
HAL Id: hal-00450888
https://hal.science/hal-00450888v1

Preprint submitted on 27 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast dot product over finite field
Jérémy Jean, Stef Graillat

To cite this version:

Jérémy Jean, Stef Graillat. Fast dot product over finite field. 2010. �hal-00450888�

https://hal.science/hal-00450888v1
https://hal.archives-ouvertes.fr

Fast dot product over finite field

Jérémy JEAN
UPMC/CNRS LIP6, PEQUAN Team
104, avenue du Président Kennedy

75016 Paris (France)
Jeremy.Jean@pequan.lip6.fr

Stef GRAILLAT
UPMC/CNRS LIP6, PEQUAN Team
104, avenue du Président Kennedy

75016 Paris (France)
Stef.Graillat@lip6.fr

ABSTRACT

Finite fields are widely used in numerous areas like cryp-
tography, error-correcting codes or computer algebra. Dot
products are ubiquitous in all computations especially when
dealing with linear algebra. Developing fast libraries for
computing dot products in finite fields is a key tool to tackle
various problems in scientific computing. In this paper, our
aim is to present several possibilities to use fast floating-
point units for computing dot products in finite fields. The
main concern is then to properly manage rounding errors
that may appear during the computation. To solve this
problem, we use error-free transformations (EFT). Using
these EFT on recent processors (with an FMA), we show
that it is possible to deal with large finite fields. We also
compare our approach with Residue Number Systems (RNS),
which is a modular approach. The RNS approach is pre-
sented using either integer arithmetic or floating-point arith-
metic. Numerical experiments make it possible to compare
the performances of these different approaches.

Keywords

Finite field, floating-point arithmetic, error-free transforma-
tions, FMA, RNS, GMP

1. INTRODUCTION
Let p ≥ 3 be a prime, and (ai), (bi) two vectors of N

scalars of Z/pZ. We want to compute the dot product of a
and b in Z/pZ,

a · b =

N
X

i=1

ai bi (mod p).

To do so, we will be using two different approaches rely-
ing on two different arithmetics. The first one uses floating-
point arithmetic as described in the IEEE 754 standard [1]
whereas the second one extends the classic integer arith-
metic into a Residue Number System (RNS) to compute
with smaller values.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Because of physical limitations, one can not compute eas-
ily on arbitrary large values. Consequently, we set a limit on
the order of the field Z/pZ. In [2], J.-G. Dumas introduced
a similar idea but the general hypothesis was not strictly the
same. He assumed the prime p of the field to be such that
λ(p− 1)2 < 2M , for λ ∈ N

∗ and M the size of the mantissa.
This was used in the FFPACK and FFLAS libraries [3, 4,
5]. In our paper, we relax the square in this hypothesis, and
consequently extend the range for the choice of primes.

The paper is organized as follows. In Section 2, we de-
fine the arithmetics used in dot product computation meth-
ods that are described in Section 3. Particularly, floating-
point arithmetic requires the knowledge of basic notions of
rounding (see 2.1.3) and some results we will be using in
this paper: Sterbenz’s subtraction (see 2.1.4) and error-free
transformations (see 2.1.5). An introduction to RNS com-
putation is presented in Section 2.2. This is nothing than a
modular computation followed by a reconstruction with the
Chinese Remainder Theorem. But it makes it possible to
use numbers of small size and so use the integer units of the
processor. In Section 3, we describe the different algorithms
used to perform a dot product on finite field. Finally, in sec-
tion 4, we give experimental timing results of all presented
methods. The reference algorithm we will be comparing to
is based on GMP [6], an open-source multi-precision library.

2. VARIOUS ARITHMETICS

2.1 Floating-point arithmetic
We use floating-point numbers in double precision to rep-

resent Z/pZ integers. Denoting M the size of the double
precision mantissa (53 bits according to the IEEE 754 stan-
dard), we limit p to

p− 1 < 2M−1. (1)

Any integer of the finite field could then be represented ex-
actly by a floating-point number. The term M − 1 is neces-
sary rather than just M to be able to sum exactly at least
two integers in the field without introducing a rounding er-
ror. In the sequel, we will assume the rounding mode to be
directed toward zero. This is needed to ensure the error to
be positive in applications of error-free transformations (see
2.1.5).

