of an insider trader in a financial market with jumps[END_REF] :

Hypothesis 1. (H 3 ) There exists a probability measure ℚ equivalent to ℙ such that under ℚ, ℱ and ( ) independent for all < ′ . This hypothesis (H 3 ) is known to be equivalent to "the conditional distribution of given ℱ is equivalent to the distribution of , for all < ′ ". Under (H 3 ), a remarkable property is that is still a ( , ℚ)-Brownian motion. Moreover, ℚ may be chosen such that, for all ≤ < ′ , ℚ| ℱ = ℙ| ℱ , and on , ℚ = 1 ( , ) ℙ. For a reference on the existence of such a probability, and on the properties under (H 3 ), the reader may refer to Jeulin [START_REF] Jeulin | Comportement des semi-martingales dans un grossissement de filtration[END_REF], Amendinger [START_REF] Amendinger | Initial enlargement of filtrations and additionnal information of financial markets[END_REF], Grorud and Pontier [START_REF] Grorud | Insider trading in a continuous time market model[END_REF].

Solution of the enlarged FBSDE

Enlarged FBSDE and space of solutions

We have supposed that the informed investor may have an influence on asset prices.

To solve the hedging problem described in Section 2, we have to find a solution of the coupled forward-backward SDE [START_REF] Bouchard | Discrete-time approximation of bsdes and probabilistic schemes for fully nonlinear pdes[END_REF]. The mathematical problem lays in the space of solutions : this equation has to be solved in the enlarged space (Ω, , ℚ). As under hypothesis (H 3 ), is still a Brownian motion under ℚ, the FBSDE is the same in the enlarged space :

⎧  ⎨  ⎩ = 0 + ∫ 0 ( , , , ) + ∫ 0 < ( , , , ), > = ( ) - ∫ ( , , , ) - ∫ < , > . (7) 
with a ( , ℚ)-Brownian motion, 0 ∈ 0 and = ( ) ∈ 2 (Ω, , ℚ).

As there exists existence and uniqueness results (see Eyraud-Loisel [START_REF] Eyraud-Loisel | Backward stochastic differential equations with enlarged filtration. option hedging of an insider trader in a financial market with jumps[END_REF]) for BSDE under initially enlarged filtration, the main difficulty is linked to the coupling between the forward equation of prices and the backward equation of wealth, which can not be solved separately. Pardoux and Tang [START_REF] Pardoux | Forward-backward stochastic differential equations and quasilinear parabolic PDEs[END_REF] show the existence of a unique solution in the case of a Brownian filtration (i.e. trivial initial -field), which is not the case here.

We will have to adapt the proof to the present case.

Remark :

Let us remark here the main difference with the model in [START_REF] Eyraud-Loisel | Backward stochastic differential equations with enlarged filtration. option hedging of an insider trader in a financial market with jumps[END_REF], where all parameters of the price diffusion were adapted to the Brownian filtration, and so ℱ = ℱ , the filtration generated by prices was the Brownian filtration. In the present model, wealth and portfolio may be -adapted and depend on . So the influence hypotheses induces that ℱ ∕ = ℱ . We have now ℱ ⊂ : a part of the additional information of the influent insider is "revealed" by the observation of prices. This is mathematically induced by the coupling of both SDEs.

If ℍ denotes a general Euclidian space, 2 (0, ; ℍ) denotes the set of all -progressively measurable ℍ-valued process { ( ), 0 ≤ ≤ } such that

∥ (.) ∥ 0 := ( ℚ ∫ 0 | ( )| 2 ) 1/2 < +∞.
For any process in 2 (0, ; ℝ ), we denote also by

∥ (.) ∥ := ( ℚ ∫ 0 -| ( )| 2 ) 1/2 < +∞.
a family of equivalent norms, indexed by ℝ.

2

ℚ denotes the set of all -progressively measurable process such that

∥ ∥ 2 := ℚ [ sup 0≤ ≤ | | 2 ] < +∞.
and 2 ℚ, the subset of continuous processes of 2 ℚ . A strong solution of system ( 7) is a -adapted solution ( , , ) 0≤ ≤ such that :

ℚ ∫ 0 ∥ ∥ 2 < +∞. (8) 
It financially means that the agent looks for an admissible portfolio hedging the contingent claim.

Existence and Uniqueness Theorem

, , and are supposed to satisfy the following hypotheses (( 1) to ( 8)), which are derived from those for which E. Pardoux and S. Tang obtained existence of a unique solution in the case where there is no additional information (trivial initial -field):

(A1) is invertible × IP-a.s., ′ and ′-1 ( ′ -) are bounded.

(A2) functions , , , are continuous w.r.t. , , in

ℝ × ℝ × ℝ , for all ( , ) ∈ Ω × [0, ]. (A3) ∃ 1 , 2 ∈ ℝ tel que ∀ , , 1 , 2 , , 1 , 2 , , ℙ-p.s. : < ( , 1 , , ) -( , 2 , , ), 1 -2 > ≤ 1 | 1 -2 | 2 , < ( , , 1 , ) -( , , 2 , ), 1 -2 > ≤ 2 | 1 -2 | 2 .
(A4) is globally Lipschitz w.r.t. and , and at most linearly increasing w.r.t. , and is globally Lipschtiz w.r.t. and , and at most linearly increasing w.r.t.

