
HAL Id: hal-00450858
https://hal.science/hal-00450858

Preprint submitted on 27 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reducing graphs in graph cut segmentation
Nicolas Lermé, François Malgouyres, Lucas Létocart

To cite this version:
Nicolas Lermé, François Malgouyres, Lucas Létocart. Reducing graphs in graph cut segmentation.
2010. �hal-00450858�

https://hal.science/hal-00450858
https://hal.archives-ouvertes.fr

REDUCING GRAPHS IN GRAPH CUT SEGMENTATION

Nicolas Lermé1,2, François Malgouyres1, Lucas Létocart2

(1) LAGA UMR CNRS 7539, (2) LIPN UMR CNRS 7030

Université Paris 13 –Avenue J.B. Clément

93430 Villetaneuse - France

{nicolas.lerme,lucas.letocart}@lipn.univ-paris13.fr

malgouy@math.univ-paris13.fr

ABSTRACT

In few years, graph cuts have become a leading method for

solving a wide range of problems in computer vision. Howe-

ver, graph cuts involve the construction of huge graphs which

sometimes do not fit in memory. Currently, most of the max-

flow algorithms are impracticable to solve such large scale

problems. In the image segmentation context, some authors

have proposed heuristics [1, 2, 3, 4] to get round this problem.

In this paper, we introduce a new strategy for reducing graphs.

During the creation of the graph, before creating a new node,

we test if the node is really useful to the max-flow compu-

tation. The nodes of the reduced graph are typically located

in a narrow band surrounding the object edges. Empirically,

solutions obtained on the reduced graphs are identical to the

solutions on the complete graphs. A parameter of the algo-

rithm can be tuned to obtain smaller graphs when an exact

solution is not needed. The test is quickly computed and the

time required by the test is often compensated by the time that

would be needed to create the removed nodes and the additio-

nal time required by the computation of the cut on the larger

graph. As a consequence, we sometimes even save time on

small scale problems.

Index Terms— segmentation, graph cut, reduction.

1. INTRODUCTION

Graph cuts provide a global optimization method ba-

sed on max-flow/min-cut for solving a wide range of pro-

blems encountered in computer vision. Since pioneer work of

Greig et al. [5], the graph cuts have recently known a quick

development with the arrival of a fast max-flow algorithm [6].

At the same time, the resolution of images acquired by

digital devices increase constantly. In biomedical imaging,

high-resolution data can involve massive graphs containing

billion of nodes, which do not fit in memory. For these ins-

tances, global optimization methods such as graph cuts are

impractical due to memory requirements.

To overcome this problem, Delong and Boykov [7] have

recently published a new parallelized max-flow algorithm

yielding near-linear speedup with the number of proces-

sors. This algorithm is able to segment large volumes while

keeping optimality on solutions but remains less effective

than standard graph cuts on small graphs. On the other side,

some authors have also proposed heuristics based on multi-

resolution schemes [3, 2]. The principle is to generate a graph

in a narrow band constrained from the segmentation result

for a subsampled image. These algorithms reduce drastically

speed and memory usage but fail to recover thin structures in

images. This drawback is reduced but remains true in [2] for

images with low contrast. In medical imaging, this is a real

drawback since thin structures like blood vessels are ubiqui-

tous. Other heuristics [1, 4] use adjacency graphs. The idea is

to pre-segment the image thanks to a low-level algorithm (e.g

watershed [1] or mean shift [4]) and build an adjacency graph

where each node corresponds to a pre-segmented region.

Results highly depend both on the image structure and the

low-level segmentation algorithm. By drastically reducing the

number of nodes in the graph, these heuristics greatly increase

the speed of graph cuts and reduce the memory usage. Never-

theless, the performances are better when over-segmentation

occurs, i.e. when the size of the adjacency graph is equivalent

to the size of the graph in standard graph cuts.

In the present work, we propose an algorithm for reducing

graphs. The idea is to gradually build the graph by only ad-

ding nodes which satisfy a condition in a small window. The

rest of the paper is organized as follows. In section 2, we re-

view the graph cuts framework. Next, our approach is detailed

in section 3 and compared to standard graph cuts in section 4.

2. BACKGROUND

Let us briefly summarize the work of Boykov and Jolly for

N-D image segmentation. An N-D image can be defined by a

pair (P, I) consisting of a finite discrete set P ⊂ Z
d (d > 0)

of N-D points (pixels in Z
2, voxels in Z

3, etc.) and a function

I that maps each point p ∈ P to a value I(p) in some value

space. For an image, we can construct the associated directed

weighted graph G = (V, E , c) consisting of a set of nodes

V = P ∪ {s, t}, a set of edges E and a positive weighting

function c : V2 → R
+ defining the edge capacity.

We distinguish two special nodes of V : the source node

s specifying the « object » terminal and the sink node t speci-

fying the « background » terminal. Furthermore, we split the

set of edges E in two disjoint sets En and Et denoting respecti-

vely n-links (neighborhood links) and t-links (terminal links).

Next, we associate a neighborhood N (p) to any point p ∈ P .