2.1.1 Notations

We denote by F the set of all floating-point numbers in
the chosen precision. The operation ◦ ∈ {+, −, ∗, /} on

a, b ∈ F equals a ◦ b in R and is rounded to fl(a ◦ b) in F

(assume b 6= 0 if ◦ = /). Application fl can thus be seen as
a non-injective application on R into F. For x ∈ F, ufp(x)
will be the unit in the first place of x and ulp(x) the unit
in the last place of x [8]. We give proper definitions about
ulp and ufp in the next section. We will refer to machine
precision as u = 2−M+1, because we chose rounding toward
zero.

2.1.2 Definitions

Definition 1. For floating-point numbers a and b and op-
eration ◦ ∈ {+,−,×, /}, let c = a◦b exactly (assuming b 6= 0
if ◦ = /). Let x and y be consecutive floating-point numbers
with the same sign as c such that:

|x| ≤ |c| < |y|.

Then, the floating-point arithmetic has the faithful property
if fl(a ◦ b) = x whenever c = x and fl(a ◦ b) is either x or y
whenever c 6= x.

We then define the unit in the last place (ulp) and unit in
the first place (ufp) of floating-point numbers. Unit in the
last place is the gap between two very close floating-point
numbers. To be exact: ulp(x) is the gap between the two
finite floating-point numbers closest to the value x, even if
x is one of them (Kahan’s definition) [8].

As for the unit in the first place, we define it as follows:

∀x ∈ R, ufp(x) =

(

0 if x = 0

2⌊log2 |x|⌋ if x 6= 0
(2)

For x ∈ R, the value ufp(x) denotes the weight of the most
significant bit in the representation of x.

2.1.3 Rounding

Floating-point numbers of F form a subset of R and be-
cause of physical limitations, one can not represent an infi-
nite amount of numbers like R. What we can do though, is
imagine F as a discrete set such that every real number x
would have a faithful representation in F. Clearly, F inherits
from the classical ordering of R and leaving apart underflow
and overflow particular situations, we have:

∀x ∈ R, ∃(a, b) ∈ F
2 s.t. a ≤ x < b. (3)

Following the IEEE 754 standard for double precision, our
floating-point arithmetic is faithful (Definition 1), so that
one needs to choose between a or b for the floating-point
image fl(x) of x. Action of choosing is called rounding and
introduces errors in computations.

In following Figure 1, rounding mode toward zero �(x)
and to the nearest ◦(x) are shown for a positive real number
x. Note that in our case, rounding toward zero on positive
numbers leads to a positive round-off term.

Generally speaking, any operations on floating-point num-
bers may introduce rounding errors. In the two next sec-
tions, we present a case where a subtraction can be done
exactly and particular methods known as error-free trans-
formations that make it possible to exactly compute the
rounding error.

x ◦(x) ∈ F�(x) = fl(x) ∈ F

Figure 1: Rounding modes for x ∈ R
+.

2.1.4 Sterbenz’s result

Sterbenz suggested in [11] a particular case of subtraction
where no error is introduced.

Theorem 1. If a and b are floating-point numbers of F

such that:

b

2
≤ a ≤ 2b,

then the result computed by fl(a− b) is exact. That is:

fl(a− b) = a− b.

Proof 1. Without loss of generality, assume a > b > 0.
This implies ulp(a) ≥ ulp(b), so both a and b are in ulp(b)N,
and so is a− b. The hypothesis of the theorem states a ≤ 2b
so that a−b ≤ b, hence a−b is in ulp(b)N but not larger than
b. As a consequence, a − b happens to be a floating-point
number and fl(a− b) = a− b.

In others cases, when numbers are too far from each other,
one can not compute exactly their difference.

2.1.5 Error-free transformations

When it comes to multiply two floating-point numbers, a
leak of precision arises naturally: the 2M -bit product can
not be stored as a single M -bit floating-point number. One
though may use two of them, to virtually extend the preci-
sion. The product is thus not store in one piece, but as an
unevaluated sum of two floating-point numbers. We refer to
so called methods as error-free transformations, which can
be extended to more complex operations than the product,
as we develop in the following.

The following algorithm applies when computing a prod-
uct of two positive floating-point numbers. We make use
of a special instruction denoted FMA (fused multiply-add)
to evaluate exactly the round-off term of the floating-point
product. This operation had been included in the IEEE 754
standard in 2008 and performs

FMA(a, b, c) = a× b + c

with only one rounding.

Algorithm 1 — TwoProduct

Require: a, b ∈ F such that a, b ≥ 0
Ensure: x ∈ F and y ∈ F such that ab = x + y

x← fl(ab)
y ← FMA(a, b,−x)
return (x, y)

Theorem 2. Let x and y be the result of TwoProduct
applied to a and b.