: ∃ , such that ℙ-a.s. ∀ , , ,

| ( , , 1 , 1 ) -( , , 2 , 2 )| ≤ 1 | 1 -2 | + 2 ∥ 1 -2 ∥, | ( , , , )| ≤ | ( , 0, , )| + (1 + | |), | ( , 1 , , 1 ) -( , 2 , , 2 )| ≤ 3 | 1 -2 | + 4 ∥ 1 -2 ∥, | ( , , , )| ≤ | ( , , 0, )| + (1 + | |).
(A5) is globally Lipschitz w.r.t. , and : ∃ such that ℙ-a.s. ∀ , , ,

∥ ( , 1 , 1 , 1 ) -( , 2 , 2 , 2 ) ∥ 2 ≤ 2 5 | 1 -2 | 2 + 2 6 | 1 -2 | 2 + 2 7 ∥ 1 -2 ∥ 2 . (A6) is globally Lipschitz w.r.t. : ∃ 8 such that ℙ-a.s. ∀ | ( 1 ) -( 2 )| 2 ≤ 2 8 | 1 -2 | 2 .
(A7) ∀ , , , (., , , ), (., , , ) and (., , , ) are ℱ-adapted processes and

( ) is ℱ -measurable. Moreover : ℙ ∫ 0 | ( , 0, 0, 0)| 2 + ℙ ∫ 0 | ( , 0, 0, 0)| 2 + ℙ ∫ 0 ∥ ( , 0, 0, 0) ∥ 2 + ℙ | (0)| 2 < +∞. (9) 
(A8) is also supposed to be globally Lipschitz w.r.t. : ∃ 9 such that ℙ-a.s. ∀ , , ,

| ( , 1 , , ) -( , 2 , , )| 2 ≤ 2 9 | 1 -2 | 2 .
Remarks :

• Hypothesis ( 1) guarantees IP ( exp 1 2 ∫ 0 ′2
) < +∞, which implies that the price process is a true martingale, as a uniformly integrable local martingale (Doleans exponential of ′ ˜ under a risk-neutral probability), and also insures that prices are positive ℙ-a.s. (see D. Lépingle et J. Mémin [START_REF] Lépingle | Sur l'intégrabilité uniforme des martingales exponentielles[END_REF]).

• Moreover, from Hypothesis ( 1), ℰ(-′-1 ( ′ -1l). ) is IP-integrable. This guarantees the existence of a risk-neutral probability (and so no arbitrage opportunity) when there is no additional information, see F. Delbaen et W. Schachermayer [START_REF] Delbaen | Non-arbitrage and the fundamental theorem of asset pricing: summary of main results[END_REF].

• We can notice that these two remarks are also true under probability ℚ of Hypothesis (H 3 ).

These hypotheses guarantee existence in (Ω, ℱ, ℙ) of a unique solution, and so of a unique portfolio (only in certain cases of coupling, see E. Pardoux et S. Tang [START_REF] Pardoux | Forward-backward stochastic differential equations and quasilinear parabolic PDEs[END_REF], and

Conditions ( 1) to ( 3) defined hereafter) in the case where there is no additional information (Brownian filtration). With the additional information satisfying hypothesis (H 3 ), on space (Ω, , ℚ), is there still a unique solution to the system ?

Hypotheses ( 1) to ( 8) are still satisfied, except [START_REF] Cuoco | Optimal consumption choices for a "large" investor[END_REF], under the enlarged space (Ω, , ℚ), with the new filtration and new probability ℚ, as ℚ and ℙ are equivalent.

We will assume the following additional integrability condition, in order to have [START_REF] Cuoco | Optimal consumption choices for a "large" investor[END_REF] also satisfied under ℚ:

( 7 ′ ) ℚ ∫ 0 | ( , 0, 0, 0)| 2 + ℚ ∫ 0 | ( , 0, 0, 0)| 2 + ℚ ∫ 0 ∥ ( , 0, 0, 0) ∥ 2 + ℚ | (0)| 2 < +∞. (10) 
Remark:

Let us notice that this condition is always satisfied in our financial framework, as all parameters are null in 0.

Notice also that results are proved in the present section in the general dimension case for processes ( , , ) ∈[0, ] taking values in ℝ , ℝ and ℝ × . In the financial setting = , = 1 et = .

Three different influence cases are treated here :

(I1) The influence is weak : the forward and backward equations are weakly coupled:

∃ 0 > 0 depending on 3 , 4 , 5 , 8 , 1 , 2 and such that 1 , 2 , 6 , 7 ∈ [0, 0 ).

(I2) , ℱ -measurable, is independent from the price process, and 1 and 2 from hypothesis (A3) satisfy also:

∃ > 0, = 1, 2, 3, 4, 4 < -1 4 , > 0 such that 1 + 2 < - 1 2 [ 3 3 
(

2 2 + 2 7 1 -4 4 + 1 1 + 2 6 ) + 1 -1 1 + 2 -1 2 + 3 -1 3 + 4 -1 4 + 2 5 + ] . (11) 
(I3) is independent from : the portfolio does not influence the volatility of prices and 1 and 2 from hypothesis (A3) satisfy also:

∃ > 0, = 1, 3, 4, 4 < -1 4 , > 0, > 0 such that 1 + 2 < - 1 2 [ (1 + ) [ 1 1 + 2 6 + 2 2
(1 -4 4 )

] (

2 8 + 3 3 
)

+ 1 -1 1 + 3 -1 3 + 4 -1 4 + 2 5 + ] . (12) 
In these 3 cases, the existence and uniqueness Theorem given by E. Pardoux and S.

Tang [START_REF] Pardoux | Forward-backward stochastic differential equations and quasilinear parabolic PDEs[END_REF] is still satisfied in the enlarged space.

