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Whole-Body Task Planning for a Humanoid Robot: a Way to Integrate

Collision Avoidance

Sébastien Dalibard, Alireza Nakhaei, Florent Lamiraux and Jean-Paul Laumond

Abstract— This paper deals with motion planning for a
humanoid robot under task constraints. It presents a novel
random method, inspired by the RRT-Connect algorithm, that
uses a local task solver to generate statically stable collision-free
configurations. It is able to plan motions for a large variety of
tasks. In an experimental section, we compare in details this
random strategy with a local collision avoidance method found
in the literature.

I. INTRODUCTION

Humanoid robots are highly redundant and complex sys-

tems. Planning collision-free stable motions for these sys-

tems is challenging for several reasons. First, most of them

have a high number of degrees of freedom, which leads to

the exploration of a highly dimensioned configuration space

to find a collision-free path. Second, the motion we try to

generate must satisfy many constraints: stability, physical

capabilities, or even task constraints. Real-world task for a

humanoid robot can include reaching to an object with a

hand, as well as opening a door or a drawer.

This paper presents a novel way to use random motion

planning algorithms coupled with local inverse kinematic

techniques.

II. RELATED WORK AND CONTRIBUTION

A. Whole-Body Task Motion Planning

The problem of inverse kinematics for a humanoid robot,

or any articulated structure, is to compute a joint motion

to achieve an end-effector pose. As the robots we deal

with are redundant, it is natural to take advantage of this

redundancy by specifying multiple tasks, potentially with

different priorities. This problem has been widely studied in

robotics planning and control literature, and many jacobian-

based solutions have been proposed, among which [17], [18],

[1] and [10]. Obstacle avoidance can be taken into account

with similar local methods. To do so, one has to include the

obstacles as other task constraints to be satisfied. A recent

contribution on this subject is [7].

In our work, we have chosen to use the prioritized pseudo-

inverse technique without taking into account the obstacles.

The collision avoidance is externalized from the task set,

following the paradigm of randomized motion planning,

where the collision detection is used as a black box to

validate sampled configurations.
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Fig. 1. Reaching for an object in a constrained area

B. Randomized Motion Planning

The other toolkit at our disposal is randomized motion

planning. In the past fifteen years, several ways of randomly

exploring the configuration space (CS) have been success-

fully proposed ([3], [13], [15], [11], [9]). These methods have

been shown to be efficient for planning collision-free paths

for high dimensional systems.

Their application to humanoid robots, however, is not

straightforward, as constraints other than collision avoidance

must be taken care of. [12] proposes a whole-body motion

planning method that deals with obstacle avoidance and dy-

namic balance constraints. It explores a set of pre-computed

statically stable postures with a RRT-like algorithm and then

filters the configuration space path into a dynamically stable

trajectory. [19] deals with global motion planning under task

constraints. The method is also an extension of the RRT

algorithm, where the sampled configurations are projected

on the sub-manifold of CS that solves a task. The limit of

this work is that it only considers very specific constraints,

basically restrictions on a robot end-effector motion rela-

tively to some world fixed frame. This is not sufficient to

solve problems such as static stability, which can be seen

as positioning an abstract end-effector -the center of mass

of the robot- within a given region. A similar drawback is

that it can not deal with multiple and prioritized constraints,

whereas the corresponding local jacobian methods exist in

the literature. More recently, a method similar to ours has

been presented and used on manipulator arms in [2].

Finally, the problem we address is related with motion

planning for closed kinematics chains. Some random tech-

niques have been proposed to solve these problems ([4],

[16]). It differs from our work by the fact that the task

is solved by random techniques rather than jacobian based

optimization.



C. Contribution

The work presented here proposes a new way to use local

jacobian based methods within randomized motion planning.

The local methods are more generic than the ones in [19],

which makes our algorithm usable for solving humanoid

whole-body motion planning. It differs from [7] and [8]

by the way we treat obstacle avoidance, i.e. not in the

optimization loop. The experimental section will show that it

is a relevant choice in terms of computation time for complex

problems.

Before going further and detailing our method, note that

we only address the problem of finding statically stable

paths for humanoid robots. To transform these paths into

dynamically stable trajectories, we would need to use an-

other optimization stage, as it is presented in [12] and [8]

for instance. As this second stage is independent from the

first one, we chose not to deal with it here.

D. Paper Outline

Next section recalls the different techniques we use in our

algorithm: on one hand a random path planning algorithm,

on the other hand a prioritized kinematic constraint solver.