We have: ab = x + y, x = fl(ab), 0 ≤ x ≤ ab, 0 ≤ y <
u.ufp(x) and 0 ≤ y < ux.

Proof 2. 1 Because a and b are floating-point numbers,
each with M significant bits at most, their mathematical
product ab requires at most 2M bits. When rounding ab
down toward zero, one truncates the last M digits, so that
the floating-point result fl(ab) and the exact mathematical
difference ab−fl(ab) can be represented by two floating-point
numbers with M digits each. Hence, the exact mathematical
difference requires only M bits. Thus, ab − fl(ab) happens
to be a floating-point number with at most M bits, which
rounding to M bits leaves intact. Consequently, FMA pro-
duces the exact result ab− fl(ab):

y = FMA(a, b,−fl(ab)) = ab− fl(ab).

Therefore, we exactly have:

ab = fl(ab) + (ab− fl(ab))

= x + y

The chosen mode of rounding by truncation implies the
floating-point result to be at most the exact result: fl(ab) ≤
ab, thus 0 ≤ x ≤ ab. Because y is the round-off error in the
rounding of the floating operation x = fl(ab), the truncation
imposes: y < u.ufp(x) and ufp(ab) ≤ fl(ab) ≤ ab, hence:

0 ≤ y < u.ufp(x) ≤ u.ufp(ab) ≤ ux.

We now present an other error-free transformation related
to euclidean division by a power of two.

Suggested in [7] and quoted in [10] by S. Rump, this algo-
rithm splits a floating-point number into two non-overlapping
others.

Algorithm 2 — ExtractScalar

Require: a ∈ N ∩ F, and σ = 2k, k ∈ N, σ ≥ a
Ensure: x ∈ N ∩ F, y ∈ N ∩ F such that a = x + y

q ← fl(σ + a)
x← fl(q − σ)
y ← fl(a− x)
return (x, y)

Theorem 3. Let x and y be the result of ExtractScalar
applied to a ∈ N ∩ F and σ ∈ F, σ = 2k, k ≥M . We have:

a = x + y, 0 ≤ y < uσ, 0 ≤ x ≤ a, x ∈ uσN.

Proof 3. The idea behind this splitting method is to use
the rounding mechanism of the floating-point unit. Set to
be toward zero, the rounding behaves the same way as a
truncation. In terms of bits, the M -bit string a is divided
in two strings s1 and s2 which do not overlap such that the
concatenation s1 + s2 equals a. As subparts of a, both bit-
strings s1 and s2 are in F.

If a = 0, the result x = y = 0 is obvious. We assume then
0 < a ≤ σ. Like in the algorithm, let q = fl(a+σ). We have

σ ≤ q ≤ a + σ ≤ 2σ,

so that:
σ

2
≤ q ≤ 2σ.

1This proof is largely inspired from the proof in [9].

By Sterbenz’s result (Theorem 1), we get:

fl(q − σ) = q − σ. (4)

Hence, x = q − σ exactly. Let δ be the error of truncation
in the first summation:

a + σ = q + δ.

Note that in this equality δ ≥ 0 because rounding is directed
toward zero.

q = fl(a + σ) ≤ a + σ. (5)

Moreover, the sum of the two positive numbers a and σ
leads to an error δ, which is a floating-point number as well:
δ ∈ N ∩ F. With this,

a− x = a− q + σ = δ,

and thus:

fl(a− x) = fl(δ) = δ.

This last equality means:

y = fl(a− x) = a− x ∈ N ∩ F.

All in all, a = x + y with x, y ∈ N ∩ F. With (4) and (5),
we have: q − σ ≤ a, which means: x ≤ a. Since q ≥ σ, x is
positive. As a ≥ x, we have: y = a − x ≥ 0. Moreover, the
rounding of the first sum forces: δ < u.ufp(a + σ), which
leads to δ < uσ. Then, 0 ≤ y < uσ.

Finally, we know that q ∈ u.ufp(q) N, and by q ≥ σ, we
have ufp(q) ≥ σ, so that q ∈ uσN. In a same way, σ ∈ uσN,
so that q− σ ∈ uσN. From (4), if follows that x ∈ uσN.

2.2 Residue Number System arithmetic
We will now refer to Residue Number System as RNS. A

RNS can be defined as a set of n constant integers

{m1, m2, . . . , mn}

referred to as moduli. We assume the n integers mi, with
i = 1, . . . , n to be coprime. Let us denote M = m1 · · ·mn

the product of all the moduli. Any arbitrary number X
smaller than M can be uniquely represented by n integers
{x1, x2, . . . , xn} such that

xi = X (mod mi), for i = 1, . . . n.