Theorem 1. We suppose Hypotheses ( 1) to ( 6), ( 7 ′ ) and ( 8) satisfied, and also one of the cases (I1) to (I3) satisfied. Then the following forward-backward stochastic differential equation:

⎧  ⎨  ⎩ = 0 + ∫ 0 ( , , , ) + ∫ 0 < ( , , , ), > = - ∫ ( , , , ) - ∫ < , > . (13) 
admits in the space (Ω, , ) a unique solution ( , , ) -adapted such that

ℚ ∫ 0 ( sup 0≤ ≤ | | 2 + sup 0≤ ≤ | | 2 + ∥ ∥ 2 ) < +∞. (14) 
Proof :

We derive the four majoration lemma and use the same arguments as in Pardoux and Tang [START_REF] Pardoux | Forward-backward stochastic differential equations and quasilinear parabolic PDEs[END_REF]. Theorem 2.1 in Eyraud-Loisel [START_REF] Eyraud-Loisel | Backward stochastic differential equations with enlarged filtration. option hedging of an insider trader in a financial market with jumps[END_REF] for BSDE with enlarged filtration allows us to construct strict contractions and conclude to the existence and uniqueness of the solution in the enlarged space. Even if the standard proofs in the Brownian case may be adapted to the case of an enlarged filtration, even with a change of filtration and a non trivial initial -algebra, there are some difficulties within the adaptation of these proofs. The key point that leads hidden in Theorem 2.1 of [START_REF] Eyraud-Loisel | Backward stochastic differential equations with enlarged filtration. option hedging of an insider trader in a financial market with jumps[END_REF] is the existence of a martingale representation Theorem under hypothesis (H 3 ) in the enlarged space. This point is hidden in the problem of solving the FBSDE, but it is nevertheless crucial. See in Appendix A the main steps of this proof. □

Financial interpretation 4.1. Bound on the wealth process

We also derived another result, unknown in the literature, up to the knowledge of the author, which may financially be interpreted as a bound on the wealth process.

Proposition 1. Under Hypotheses ( 1) and ( 8), and ( 7 ′ ), ∀ ∈ 2 (Ω, , ℚ), if

3 =0 and if ( , 0, 0, 0) is bounded, then solution of the FBSDE (13) satisfies:

| | 2 ≤ -( -) ℚ ( | | 2 ) + 1 ℚ ( ∫ -( -) | ( , 0, 0, 0)| 2 ) , (15) 
where = -(

2 2 + + 4 -1 4 
), > 0 and 0 < 4 ≤ -1 4 .

Proof: This is obtained by using Itô's formula, taking conditional expectation w.r.t. and using standard inequalities, as well as Hypotheses (A1) to (A8).

Apply Itô's lemma to -| | 2 between and , with ∈ ℝ :

-| | 2 + ∫ 0 -| | 2 = -| | 2 + ∫ -| | 2 +2 ∫ ( , , , ) - -2 ∫ - . (16) 
Taking conditional expectation of this expression w.r.t. under probability measure ℚ eliminates the last term, as the increments of the ( , ℚ)-Brownian motion are independent. Hypotheses ( 3) and ( 4) give a majoration to the other terms, and as 3 = 0, we obtain, ∀ , 3 , 4 > 0 :

| | 2 -≤ - ℚ ( | | 2 ) + ( + 2 2 + + 4 4 
)

ℚ ( ∫ -| | 2 ) + ( 4 4 -1) ℚ ( ∫ -| | 2 ) + 1 ℚ ( ∫ -| ( , 0, 0, 0)| 2
) .

Choosing = -(2 2 + + 4 - 1 
4 ), and 0 < 4 ≤ -1 4 , as solution of FBSDE ( 13)

satisfies ( ∫ 0 | | 2 )
< +∞, we obtain the expected inequality :

| | 2 -≤ - ℚ ( | | 2 ) + 1 ℚ ( ∫ -| ( , 0, 0, 0)| 2
) .

□

Corollary 1. If moreover is bounded, then process is bounded.

Proof: This appears naturally from equation [START_REF] Gobet | A regression-based monte-carlo method to solve backward stochastic differential equations[END_REF] as the right term is bounded. □ Toy example : We can find a simple example to illustrate this property, in the case of prices driven by a geometric Brownian motion (Black-Scholes model), without influence:

( , , , ) = + ′-1 ( ′ -) .
does not depend on variable , so 3 = 0, and ( , 0, 0, 0) = 0.

In any cases of to hedge, satifies :

| | 2 ≤ -( -) ℚ ( | | 2 ℱ ) . (17) 
And for a pay-off bounded (for instance a European put option ( -) + , bounded by ), we have :

| | 2 ≤ -( -) 2 ≤ - 2 . ( 18 
)
Wealth is bounded by 2 -.

Market incompleteness derived by the influent informed agent

In these three cases of influence, ( 1), ( 2) et ( 3), the forward-backward stochastic differential equation has a unique adapted solution in the enlarged space. This means that the influent agent has a unique hedging strategy adapted to his information. We have supposed invertible, so from , it is possible to derive the unique portfolio hedging the pay-off : = ′ -1 . If the solution of the insider trader is adapted to the Brownian filtration, then it is the same as if there was no additional information.

Any contingent claim in 2 (Ω, , ℚ) satisfying hypothesis ( 6) is attainable. In fact, the market is complete for the informed investor, relatively to the enlarged filtration.

The hedging problem in the market is reduced to a resolution of a FBSDE, whose coupling depends on the influence of the insider in the market.

We obtain here the same results for the insider's point of view as in [START_REF] Eyraud-Loisel | Backward stochastic differential equations with enlarged filtration. option hedging of an insider trader in a financial market with jumps[END_REF], for the existence and uniqueness of the solution of a BSDE under an enlarged filtration.