Section IV presents the algorithm itself and section V the use

examples on different scenarios, as well as comparisons with

some existing methods for whole-body motion planning.

III. PRELIMINARIES

A. RRT-Connect

This work considers humanoid whole-body motion plan-

ning problems. Because of the stability constraints and of the

way the goal is expressed (as a task and not as a final con-

figuration to achieve), we can not use classic generic motion

planning algorithms. However, we did use an architecture

similar to random diffusion methods, and more precisely to

what is known in literature as RRT-Connect ([11]). Let us

remind briefly the structure of that algorithm.

Algorithm 1 shows the pseudo-code of the RRT algorithm.

It takes as input an initial configuration q0 and grows a tree

T in CS. At each step of diffusion, it samples a random

configuration qrand, finds the nearest configuration to qrand

in T : qnear, and extends T from qnear in the direction

of qrand. The original version of RRT-Connect depends on

a step parameter ε. Each step of extension adds as many

collision-free nodes to T as possible in direction of qrand,

each node being at a distance ε from the previous one. Fig. 2

shows one step of extension of the RRT-Connect algorithm.

qnear

T

ε ε ε

new configurations

qrand

Fig. 2. One step of extension of the RRT-Connect algorithm

Algorithm 1 RRT-Connect(q0)

T .Init(q0)
for i = 1 to K do

qrand ← Rand(CS)
qnear ← Nearest(qrand, T )
Connect(qnear, qrand)

end for

B. Local Path Planning under Task Constraints

The tasks we consider for the robot can be expressed as

a goal value for some function T of the robot configuration

q: T (q) = 0. Assume the current configuration has a value

T (q) = c. By computing the jacobian J =
∂T

∂q
(q), one

can calculate velocities q̇ that tend to achieve the task. q̇ is

solution of the linear system:

Jq̇ = −λc (1)

where λ is a positive real.

If the robot is redundant enough, i.e. if that linear system is

underconstrained, we can solve other lower prioritized tasks

at the same time, by keeping q̇ in the affine space solution

of eq. (1). Iterating (1) is known as the Newton-Raphson

method. Fig. 3 shows a 1-D example of a zero approximation

by this algorithm.

The precise implementation of the local planner we use is

described in [20]. During global planning, we will consider

several types of tasks for various reasons:

• Static stability: the center of mass of the robot should

stay at the vertical of the support polygon center; if we

are planning a dual support motion, the two feet should

remain at the same position and orientation. These tasks

should always be achieved.

• Goal achievement: the robot should at some point not

only explore CS but achieve some particular goal task.

The ones we will present in the experimental section

are reaching a particular point with the hand and open

a door ; the hand should then stay on a given arc of a

circle.

• Configuration space exploration: as we will explain in

more details in the next section, we use configuration

space defined tasks to explore CS.

0 q0

c

q1q2

T (q)

Fig. 3. Root finding using Newton-Raphson method



IV. RANDOMIZED TASK PLANNING FOR A

HUMANOID ROBOT

This section describes the global whole-body motion plan-

ner. The core of it is a RRT-Connect algorithm. Some tasks

have to be achieved for every configuration in the growing

tree. This is the case for instance for stability tasks as

well as for the position of the hand of the robot during

a door opening motion. We will refer to these tasks as

constraints. Next paragraph explains how we change the

Connect function of the RRT algorithm to comply with these

constraints.

A. Task Constrained Extension

Starting from a configuration qnear that respects a set

of constraints, we want to go as far as possible in another

configuration (qrand) direction, while keeping the constraints

verified. To do so, we add a task to the local planner, whose

value is the distance, in CS, to a given configuration. It is

referred to as ConfigurationTask in algorithm 2. This

task is added with the lowest priority. The configurations

we try to reach are successively the ones a classical RRT

would have added to the tree. Fig. 4 shows one step of

constrained extension. After calling the local planner, we

check that the configurations it outputted respect indeed the

constraints, that they are collision free, and that the edges

linking them together are collision free as well. Algorithm 2

shows pseudo-code for one call to the Constrained-Connect

function.