We will sometimes note xi = |X|mi
. It is then quite easy to

compute addition, subtraction and multiplication with RNS
numbers. Indeed, for addition, Z = X ± Y (mod M) can
be done as

zi = xi ± yi (mod mi), for i = 1, . . . n.

For multiplication, it is accomplished in a similar manner
by computing Z = XY (mod M) with

zi = xiyi (mod mi), for i = 1, . . . n.

Given an integer X less than M , it is easy to construct
its RNS counterpart using euclidean division. We will also
need the converse : given a RNS number, find its integer
counterpart. This can be done via the following formula
(known as Chinese Remainder Theorem or CRT),

X =

n
X

i=1

aiMi|X|mi
, (6)

where Mi = M/mi and ai are such that

aiMi = 1 (mod mi), for i = 1, . . . n.

The ai are computed using the Euclid’s extended algorithm.
This way of computing X from its RNS counterpart is not
the more efficient way but is sufficient if needed only once
during the computation.

3. DOT PRODUCT COMPUTATION

3.1 Delayed-division

Theorem 4. Strengthening the general hypothesis (1) on
p and assuming there exists λ ≥ 1 such that:

λ(p− 1) < 2M−1, (7)

there exists an algorithm computing the dot product of two
vectors of Z/pZ of size N using only N/λ reductions in Z/pZ.
We will refer to this algorithm as λ-algorithm.

Principle of the algorithm. The actual algorithm we
implemented is available in pseudo code in the Appendix of
this paper. The basic idea of this algorithm relies on avoid-
ing reductions. By introducing the λ parameter, we may
accumulate λ times elements of Z/pZ without invoking a
costly reduction. For a double product ai bi, the use of the
error-free transformation TwoProduct gives us an uneval-
uated sum hi + ri, which equals exactly this double product
(Figure 2).

bi < 2l+1

2M M 0
2l l = ⌊log2(p)⌋

ai bi

ai < 2l+1

Figure 2: TwoProduct on ai and bi

With considerations on ulp and ufp, we introduce a vari-
able l = ⌊log2(p)⌋, such that p < 2l+1 and:

∀x ∈ [0, 2l+1−1]∩F,

(

0 ≤ x ≤ 2l =⇒ x ∈ Z/pZ

2l < x < 2l+1 =⇒ x− 2l ∈ Z/pZ

which gives us a way to characterize elements of Z/pZ (Fig-
ure 3). Once we only have elements of this field, we can sum
them together using the property resulting from λ.

x− 2l ∈ Z/pZx ∈ Z/pZ

0 ≤ x ≤ 2l 2l ≤ x < 2l+1

2l0 2l+1

Figure 3: TwoProduct on ai and bi

Proof 4. The main interest in assumption of Lemma (4)
lies in delaying reductions modulo p, which are heavy com-
putations for the processor. Under hypothesis (7), one can
add λ integers of Z/pZ without exceeding 2M . So, rather
than dividing by p at each step in the dot product, one can
delay the reduction and divide only N/λ times.

Let us set:

l = ⌊log2(p)⌋ and u = 2−M+1.

Note that by definition of l, we have: l = log2(ufp(p)).
Then, 2l = ufp(p). Since p is a prime greater than 3, we
have

2l < p < 2l+1, (8)

which means, in terms of bits: ufp(p) < p < 2.ufp(p).
In the field of prime characteristic p, the upper bound for
elements is p− 1, and from the previous inequality, we have
(p is odd):

22l < (p− 1)2 < 2l+2(2l − 1).

We will know distinguish two cases regarding the value on
the modulo p, whether p2 can be represented in one floating-
point number or not. Let i such that 1 ≤ i ≤ N .

Case 1: 2l > M
The product ai bi may exceed M bits because one float is not
enough to represent p2, but two would. Applying the error-
free transformation TwoProduct, one can deduce (Theo-
rem 2): ai bi = hi + ri, with

hi = fl(ai bi), 0 ≤ hi ≤ ai bi, 0 ≤ ri < u.ufp(hi).

Note that because rounding mode had been chosen to be
toward zero, all numbers are positive. That’s why hi is less
than (or equal to) the exact value ai bi.

Without loss, assume ri > 0. If ri is null, then the product
has been done without error and the following holds. Hence,
from previous results,

0 < hi ≤ ai bi ≤ (p− 1)2.