What is different in the model with an influent agent, compared to the model without influence developed in [START_REF] Eyraud-Loisel | Backward stochastic differential equations with enlarged filtration. option hedging of an insider trader in a financial market with jumps[END_REF], is the behavior of the market from the point of view of a normally informed agent (when the additional information is unknown). The market from a non insider's point of view is incomplete. This incompleteness is due to a lack of information, as in a model developed by H. Föllmer and M. Schweizer (1991) [START_REF] Föllmer | Hedging of contingent claims under incomplete information[END_REF]. Our model is an example of complete market which becomes incomplete from a small non informed investor point of view. The study of such a market uses tools of quadratic hedging in incomplete market, or under incomplete information, and will be developed separately in a further work, see Eyraud-Loisel [START_REF] Eyraud-Loisel | Quadratic hedging in an incomplete market derived by an influent informed investor[END_REF].

Example

In this last section, we present a model of influence that satisfies all hypotheses of this study. Suppose that the price process is driven by the following dynamics (stochastic volatility model) :

= ′ ( , , ) + ′ ( ) , (19) 
where

′ ( ) = 0 ℐ [0, [ ( ) + 1 ℐ [ , ] ( ) , 0 , 1 ∕ = 0. ( 20 
)
The volatility of this model is piecewise constant, taking two possible values 0 and 1 fixed by the model, is a random variable satisfying hypothesis (H 3 ), taking his values in [0, + ].

The information of the insider trader is = ℱ + -measurable . This is an example of strong initial information.

Case without influence

If we choose a drift parameter ′ ( , , ) = 0 constant, we obtain a model without influence. The coupling between the BSDE and the FSDE vanishes, and it leads to a resolution of BSDE with initial enlargement of filtration. All hypotheses

( 1) to ( 8) and case 1 (no dependence, so a fortiori weak dependence) are satisfied, and even without influence, the market is complete from the insider point of view, and incomplete from the non insider point of view. This gives a toy example where an additional information may "complete" the market.

Case with influence

The drift parameter is chosen as the following :

′ ( , , ) = 0 + 1 (1 + )(1 + 2 ) , 0 , 1 ∈ ℝ fixed. (21) 
The interest rate is supposed to be constant.

Drift ′ is bounded, and may vary between two thresholds 0 and 0 + . Two cases may appear, depending on the sign of 1 . If 1 < 0, the influence is a positive influence: the bigger is the investment porfolio, the higher is the drift of the prices. This is moderated by the level of prices: the higher are the prices, the lower is the influence. If 1 > 0, it is the converse principle: when the level of the portfolio increases, the drift of the prices decreases, and the influence is stronger when the level of prices is high. Remark that the case 1 = 0 is the case treated in the previous section, without influence.

Depending on the sign of 1 , representing the amplitude of the influence, this influence will have either a leverage effect or a return effect on the drift of the price process around the value 0 . The influence is from the insider's portfolio on the price process, which remains bounded according to the hypotheses.

We can also notice that

′-1 ( ′ -) = ′-1 ( 0 -+ 1 (1 + )(1 + 2 ) )
is bounded, as well as ′ . So there exists a risk-neutral probability measure Q under which = ′ ˜ is a positive uniformly integrable martingale (see Lépingle and

Mémin [START_REF] Lépingle | Sur l'intégrabilité uniforme des martingales exponentielles[END_REF] Theorems II-2 and III-7).

Remark: We don't have here constraints on the signs of 0 or 1 , whereas it is often the case in previous influence models developed in the literature, such as in the model introduced by Cuoco and Cvitanic (1998) [START_REF] Cuoco | Optimal consumption choices for a "large" investor[END_REF], and treated deeply in [START_REF] Grorud | Fiancial market model with influential informed investors[END_REF] [START_REF] Grorud | Fiancial market model with influential informed investors[END_REF] (their influence form is slightly different from the one treated in this work).

This may be explained by the fact that we consider a hedging problem, whereas they considered an optimization problem, and therefore we do not need the convexity of the parameters here.

For the present model, considering the hedging of a European call option of maturity and exercise price , the parameters are the following :

( , , , ) = + ( 0 -+ 1 (1 + )(1 + 2 )
) ,

( ) = ( -) + ( 22 
)
which leads to the following FBSDE modeling the hedging problem of the informed agent :

⎧  ⎨  ⎩ = 0 + ∫ 0 ( 0 + 1 (1+ )(1+ 2 ) ) + ∫ 0 ( ) = ( -) + - ∫ ( + ( 0 + ℎ( )) - ) - ∫ ( ) . ( 23 
)
We have to check if all hypotheses of Theorem 1 are satisfied.

(A1) ′ is bounded and invertible, since 0 and 1 are constant and not null.

Moreover, ′-1 ( ′ -) is bounded, since ′ and ′-1 are bounded.

(A2) , , and are continuous w.r.t. variables , , .

(A3) This hypothesis is satisfied by taking 1 = sup( 0 , 0 + 1 ) :

( ( , 1 , , ) -( , 2 , , ), 1 -2 ) = ( 0 1 + 1 (1 + 1 )(1 + ′-2 2 ) -0 2 - 1 (1 + 2 )(1 + ′-2 2 ) ) ( 1 -2 ) = 0 ( 1 -2 ) 2 + 1 (1 + ′-2 2 ) × ( 1 -2 ) 2 (1 + 1 )(1 + 2 ) ≤ sup( 0 , 0 + 1 )( 1 -2 ) 2 , ( 24 
)
and 2 = : ( ( , , 1 , ) -( , , 2 , ), 1 -2 ) = ( 1 -2 ) 2 .
(A4) 1 = 0 since does not depend on .