In this setting, we will use the following neighborhoods :

N0(p) = {q :
∑d

i=1 |qi − pi| = 1} ∀p ∈ P,

N1(p) = {q : |qi − pi| ≤ 1 ∀1 ≤ i ≤ d} ∀p ∈ P,

where pi denote the ith coordinate of the point p. For instance,

each pixel has 4 and 8 neighbors in 2D, 6 and 26 neighbors in

3D and finally 8 and 80 neighbors in 4D 1. In the sequel, the

terms « connectivity 0 » and « connectivity 1 » will correspond

respectively to the use of a N0 and N1 neighborhood.

In [8], Boykov and Jolly showed that the image segmenta-

tion problem can be efficiently solved by minimizing a Mar-

kov Random Field of the form :

E(u) =
∑

p∈P

Ep(up) + β ·
∑

p,q∈P
q∈N (p)

Ep,q(up, uq), (1)

where u ∈ {0, 1}N . As usual, the data fidelity term Ep(.)
forces up to fit the input data while the smoothness term

Ep,q(.) penalize neighboring pixels p and q if they have

different labels. According to [9], the minimizer of the

energy (1) corresponds to a min-cut in a graph and can be

efficiently computed by the algorithm described in [6] 2.

3. REDUCING GRAPHS

As we have seen before, the memory usage for segmen-

ting high-resolution data by graph cuts can be prohibitive. As

an illustration, the max-flow algorithm of Boykov and Kol-

mogorov [6] (version 2.2) allocates 24|P| + 14|En| bytes. In

table 1, we observe that for a fixed amount of RAM, the maxi-

mum volume size decreases quickly as dimension d increases.

Nevertheless, we observe on figure 1 that most of the nodes

are useless because not traversed by any flow. On the right

hand-side of figure 1, we represent the flow passing through

the t-links. Light gray pixels (respectively dark gray pixels)

indicates that a strictly positive amount of flow is passed from

s to node p (respectively from node p to t). Clearly, only a

small part of nodes is used during the max-flow computation.

When reducing such a graph, one would like extract the smal-

lest possible graph G′ = (V ′, E ′, c) from G while keeping a

1Typically, larger neighborhood systems yield better results but increase

running times and memory consumptions.
2An implementation of the max-flow algorithm is freely available at

http://www.cs.cornell.edu/People/vnk/software.html

❅
❅❅

Connectivity 0 Connectivity 1

2D 6426 4459

3D 319 219

4D 68 45

Table 1: Maximum values of image size in function of d and

connectivity with a fixed amount of RAM of 2GB.

solution u′ identical or very close to u. Ideally, we want to

maximize the reduction rate ρ = 1 − |V′|
|V| s.t. u ≃ u′. Howe-

ver, the method for determining G′ also needs to be fast and

this rules out the resolution of such an optimization problem.

Before describing our method for building G′, let us introduce

Fig. 1: Illustration of flow passing through t-links (right) for

segmenting a 2D image (left).

some terminology. In accordance with the graph construction

given in [9], we consider (without loss of generality) that a

node is linked to at most one terminal, i.e :

(s, p) ∈ Et ⇒ (p, t) 6∈ Et ∀p ∈ P.

Also, we summarize the capacities of the t-links at any node

p ∈ P by c(p) = c(s, p) − c(p, t). For any B ⊂ Z
d and

x ∈ P , we denote by B̃x the set translation of B by the point

x : B̃x = {b+x | b ∈ B}. Moreover, for Z ⊂ P and B ⊂ Z
d,

we define the dilation of Z by B as :

Z̃B = {z + b | b ∈ B, z ∈ Z} =
⋃

z∈Z

B̃z.

We also define, for any Z ⊂ P , the maximal amount of flow

coming in and out through the n-links by

Pin(Z) =
∑

p∈Z,q 6∈Z

p∈N(q)
c(p, q), Pout(Z) =

∑
p∈Z,q 6∈Z

q∈N(p)
c(p, q).

Finally, we define the maximum amount of flow passing

through the t-links and the flow orientation by

A(Z) =
∑

p∈Z

|c(p)|, O(Z) =
∑

p∈Z

sign(c(p)),

where sign(t) = 1 if t > 0, 0 if t = 0 and −1 otherwise.

Let B ⊂ Z
d, in order to build G′, we remove from the

nodes of G any Z ⊂ P such that either

O(Z̃B) = +|Z̃B | and A(Z̃B \ Z) ≥ Pout(Z̃B), or

O(Z̃B) = −|Z̃B | and A(Z̃B \ Z) ≥ Pin(Z̃B).
(2)

As an illustration of those conditions, notice for instance that

the last condition implies that all the flow that might come in

the region Z̃B comes from its boundary and can be absorbed

by the band Z̃B \ Z. Building such sets Z is done by testing

each individual pixels of Z. In order to do so, we establish (in

a forthcoming paper) that the conjonction of conditions (2)

for every z ∈ Z implies (2) for Z. Considering B, a square

window of size (2r + 1) (r > 0) centered at the origin, a more

conservative test for z ∈ Z is{
c(q) ≥ +δ · γ ∀q ∈ B̃z or

c(q) ≤ −δ · γ ∀q ∈ B̃z,
(3)

where γ ∈ [0, 1] and δ = P (B)
(2r+1)2−1 , with

P (B) = max(|{(p, q), p ∈ Z, q 6∈ Z and p ∈ N (q)}|,
|{(p, q), p ∈ Z, q 6∈ Z and q ∈ N (p)}|).