Since hi < 22l+2, we get ufp(hi) ≤ 2l + 1, so that:

0 < hi < 2l+2(2l − 1), (9)

0 < ri < 22l−M+2. (10)

The general hypothesis (1) on p sets l < M − 1, and then
2l < l + M − 1. This leads to the necessary condition to
apply ExtractScalar to hi with parameter σ = 2l+M :

2l + 2 ≤ l + M. (11)

We then have: hi ≤ σ and ExtractScalar on (σ, hi) gives
hi = αi + βi with:

0 ≤ βi < 2l+1, 0 ≤ αi < 2l+2(2l − 1), αi ∈ 2l+1
N. (12)

So:

0 ≤ αi 2−(l+1) < 2l+1 − 2, (13)

and: 0 ≤ βi < 2l+1. (14)

Splitting interval [0, 2l+1] into two halves, [0, 2l − 1] and
[2l, 2l+1 − 1], (13) leads to two cases for αi:

• If 2l ≤ αi 2−(l+1) < 2l+1 − 2, then :

0 ≤ αi 2−(l+1) − 2l < 2l − 2 < 2l,

so that (8) leads to: αi 2−(l+1) − 2l ∈ Z/pZ.

• Otherwise, if αi 2−(l+1) lies in the first half, that is to
say: 0 ≤ αi 2−(l+1) < 2l, we have: αi 2−(l+1) ∈ Z/pZ.

Equally for βi, (14) gives:

• If βi lies in the second half, 2l ≤ βi < 2l+1, we then
have: 0 ≤ βi − 2l < 2l, so that: βi − 2l ∈ Z/pZ.

• Otherwise 0 ≤ βi < 2l, and (8) gives: βi ∈ Z/pZ.

In the same way with ri, (10) and (11), it leads to: 0 < ri <
2l. Thus, the result is directly given by (8): ri ∈ Z/pZ.

All in all, we get integers in Z/pZ one can sum together
exactly λ times without reducing modulo p, thanks to hy-
pothesis (7). Let nα and nβ the number of 2l corrections
needed for α and β respectively. These values are defined
by:

nα = #{αi / 22l+1 ≤ αi < 22l+2},

and: nβ = #{βi / 2l ≤ βi ≤ 2l+1}.

In the finite field Z/pZ, we then have the dot product:

a · b =

N
X

i=1

αi +

N
X

i=1

βi +

N
X

i=1

ri

=
X

nα

(αi − 2l) +
X

N−nα

αi +
X

nβ

(βi − 2l) +
X

N−nβ

βi

+
X

N

ri + (nα + nβ) 2l

Each of first five sums can be computed exactly by groups
of size λ. One reduction is needed once the number of terms
accumulated in each sum had reached λ.

Case 2: 2l ≤M
Here, the result of the product ai bi does not need more than
M bits to be computed exactly. The previous case where
2l ≥ M still holds, even if the error-free transformation for
the product is useless, since it produces ri = 0.

This remark may be the starting point for a slightly dif-
ferent usage of ExtractScalar: when called at most three
times with correct parameters, we can show that, for some
size of vectors, there exists an algorithm computing the dot
product using no reduction in the main loop.

3.2 Binary RNS basis with integers
The aim is here to use a RNS basis to compute the dot

product a · b. We assume that the coefficients ai, bi are in-
tegers in [0, p − 1]. As a consequence, the dot product a · b
considered as an integer satisfies

0 ≤ a · b ≤ N(p− 1)2.

We choose a RNS basis {m1, m2, m3, m4} such that

N(p− 1)2 < m1m2m3m4.

We can compute a · b in the RNS basis. We will in fact get
four numbers r1, r2, r3, r4 such that

a · b = r1 (mod m1)

= r2 (mod m2)

= r3 (mod m3)

= r4 (mod m4).

Using formula (6), we can find 0 ≤ r < m1m2m3m4 such
that

a · b = r (mod m1m2m3m4). (15)

Because of the choice of the mi, we have

0 ≤ r < m1m2m3m4,

and 0 ≤ a · b < m1m2m3m4

As a consequence, we have

|a · b− r| < m1m2m3m4.

From (15), it follows that m1m2m3m4 divides a · b − r. As
a consequence, a · b = r in Z. It is then easy to obtain the
result in Z/pZ. Indeed, we have

a · b = r (mod p).