( , , , ) is 1 , with first derivative w.r.t. given by :

∂ ( , , , ) ∂ = 1 1 + (-2 ′-1 ) (1 + ′-2 2 ) 2 ≤ | 1 | 1 1 + ′-2 2 × (-2 ′-1 ) (1 + ′-2 2 ) ≤ | 1 |.
So is uniformly Lipschitz w.r.t. , with 2 = | 1 |.

Moreover, since ( , 0, , ) = 0, we can write

| ( , , , )| ≤ (| 0 | + | 1 |) | |. (25) 
So

≥ | 0 | + | 1 |.
is also 1 , with first derivative w.r.t. and given by :

∂ ( , , , ) ∂ = 1 1 + 2 1 (1 + ) 2 ≤ | 1 | 2 , ∂ ( , , , ) ∂ = 1 ′-1 (1 + ) 1 -2 (1 + 2 ) 2 ≤ | 1 | inf( 0 , 1 )
.

So is uniformly Lipschitz w.r.t. and , with

3 = | 1| 2 and 4 = | 1 | inf( 0 , 1 ) . Finally is linear w.r.t. , so ≥ . = max( , | 0 | + | 1 |) is convenient. (A5) is uniformly Lipschitz w.r.t.
(piecewise linear), and does not depend on and , so this hypothesis is satisfied with 5 = ( 0 , 1 ), 6 = 0, 7 = 0.

equations, which is the difficulty to express explicitely the solutions. But all these new schemes may open a way to simulate and use more extensively such study, because these new works and their future extensions give interesting tracks for efficient schemes for FBSDEs.

∈ ℝ, , 3, 4 > 0, such that 0

< 4 < -1 4 , define ¯ 2 := --2 2 -3 -1 3 -4 -1 4 
-..

We have :

∥ (.) ∥ 2 ≤ 1 --¯ 2 ¯ 2 [ 2 8 (1 + ) - ℚ | | 2 + 3 3 ∥ (.) ∥ 2 + ( 1 + 1 ) - ℚ | (0)| 2 + 1 ∥ (., 0, 0, 0) ∥ 2 ] . (28) 
Furthermore if ¯ 2 ≥ 0 :

∥ (.) ∥ 2 ≤ 1 1 -4 4 [ 2 8 (1 + ) - ℚ | | 2 + 3 3 ∥ (.) ∥ 2 + ( 1 + 1 ) - ℚ | (0)| 2 + 1 ∥ (., 0, 0, 0) ∥ 2 ] . (29) 
Lemma 3. Suppose Hypotheses ( 3) -( 5), ( 7) and ( 7 ′ ) hold. Let (.) satisfy the forward equation of ( 13) associated to ( (.), (.)) = ( (.), (.))

∈ 2 (0, ; ℝ )× 2 (0, ; ℝ × ), = 1, 2. Define, for all ∈ ℝ, 1, 2 > 0, ¯ 1 := -2 1 -1 -1 1 -2 -1 2 -2 5 . Then ∥ Δ ∥ 2 ≤ 1 --¯ 1 ¯ 1 [ ( 1 1 + 2 6 ) ∥ Δ ∥ 2 +( 2 2 + 2 7 ) ∥ Δ ∥ 2 ] , (30) 
and

- ℚ |Δ | 2 ≤ [ 1 ∨ -¯ 1 ] ( 1 1 + 2 6 ) ∥ Δ ∥ 2 +( 2 2 + 2 7 ) ∥ Δ ∥ 2 . ( 31 
)
Moreover if 1 ≥ 0, more simply it leads to :

- ℚ |Δ | 2 ≤ ( 1 1 + 2 6 ) ∥ Δ ∥ 2 +( 2 2 + 2 7 ) ∥ Δ ∥ 2 . ( 32 
)
Lemma 4. Suppose Hypotheses ( 3), ( 4),( 6), ( 7) and ( 7 ′ ) hold. Let ( (.), (.)) satisfy the backward equation of ( 13) associated to (.) = (.)

∈ 2 (0, ; ℝ ), = 1, 2. For all ∈ ℝ, 3, 4 > 0 such that 0 < 4 < -1 4 , define ¯ 2 := --2 2 -3 -1 3 -4 -1 4 . Then ∥ Δ ∥ 2 ≤ 1 --¯ 2 ¯ 2 [ 2 8 
-

ℚ |Δ | 2 + 3 3 ∥ Δ ∥ 2 ] , (33) 
and

∥ Δ ¯ ∥ 2 ≤ 2 8 -¯ 2 - ℚ |Δ | 2 + 3 3(1 ∨ -¯ 2 ) ∥ Δ ∥ 2 (1 -4 4)(1 ∧ -¯ 2 ) . ( 34 
)
Moreover if 2 ≥ 0, more simply it leads to :

∥ Δ ¯ ∥ 2 ≤ 1 1 -4 4 [ 2 8 - ℚ |Δ | 2 + 3 3 ∥ Δ ∥ 2 ] . (35) 
Proof. These lemmas are derived using several standard inequalities, such as Burkholder-Davis-Gundy inequality, and the proof uses extensively the Lipschitz and linear growth assumptions of hypotheses ( 1) to ( 7), ( 7 ′ ) and [START_REF] Cvitanić | Hedging options for a large investor and forward-backward SDE's[END_REF]. □

We will suppose from now on that all hypotheses ( 1) to ( 7), as well as ( 7 ′ ) and ( 8) are satisfied. We prove the existence and uniqueness of the solution of the forward equation at fixed solution of the backward equation, and then construct a strict contraction in the space of solutions, which will prove the existence and uniqueness of the entire solution of Equation [START_REF] Föllmer | Hedging of contingent claims under incomplete information[END_REF].