Algorithm 2 Constrained-Connect(T , qnear, qrand)

Tasks.Initiate(Constraints)
Tasks.Add(ConfigurationTask)
∆q ← ε.(qrand − qnear)/||(qrand − qnear)||
qtarget ← qnear + ∆q

qcurrent ← qnear

State← Progressing

while State = Progressing do

ConfigurationTask.SetTarget(qtarget)

qnew ← LocalPlannerPerformOneStep(Tasks, qcurrent)

if qnew 6= qcurrent

and CollisionCheck(qnew) = OK

and CollisionCheckEdge(qcurrent, qnew) = OK

and ConstraintsCheck(qnew) = OK then

T .AddNode(qnew)

T .AddEdge(qcurrent, qnew)

qcurrent ← qnew

if qtarget 6= qrand then

qtarget ← qtarget + ∆q

else

State← Reached

end if

else

State← Trapped

end if

end while

Constrained manifold
qnear

qrand

new configurations

Fig. 4. One step of constrained extension

B. Goal Configuration Generation

One main difference between the problems we consider

and classic motion planning is that the goal configuration is

not defined explicitly. Instead, the input of the planner is a

given task in the workspace. The output of the planner should

therefore be a statically stable, collision-free path between

the initial configuration and a configuration that solves the

goal task. There are many ways to adapt motion planners

to do so. One could be to grow a tree in CS and try from

time to time to apply the goal task to a newly generated

configuration, hoping that the local planner will return a

collision-free path that solves the problem. This option is

available in our planner, simply by changing the task to solve

in the Constrained-Connect function. However, we found

it more efficient to generate random goal configurations,

using the local planner, and then express the problem as a

classic motion planning one, with one initial configuration

and several goal configurations. The reason is that once

we have defined explicit goal configurations, we can root

random trees at those configurations. The idea of growing

a tree rooted at the final configuration was first proposed in

[11]. Generating several goals for manipulation planning was

proposed in [5]. Another way of looking at that problem is

the formalism of task maps [6].

The way we generate a goal configuration is the following:

1) Shoot a random configuration in CS with uniform

distribution.

2) Call the local planner on this configuration, with the

static stability constraints and the goal task.

3) Check that all of those tasks are achieved.

4) Check for collisions.

Fig. 5 shows different random goal configurations respect-

ing stability and goal constraints.

Probabilistic completeness: Guaranteeing probabilistic

completeness is not as straight forward for task planning

as for classical configuration to configuration planning. The

reason is that we do not know explicitly the shape of the

solution manifold. Some solutions may not be in the same

connected component as the initial configuration while some

other are. If we choose to first shoot random goal configura-

tions, we must ensure that any neighbourhood of the solution

manifold has a positive probability of being reached. This is

the case with our way of shooting the goals configurations.

Reciprocally, if a collision-free, statically stable solution

path exists, we have a positive probability of shooting a

goal configuration in the neighbourhood of that path’s final



Fig. 5. Random goal configurations solving the reaching task. All the configurations are stable and collision-free.

Fig. 6. Different steps of a posture optimization. All the configurations respect the stability and goal constraints, and the configurations are more and
more natural.

configuration, then a positive probability of growing a branch

of the tree in a neighbourhood of the path. This latter claim

comes from the fact that the local planner can extend the tree

in any direction along the sub manifold of the configuration

space corresponding to statically stable configurations. This

ensures our algorithm’s probabilistic completeness.

C. Posture Optimization

As in classic motion planning, once we have found a

random solution path, it is important to optimize it. The

criteria to optimize depend on the system. In humanoid

robotics, the motion should look “realistic” or “natural”,

for any good definition of these concepts. As the goal

configuration we have reached as the end of the solution

path was generated randomly, we need to optimize it as

well. Note that we only optimize it after having found a

solution path because we do not want to optimize useless

goal configurations.

To optimize the posture, we use a random gradient descent

algorithm, starting from the configuration to optimize. The

local planner ensures that all the constraints (stability and

goal task) are achieved and is repetitively called to generate

collision-free random displacements that minimizes a certain

“natural” cost function. In the presented examples, that

function was the CS distance to a reference posture. The new

solution path is the concatenation of the previous solution

and the path resulting from the posture optimization.

Fig. 6 shows the different steps of a goal posture opti-

mization.

D. General Architecture

Now that we have all the tools at our disposal, the

architecture of the planner can be explained.

1) First we generate several goal configurations.

2) We search for a path between the initial configura-

tion and one of the goal configurations with a RRT

algorithm. We can either grow a single tree rooted at

the initial configuration or several other trees rooted at

each of the goal configurations.

3) If a path is found, we optimize the reached goal

posture.

4) We optimize the concatenation of the solution path

and the posture optimization one with classic random

motion planning path optimization methods.

During the RRT search and the final path optimization, we

use the task constrained extension detailed earlier.