To perform the computation of the dot product in the
most effective way, we use the four coprime integers

B = {2n, 2n + 1, 2n − 1, 2n−1 − 1} (16)

as basis for RNS, with n = 32. Considering this word-size,
internal computations are achieved in 64-bit integer preci-
sion. Reductions in the four-component basis use following
equalities:

|2n|2n+1 = |2n + 1− 1|2n+1 = −1, (17)

|2n|2n−1 = |2n − 1 + 1|2n−1 = +1, (18)

|2n|2n−1−1 = |2(2n−1 − 1) + 2|2n−1−1 = +2. (19)

Using those formulas, one performs really fast reductions
using logical operations embedded in the processor. For ex-
ample, let us consider the forward conversion of an integer X
into its residues in B defined by (16). The first residue mod-
ulo 232 is simply obtained by keeping the 32 less significant
bits of X, which is exactly |X|232 . Writing the Euclidean
division of X by 232, one gets:

X = q × 232 + r, with: r = |X|232 .

The three others residues derive from (17), (18) and (19):

|X|2n+1 = |q 232 + r|2n+1 = |r − q|2n+1, (20)

|X|2n−1 = |q 232 + r|2n−1 = |r + q|2n−1, (21)

|X|2n−1−1 = |q 232 + r|2n−1−1 = |2q + r|2n−1−1. (22)

This particular basis enables us to reach good speedups in
comparison to classical bases where four primes are used. In
this ordinary case, one would then have to perform divisions
each time a forward conversion is needed.

To reconstruct the result using the CRT, we use the GMP
library. This is necessary because in the formula (6), we need
to compute the product of three numbers of 32 bits, which
may lead to a number of 96 bits. But the use of GMP has a
negligible cost in the algorithm since it is used once at the
end.

A slightly different approach we present now consists in
using floating-point numbers to represent the four residues.

3.3 Binary RNS basis for floating-point arith-
metic

The idea behind a RNS basis in floating-point arithmetic
is the performance. Indeed, the use of floating-point rather

than integer makes it possible to use BLAS (Basic Linear
Algebra Subprograms2) routines. These routines are highly
efficient but work only with floating-point numbers (and not
integers). Even if it is not very important for dot products
(with a mild size), the use of BLAS is very important when
dealing with matrix-vector products or matrix-matrix prod-
ucts.

We use the same basis as (16) but with n = ⌊M/2⌋, where
M is the size of floating-point mantissa in double precision.
This is needed to allow exact floating-point multiplication.
An important difference with the integer case relies on reduc-
tions: one can not here use logical instructions to perform
division modulo 2n. As in the prime basis, one has to divide
four times at each step to compute residues in RNS basis.

4. EXPERIMENTAL RESULTS
In this section, we present our experimental results for

the previously detailed algorithms. Both take two input pa-
rameters: the size N of vectors and the prime characteristic
p of the field. Measured performances in all the following
refer to time of computation and do not take into account
memory-related operations.

Environment used for benchmarks was an Intel Itanium2
1.5 GHz processor with a FMA instruction in its floating-
point unit. Along with algorithm comparisons, we compiled
all twice, using both gcc (the GNU Compiler Collection)
and icc (Intel C Compiler), since the latter is well-suited
for the Intel Itanium family.

First off, concerning the floating-point λ-algorithm, we
show how the value λ affects the performances. Numeri-
cally, λ represents where p lies in the floating-point range:
λ is small for big p and big for small p. Computationally, it
traduces how many iterations we can make without reduc-
ing partial results. On Figure 4 (linear scale) and Figure 5
(logarithmic scale), one can clearly see the values for λ when
p is increasing in the interval [0, 252], whereas GMP-based
algorithm runs in constant time for a fixed N .

Figure 4: Timing comparisons between GMP
(steady) and λ-algorithm (increasing steps for de-
creasing λ) for p ∈ [0, 252] and N = 100000.

2http://www.netlib.org/blas/

Figure 5: Timing comparisons between GMP
(steady) and λ-algorithm (increasing curve) for
log2(p) ∈ [1, 52] and N = 100000.

We present results for two very different sizes of input
vectors, N ∈ {512, 40000}, when the prime characteristic
p lies in both float or double ranges, that is [0, 223] and
[0, 252] respectively. We distinguish those two ranges for
RNS double method to be applicable. This method requires
indeed a floating-point product to be exact.

Values in tables are timing ratios between reference and
measured algorithms: if ratio is greater than 1, then the
measured one is faster; and slower if less than 1. When p lies
in the interval [0, 252], ratios are really different whether p is
small or big, that is whether λ is big or small, respectively.
The best performances are reached when p is small, since
many divisions are avoided. In tables, we show minimal
and maximal values (min/max) of the staircase (similar to
Figure 4). There is no need to make this distinction when p
lies in the smaller interval [0, 223] since λ is not small enough
regarding the size N of vectors. In this range, λ would be
bigger than 229, so that differences in timings are negligible.