Let ∈ 2 ℚ, , ∈ 2 (Ω, , ℚ), ( , ) ∈ 2 (0, ; ℝ ) × 2 (0, ; ℝ × ). Define ∀ ∈ [0, ] ( ) := + ∫ 0 ( , , , ) + ∫ 0 ( , , , ) . (36) 
( ) is well defined and continuous, as ∈ 2 ℚ, , and thanks to properties of and .

Lemma 5. ( ) belongs to 2 ℚ, as soon as ∈ 2 ℚ, , which means

∥ ( ) ∥ 2 = ℚ [ sup 0≤ ≤ | ( ) | 2 ] < +∞.
Proof of Lemma 5 : Let 1, 2 ∈ 2 , . Using Doob and Hölder inequalities, we have

ℚ [sup 0≤ ≤ | ( 1) -( 2) | 2 ] ≤ 2 ℚ [∫ 0 | ( , 1( )) -( , 2( ))| 2 ] +8 ℚ [∫ 0 ∥ ( , 1( )) -( , 2( )) ∥ 2 ] .
As and are uniformly Lipschitz, there exists > 0 such that :

ℚ [ sup 0≤ ≤ | ( 1) -( 2) | 2 ] ≤ 2 2 ( + 4) ℚ [∫ 0 | 1( ) -2( )| 2 ] ≤ 2 2 ( + 4) ℚ [∫ 0 sup 0≤ ≤ | 1( ) -2( )| 2 ] . (37) 
Moreover, using again Doob and Hölder's inequalities,

ℚ [ sup 0≤ ≤ | (0) | 2 ] ≤ 3 
( ℚ [ 2 ] + [ sup 0≤ ≤ | ∫ 0 ( , 0) | 2 ] + ℚ [ sup 0≤ ≤ | ∫ 0 ( , 0) | 2 
]) .

Applying ( 4) and ( 5) between ( , ) and (0, 0) as well as ( 7 ′ ) we obtain the following majoration :

ℚ [ sup 0≤ ≤ | (0) | 2 ] ≤ 3 ( ℚ ( 2 ) + 2 2 + 4 2 )
.

Hence

[ sup 0≤ ≤ | ( ) | 2 ] ≤ 2 [ sup 0≤ ≤ | ( ) -(0) | 2 + | (0) | 2 ] ≤ 4 2 ( + 4) [ sup 0≤ ≤ | ( )| 2 ] + 3 [ 2 ] + 2 2 + 4 2 . (38) 
And then ( ) ∈ 2 ℚ, as soon as ∈ 2 ℚ, . □ Let us prove now that the forward equation of ( 13) has a unique solution in 2 (0, ; ℝ ). Lemma 6. Let ( (.), (.)) fixed in 2 (0, , ℝ × ℝ × ) and let ∈ ℒ 2 (Ω, 0 = ( ), ℚ).

Then equation

( ) = + ∫ 0 ( , , , ) + ∫ 0 ( , , , ) (39) 
has a unique -adapted solution (.) in 2 (0, ; ℝ ).

Proof. The proof is similar to the standard one. Two things change : (0) is not deterministic any more, and the used filtration is not the Brownian one. We have to solve a standard SDE in (Ω, , ℚ), as under ( 3), is a (ℱ, ℙ) and a ( , ℚ)-Brownian.

Fix and two -adapted processes in 2 (0, , ℝ × ℝ × ).

Proof of existence

By induction we construct a sequence od processus in 2 ℚ, :

Then using majoration (37) and Cauchy formula we deduce :

ℚ [ sup 0≤ ≤ | +1 - | 2 ] ≤ 2 2 ( + 4) ∫ 0 ℚ [ sup 0≤ ≤ | - -1 | 2 ] ≤ 1 ( -1)! ∫ 0 ( -) -1 ℚ [ sup 0≤ ≤ | 1 | 2 ] ≤ ! ℚ [ sup 0≤ ≤ | 1 | 2 ] .
Denote by the majorant in Equation ( 38) associated to = 0 = 0,

ℚ [ sup 0≤ ≤ | +1 - | 2 ] ≤ ! .
Then it follows

∑ ≥0 ∥ sup 0≤ ≤ | +1 - | ∥ 1 ≤ ∑ ≥0 ∥ sup 0≤ ≤ | +1 - | ∥ 2 ≤ √ ∑ ≥0 ( ) /2 √ ! < +∞.
The sequence converges ℚ-a.s., so converges uniformly ℚ-a.s. on [0, ] to ˜ , which is continuous. Moreover ˜ ∈ 2 ℚ, since the convergence is in 2 ℚ . Finally ˜ satisfies SDE (39) est solution de l'EDS par passage à la limite dans +1 = ( ).

Proof of Uniqueness

Let 1 and 2 be two solutions of SDE (39) in 2 ℚ, . We have

[ sup 0≤ ≤ | 1 -2 | 2 ] ≤ 2 2 ( + 4) ∫ 0 [ sup 0≤ ≤ | 1 -2 | 2 ] ,
so applying Gronwall's Lemma, there are indistinguishable:

[ sup 0≤ ≤ | 1 -2 | 2 ] = 0.
This proves the uniqueness of the solution of the forward equation of (13) at fixed ( , )

∈ 2 (0, , ℝ × ℝ × ). □
The forward equation induces an application 1 : ( , ) ∈ 2 (0, , ℝ × ℝ × ) → 1( (.), (.)) = (.), unique solution of the forward equation at fixed ( (.), (.)). This is justified by Lemma 6.