V. EXAMPLES

This section presents experimental results of our whole-

body motion planner on simulations on the robot HRP2. We

compared it thoroughly with the local collision avoidance

method presented in [7] on two different examples of hand

reaching motion. One is a dual support motion, where the

humanoid robot has to reach an object under a table, and

the other one is a more complicated single support motion,

where the robot should reach a point inside a large torus

shaped obstacle. These comparison were made to evaluate

the relevancy of avoiding obstacles at a global scale rather

than inside the optimization loop.

The implementation of our algorithm uses

KineoWorksTM([14]) implementation of random diffusion

algorithms and collision checking. All the simulations were

performed on a 2.13 GHz Intel Core 2 Duo PC with 2 GB

RAM. Note that the figures taken from [7] and [8] were

obtained on a similar PC, so time comparisons are relevant

here. For each problem, we ran the planner ten times:

this includes goal configuration generation, path planning,



TABLE I

COMPUTATIONAL TIME (MS) FOR THE PRESENTED SCENARIOS.

Goal Generation Path Planning Posture Optimization Path Optimization Local Planner Collision Detector

Table 281 4,017 16,181 5,096 1.25 % 86 %

Torus 1,689 27,965 40,479 23,851 9.19 % 84 %

Fig. 8. Solution path for “Torus” scenario.

Fig. 7. Solution path for “Table” scenario.

posture optimization and whole-body path optimization. We

indicated the cost of each of these computations, as well

as the relative costs of the collision detector and the local

task solver. Those last costs are expressed as percentages of

the total computational time. They do not add up to 100 %.

The rest of the time is spent in roadmap and environment

management.

A. Dual Support ”Table” Scenario

Fig. 7 shows the solution path for a problem of reaching

an object under a table. A similar experiment was presented

in [7]. The local method presented in [7] computes one step

of optimization in about 100 ms for this problem; it can

therefore run at half the speed required for real time when

selecting a time step of 50 ms. The trajectory lasts 14 s so

the planning time is about 28 s.

Table I shows the time taken by our planner. The average

total time, including both planning and optimization, is

25.6 s. Note that most of the time is spent with posture and

path optimization. Problem solving itself (goal generation

and path planning) only lasts 4.3 s. However, optimization is

mandatory since we are using random path planning method.

It is indeed the total time that should be compared to the 28 s

found in [7].

B. Single Support “Torus” Scenario

Fig. 8 shows the solution path for a more complex prob-

lem. The robot is on one foot and has to reach a point inside

a large torus shaped obstacle. Table I shows the time taken by

our planner. This problem was presented in [8]. It is a very

difficult problem for a local method dealing with obstacle

avoidance because of the complexity and proximity of the

obstacles. When computing this motion with the precise

models of both the robot and the torus, the local method

for obstacle avoidance takes 1.47 s per step. The reason

is that there are 3460 constraints induced by the collision

avoidance. [8] presents simplified models of the robot and the

torus, which leads to a computational time of 50 ms per step

(375 constraints). The generated trajectory lasts 77 s (before

dynamic optimization). The planning time is then about 77 s

for the simplified models and 1540 s for the precise models.

Table I shows the time taken by our planner. The average

total time is 94.0 s and the problem solving itself is 29.7 s.

Once again, most of the time is spent optimizing the results.

The local task solver is comparatively more costly for

this problem, one explanation might be that the stability

constraint is more difficult to compute for single foot support.

C. When to Deal with Obstacle Avoidance

It is difficult to compare our planner with a local collision

avoidance method because they are not intended for the same

use. The local collision avoidance method can be used as a

controller, while our work is really about offline planning.

However, what we can say is that the cost of collision

avoidance constraints make the local method unusable on

complex examples. On the other hand, our probabilistic

planner can be used to compute -in a reasonable time- a

statically stable, collision-free path that could be executed

afterwords by a controller. Note that it does not mean that

local collision avoidance methods are hopeless, but for now,

they can only be used on simplified or dedicated models.

For instance, if the robot and the obstacles were modeled

by spheres or smooth curves (with analytical formulas for

distance computation) rather than triangles, the number of



constraints induced by collision avoidance would decrease

and the computational time would be drastically reduced.

VI. CONCLUSION

In this paper, we have presented a novel whole-body plan-

ning method for humanoid robots. It uses a local task solver

to generate valid configurations within a random diffusion

algorithm framework. Its advantages are the generality of

the local task solver, which makes the planner usable for

a large variety of problems,including for instance stability

constraints for a humanoid robot, and the efficiency of

random diffusion algorithms for high dimensional problems,

evaluated through computation time comparison. We have

compared our approach with a local method for collision

avoidance. The results show that for complex scenarios, the

planning time can be more than an order of magnitude lower

with random planning than with local obstacle avoidance.
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