Reference Algorithm gcc icc

GMP

λ-algorithm 0.30/1.23 0.28/1.17
RNS (binary basis) 1.90 4.13
RNS (prime basis) 0.14 0.97
RNS (double) – –

Table 1: Ratio of time computations for prime char-
acteristic p ∈ [0, 252] and size of input vectors N = 512.

Minimal ratios for λ-algorithm are generally smaller than
1, since they are reached for λ = 1, which leads to a reduc-
tion at each step (Table 1). For λ ≥ 2, reductions generally
do not occur that often, so that a speedup occurs.

Huge differences between RNS with binary basis and RNS
with prime basis are explained by reductions. In the binary
case, moduli are almost power of two so that we use logical
instruction AND to perform all reductions in 32 bits (section
3.2). These instructions speed up a lot the implementation
in comparison with the slow division instruction of the prime

moduli in the prime basis. This is even more true when
working on a dedicated machine with a special compiler.
Here, icc makes it run a lot faster than gcc (Table 2).

Reference Algorithm gcc icc

GMP

λ-algorithm 1.15 1.05
RNS (binary basis) 1.77 3.83
RNS (prime basis) 0.14 0.90
RNS (double) 0.31 0.33

RNS (double) λ-algorithm 3.73 3.16

Table 2: Ratio of time computations for prime char-
acteristic p ∈ [0, 223] and size of input vectors N = 512.

In Table 2, we also compared λ-algorithm and RNS work-
ing with double floating-point numbers. In that case, residue
arithmetic is not efficient, even with the binary basis, since
there is no logical instruction in floating-point units (FPU).
Consequently, reductions cost a lot and make the whole com-
putation relatively slow.

During benchmarking, we also evaluate results on differ-
ent sizes of vectors. For N = 2048 for instance, results were
not that different from the 512 case. For very large vectors,
with 40000, 100000 or 500000 elements in particular, our
presented algorithms get genuine speedups. In double pre-
cision when computing with 40000-element vectors (Table
3), one gets a speedup of 2 for the λ-algorithm and more
than 7 for the RNS one with the binary basis.

Reference Algorithm gcc icc

GMP

λ-algorithm 0.54/2.01 0.49/1.67
RNS (binary basis) 3.42 7.30
RNS (prime basis) 0.26 1.63
RNS (double) – –

Table 3: Ratio of time computations for prime
characteristic p ∈ [0, 252] and size of input vectors
N = 40000.

This difference holds when computations are performed in
the smaller field (Table 4). In that case, again and for the
same reasons as detailed before, λ-algorithm is three times
faster than the RNS one using floating-point unit.

Reference Algorithm gcc icc

GMP

λ-algorithm 1.92 1.81
RNS (binary basis) 3.57 8.10
RNS (prime basis) 0.26 1.81
RNS (double) 0.60 0.66

RNS (double) λ-algorithm 3.21 2.74

Table 4: Ratio of time computations for prime
characteristic p ∈ [0, 223] and size of input vectors
N = 40000.

5. CONCLUSIONS AND FUTURE WORK
We have shown different ways to compute dot product in

a prime finite field making use of floating-point and Residue
Number System (RNS) arithmetics. For that matter, crit-
ical operations are reductions in the field. The first idea
relies on the λ parameter of section 3.1, which allows us to
avoid systematic reduction. Great performances are reached
for big λ when the prime characteristic p of the field may be
up to 252. The second idea introduces the RNS to perform
computation on smaller values on a binary basis. In that
special case, reductions are almost costless since moduli are
power of two.

The conclusion of this work forks into two main lines
regarding which arithmetic one considers. Floating-point
numbers happen to be a widely studied area and we showed
in this paper a way of using them to perform integer compu-
tations. Although this is not the major area of application,
one can manage them correctly to compute in high order
fields. The other side of the conclusion is directly linked
to integer numbers, since it introduces residue arithmetic.
We use two bases to perform computations: the classic one
with prime numbers, and a particular one with four coprimes
quasi power of two. This latter RNS usage happens to be
very fast since reductions are almost costless.

We are currently working on a port of our algorihms on
GPU (Graphics Processing Unit). With the λ-algorithm,
this implies a pretreatment of data to get them distribute
in groups of proper size to be able to sum them together
exactly. As for RNS computations, we might compute the
four components at the same time. The more serious draw-
back of GPU is the lack of efficiency in double precision. It
would then be interesting to adapt RNS with floating-point
arithmetic and compare performances.