In the same way, we define

2 : ∈ 2 (0, , ℝ ) → 2( (.)) = ( (.), (.)) ∈ 2 (0, , ℝ × ℝ × ),
the unique solution of the backward equation at fixed (.). This is possible thanks to the existence and uniqueness Theorem 2.1 given in Eyraud-Loisel [START_REF] Eyraud-Loisel | Backward stochastic differential equations with enlarged filtration. option hedging of an insider trader in a financial market with jumps[END_REF].

Finally this allows us to define the two following operators

Γ1 := 2 ∘ 1 et Γ2 := 1 ∘ 2.
From the previous existence and uniqueness results we deduce in particular that Γ1 maps 2 (0, ; ℝ × ) into itself, and Γ2 maps 2 (0, ; ℝ ) into itself.

Let ( , ) ∈ 2 (0, ; ℝ × ℝ × ), = 1, 2. Define := 1( , ) and ( ¯ , ¯ ) = Γ1(( , )), = 1, 2.
The existence and uniqueness of the solution of the enlarged FBSDE will be obtained using the majoration Lemmas in order to prove that Γ1 or Γ2 is a strict contraction, so have a unique fixed point, which is, by construction, the unique solution of the enlarged FBSDE.

We will have to distinguish three cases. In each case, we will need to put an upper bound on 1 + 2 depending on the .

(I1)/ Weak coupling between forward equation and backward equation

We prove here that Γ is a strict contraction for norm ∥ . ∥ , for ∈ ℝ.

From majorations (30), (31), (33) and (34), we can write :

∥ Δ ¯ ∥ 2 + ∥ Δ ¯ ∥ 2 ≤ [ 1 --¯ 2 ¯ 2 + 1 1 -4 4 ] ( 2 8 (1 ∨ -¯ 1 ) + 3 3 1 --¯ 1 ¯ 1 ) × ( ( 1 1 + 2 6 ) ∥ Δ ∥ 2 +( 2 2 + 2 7 ) ∥ Δ ∥ 2 ) . (40) 
Then, as soon as

1 1 + 2 6 < [ 1 --¯ 2 ¯ 2 + 1 1 -4 4 ] -1 ( 2 8 (1 ∨ -¯ 1 ) + 3 3 1 --¯ 1 ¯ 1 ) -1 , 2 2 + 2 7 < [ 1 --¯ 2 ¯ 2 + 1 1 -4 4 ] -1 ( 2 8 (1 ∨ -¯ 1 ) + 3 3 1 --¯ 1 ¯ 1 ) -1 ,
Γ1 is a strict contraction. So the existence of 0 which depend on 3, 4, 8, 1, 2, such that 1, 2, 6, 7 ∈ [0, 0) is enough to insure that Γ1 is a strict contraction, which ends the proof of Theorem 1 by proving that there exists a unique fixed point which is the unique solution of enlarged FBSDE [START_REF] Föllmer | Hedging of contingent claims under incomplete information[END_REF].

(I2)/ The contingent claim is independent of prices.

We suppose here that is a ℱ -measurable random variable independent of prices, which means 8 = 0. Suppose moreover that ( 3) is such that 1 and 2 satisfy ∃ > 0, = 1, 2, 3, 4, 4 < -1 4 , > 0 such that Then by definition of ¯ 2 in Lemma 2 and of ¯ 1 in Lemma 1,

1 + 2 < - 1 2 
¯ 2 = > 0, ¯ 1 = -(2 1 + 2 2 + 1 -1 1 + 2 -1 2 + 3 -1 3 + 4 -1 4 + 2 5 + ).
So from (41),

¯ 1 > 3 3( 2 2 + 2 7 1 -4 4 + 1 1 + 2 6 ) > 0.
From Equations (30) and (33) in Lemmas 3 and 4, we get :

∥ Δ ¯ ∥ 2 ≤ 1 --¯ 1 ¯ 1 3 3 ( 2 2 + 2 7 1 -4 4 + 1 1 + 2 6 ) ∥ Δ ∥ 2 . ( 42 
)
As soon as (41) is satisfied, the coefficient of ∥ Δ ∥ 2 is nonnegative and strictly bounded by 1. Hence Γ2 is a strict contraction, and admits a unique fixed point, which is the only solution of FBSDE [START_REF] Föllmer | Hedging of contingent claims under incomplete information[END_REF]. This ends the proof of Theorem 1 in case ( 2).

( 3)/ The volatility does not depend on the portfolio.

We suppose here that 7 = 0 and also that 1 and 2 in ( 3) satisfy ∃ > 0, = 1, 3, 4, 4 < -1

4 , > 0, > 0 such that

1+ 2 < - 1 2 
[ (1 + )

( 1 1 + 2 6 + 2 2 
(1 -4 4)

) (

2 8 + 3 3 
) + > (1 + )

[ 1 1 + 2 6 + 2 2 
(1 -

] (

2 8 + 3 3 
) > 0.

As this is true for any 2 > 0, we deduce that ¯ 2 > 0. Moreover, as 7 = 0 and ¯ 1, ¯ 2 > 0, we deduce from majorations (30), (32), ( 33) and (35) from Lemmas 3 and 4 :

∥ Δ ¯ ∥ 2 ≤ 1 ¯ 2 ( 2 8 + 3 3 1 --¯ 1 ¯ 1 ) [ ( 1 1 + 2 6 ) ∥ Δ ∥ 2 +( 2 2) ∥ Δ ∥ 2 ] , ∥ Δ ¯ ∥ 2 ≤ 1 1 -4 4 ( 2 8 + 3 3 1 --¯ 1 ¯ 1 ) [ ( 1 1 + 2 6 ) ∥ Δ ∥ 2 +( 2 2) ∥ Δ ∥ 2 ] .
Let = (1 -4 4)( ¯ 2) -1 . We obtain :

∥ Δ ¯ ∥ 2 + ∥ Δ ¯ ∥ 2 ≤ 1 + ¯ 2 ( 2 8 + 3 3 1 --¯ 1 ¯ 1 ) ×( 1 1 + 2 6 ) [ ∥ Δ ∥ 2 + 2 2 (1 -4 4)( 1 1 + 2 6 ) ¯ 2 ∥ Δ ∥ 2 ] . Choosing -1 2 = 2 ¯ 2 (1-4 4 )( 1 1 + 2 6
) , and combining it with previous inequalities leads to

∥ Δ ¯ ∥ 2 + ∥ Δ ¯ ∥ 2 ≤ 1 + ¯ 2 ( 2 8 + 3 3 
)

( 1 1 + 2 6 ) [ ∥ Δ ∥ 2 + ∥ ¯ ∥ 2 ] .
and

¯ 2 > (1 + ) ( 2 8 + 3 3 
)

( 1 1 + 2 6
) , such that Γ1 is a strict contraction, as soon as Equation ( 43) is satisfied. It admits a unique fixed point, which is the unique solution of FBSDE [START_REF] Föllmer | Hedging of contingent claims under incomplete information[END_REF]. This ends the proof of Theorem 1.

From

  

= 0, +1 = ( ), ∀ ≥ 0.

(A6) is uniformly Lipschitz w.r.t. , with 8 = 1.

(A7) (., , , ), (., , , ) and (., , , ) are -adapted processes and ( ) is deterministic for fixed .

Moreover, the integrability equation in 0 is satisfied : all terms are null.

(A8) is uniformly Lipschitz in , with coefficient

We are in the case of weak influence ( 1) of existence and uniqueness Theorem 1. Indeed, whatever is the value of 1 , 2 may be chosen small enough so that Equation (41) (see proof of the Theorem 1 in Appendix A) is satisfied. In the present example, this equation becomes, as 1 = 6 = 7 = 0 :

which is always true as 2 may be chosen arbitrarily small.

Let us notice that if 0 and 1 are negative enough to satisfy Equation (43), we could also use the case ( 3), because there is no influence from the insider on the volatility of prices.

So all hypotheses of Theorem 1 are satisfied, and EDSPR (13) admits a unique solution.

This allows us to conclude to the existence of a unique solution of the insider hedging problem.

Remark : Despite several studies developed on the subject, from Chevance (1997) [START_REF] Chevance | Résolution numériques des équations différentielles stochastiques rétrogrades[END_REF], to Delarue (2002) [START_REF] Delarue | On the existence and uniqueness of solutions to fbsdes in a non-degenerate case[END_REF], Gobet, Lemor and Warin (2005) [START_REF] Gobet | A regression-based monte-carlo method to solve backward stochastic differential equations[END_REF], or more recently Bouchard and Elie (2008) [START_REF] Bouchard | Discrete time approximation of decoupled forward-backward sde with jumps[END_REF], or Bouchard, Elie and Touzi (2009) [START_REF] Bouchard | Discrete-time approximation of bsdes and probabilistic schemes for fully nonlinear pdes[END_REF] with discretization schemes of BSDE and FBSDE, there is still a difficulty that leaves in the use of such

Appendix A. Proof of Theorem 1

The first step of the proof of Theorem 1 consist in deriving the first four majoration lemmas on the norms of solutions. These fundamental estimates lemmas are the same as those in Pardoux and Tang [START_REF] Pardoux | Forward-backward stochastic differential equations and quasilinear parabolic PDEs[END_REF]. Even if the considered space is not the same (the initial sigma-field is not trivial in our case), these majoration lemmas still hold in the enlarged space. The main reason is that the only tools used to prove these lemmas are Itô Formula, Lipschitz property and linear growth of the different functions and coefficients in the hypotheses ( 1) to [START_REF] Cuoco | Optimal consumption choices for a "large" investor[END_REF], which are also supposed to hold under ℙ and, as seen page 9, remain true under ℚ. We recall the statement of these four lemmas in the way we use it (slightly different from the lemmas given in [START_REF] Pardoux | Forward-backward stochastic differential equations and quasilinear parabolic PDEs[END_REF] called Lemmas 2.1 to 2.4).

Lemma 1. Suppose ( 3) -( 5), ( 7) and ( 7 ′ ) hold. Let ( (.), (.)) ∈ 2 (0, ; ℝ ) × 2 (0, ; ℝ × ), and ( (.)) ∈ 2 (0, ; ℝ ) solutions of forward equation of [START_REF] Föllmer | Hedging of contingent claims under incomplete information[END_REF]. Then, for all ∈ ℝ, , 1, 2 > 0,

with

Lemma 2. Suppose Hypotheses ( 3), ( 4),( 6), ( 7) and ( 7 ′ ) hold. Let ( (.)) ∈ 2 (0, ; ℝ ), and ( (.), (.)) ∈ 2 (0, ; ℝ ) × 2 (0, ; ℝ × ) satisfy backward equation of [START_REF] Föllmer | Hedging of contingent claims under incomplete information[END_REF]. For all