6. REFERENCES

[1] IEEE standard for floating-point arithmetic. Technical
report, 2008.

[2] J.-G. Dumas. Efficient dot product over word-size
finite fields. In V. G. Ganzha, E. W. Mayr, and E. V.
Vorozhtsov, editors, Proceedings of the 7th
International Workshop on Computer Algebra in
Scientific Computing, CASC’2004 (St. Petersburg,
Russia, July 12-19, 2004), pages 139–153, Garching,
2004. Institut für Informatik, Technische Universität
München.

[3] J. G. Dumas, T. Gautier, and C. Pernet. Finite field
linear algebra subroutines. In ISSAC ’02: Proceedings
of the 2002 international symposium on Symbolic and
algebraic computation, pages 63–74, New York, NY,
USA, 2002. ACM.

[4] J.-G. Dumas, P. Giorgi, and C. Pernet. Ffpack: finite
field linear algebra package. In ISSAC ’04:
Proceedings of the 2004 international symposium on
Symbolic and algebraic computation, pages 119–126,
New York, NY, USA, 2004. ACM.

[5] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear
algebra over word-size prime fields: the fflas and ffpack
packages. ACM Trans. Math. Softw., 35(3):1–42, 2008.

[6] T. Granlund and al. GNU multiple precision
arithmetic library 4.1.2, December 2002.

[7] C. Hecker. Let’s get to the (floating) point. Game
Developer Magazine, 1996.

[8] J.-M. Muller. On the definition of ulp(x). Technical

report, École normale supérieure de Lyon -
Laboratoire de l’Informatique du Parallélisme, 2005.

[9] Y. Nievergelt. Scalar fused multiply-add instructions
produce floating-point matrix arithmetic provably
accurate to the penultimate digit. ACM Trans. Math.
Softw., 29(1):27–48, 2003.

[10] S. M. Rump, T. Ogita, and S. Oishi. Accurate
floating-point summation part I: Faithful rounding.
SIAM J. Sci. Comput., 31(1):189–224, 2008.

[11] P. H. Sterbenz. Floating-point computation. Prentice
Hall, Englewood Cliffs, New Jersey, 1974.

APPENDIX

Algorithm 3 — Dot product computation by delaying re-
ducing modulo p every λ

Require: p ≥ 3 a prime, a, b two Z/pZ vectors of size N
Ensure: The dot product a · b of vectors a and b in Z/pZ

k ← 1

N1 ←

—

N

λ

�

l← ⌊log2(p)⌋ σ ← 2l+M+1

nα ← 0 nβ ← 0 nr ← 0
C ← 0 P ← 0 S ← 0 n← 0
for y = 1 to N1 do

for z = 1 to λ do
[h, r]← TwoProduct(ak, bk)
[α, β]← ExtractScalar(σ, h)

if 2l ≤ α2−(l+1) then
nα ← nα + 1
α← α− 2l

end if
if 2l ≤ β then

nβ ← nβ + 1
β ← β − 2l

end if
c← fl(c + α)
p← fl(p + β)
s← fl(s + r)

end for
C ← C + (c (mod p))
P ← P + (p (mod p))
S ← S + (s (mod p))
c← 0 p← 0 s← 0
n← n + 1
if n = λ then

n← 0
C ← C (mod p)
P ← P (mod p)
S ← S (mod p)

end if
k ← k + 1

end for

for x = k to N do
[h, r]← TwoProduct(ak, bk)
[α, β]← ExtractScalar(σ, h)

if 2l ≤ α2−(l+1) then
nα ← nα + 1
α← α− 2l

end if
if 2l ≤ β then

nβ ← nβ + 1
β ← β − 2l

end if
c← fl(c + α)
p← fl(p + β)
s← fl(s + r)

end for
C ← C (mod p)
P ← P (mod p)
S ← S (mod p)
C ← C + (c (mod p))
P ← P + (p (mod p))
S ← S + (s (mod p))
c← C (mod p)
p← P (mod p)
s← S (mod p)
res← fl(p + s)
res← res (mod p)
res← fl(res + c)
res← res (mod p)
h← 2l (mod p)
[q, r]← TwoProduct(h, nα + nβ)
q ← q (mod p)
r ← r (mod p)
q ← fl(q + r)
q ← q (mod p)
res← fl(res + q)
res← res (mod p)