If all the capacities of the n-links are smaller than 1 (which

is true for most interesting energies) and (3) holds, the inega-

lity (2) holds for Z = {z}. Then, G′ is determined by the set

of nodes V ′ = {p ∈ P not satisfying (3)}∪{s, t}. We have

theoretical and empirical evidence suggesting that this graph

reduction provides an exact solution when γ = 1. It becomes

an heurisitic as γ decreases to 0. Morever, the condition (3)

is simple and a straightforward implementation has a worst-

case complexity of O(|B|). Decomposing this test along the d

dimensions yields an algorithm with complexity O(1), except

for image borders.

4. EXPERIMENTAL RESULTS

This section compares the performance of standard graph

cuts and our method in terms of speed, memory and segmen-

tation accuracy with two energy models : TV + L2 [10] and

Boykov/Jolly [8]. Experiments are performed on an Athlon

Dual Core 6000+ 3GHz with 2GB RAM for segmenting 2D/

3D images in connectivity 1. Times are averaged over 10 runs.

4.1. TV + L2 energy model

Total variation has originally been introduced by Ru-

din et al. for image denoising. The authors of [10] have

proposed to use the TV + L2 model for image segmentation.

First, the middle row of figure 2 describes the influence of

the window parameter r. For r = 0, time and memory usage

correspond to standard graph cuts. The general trend is that

the amount of allocated memory first decreases and then in-

creases as r increases. This corresponds to the fact that in (3),

each individual test |c(q)| ≥ δ is easier to satisfy when r is

large, because δ decreases with r. However, the test on the

signs are more difficult to satisfy since the window is larger.

Note that the value of r which minimizes the memory usage

depends both on the image structure and the model’s parame-

ters. Except for the image « plane », our algorithm is generally

faster than standard graph cuts.

Second, figure 2 also illustrates the role of the γ parame-

ter. The window radius is chosen to minimize both normalized

time and memory usage. The differences between the refe-

rence and the segmentation are evaluated using the Dice Si-

milarity Coefficient (DSC) and the Hausdorff distance 3. For

all images, the memory usage can be significantly reduced by

lowering the γ parameter while getting nearly the same solu-

tion up to a certain value.

4.2. Boykov and Jolly’s energy model

Introduced in [8], this model has quickly become a stan-

dard in applications. From a user viewpoint, it consists of mar-

king some parts of the image as « object » and « background ».

For more information, we refer the reader to [8].

Figure 3 compares time and memory usage between stan-

dard graph cuts and our method for segmenting real images.

The second image represents a simulated brain MRI genera-

ted by Brainweb with 3% of noise 4 while the third image

shows an abdominal CT with a pulmonary tumor.

In these experiments, the model’s parameters are optimi-

zed for better visualization while γ parameter is set to 1. The

window radius is chosen such that memory usage is minimi-

zed. Seeds were placed by hand but are not represented here

because space limitations. For all images, the amount of al-

located memory for the graph is reduced by a factor ranging

from 4.8x to 7.7x. For the first image, our algorithm is 1.7x

faster and require 4.8x less memory while getting exactly the

same result. Moreover, altough the graphs induced by the vo-

lumes « brain » and « ct-thorax » do not fit in memory when

no reduction is performed, we observe that our algorithm is

able to segment them in less than 10 seconds.

5. REFERENCES

[1] Yin. Li, Jian. Sun, Chi-Keung. Tang, and Heung-Yeung.

Shum, “Lazy snapping,” ACM Transactions on Gra-

phics, vol. 23, no. 3, pp. 303–308, 2004.

[2] A.K. Sinop and L. Grady, “Accurate banded graph

cut segmentation of thin structures using laplacian py-

ramids,” in MICCAI, 2006, vol. 9, pp. 896–903.

[3] H. Lombaert, Y.Y. Sun, L. Grady, and C.Y. Xu, “A mul-

tilevel banded graph cuts method for fast image segmen-

tation,” in ICCV, 2005, vol. 1, pp. 259–265.

3Details on these evaluation measures are available at

http://lts08.bigr.nl/about.php
4The Brainweb simulator is freely accessible at

http://mouldy.bic.mni.mcgill.ca/brainweb/

(a) plane – 1443× 963 (b) cells – 1536× 1536 (c) lena – 2048× 2048 (d) woman – 211× 172× 92

(e) Image « plane » (f) Image « cells » (g) Image « lena » (h) Image « woman »

(i) Image « plane » (j) Image « cells » (k) Image « lena » (l) Image « woman »

Fig. 2: Influence of window radius (middle row) and γ parameter (bottom row) for segmenting 2D/3D images (top row) with a

TV + L2 energy model. On the two last rows, blue curve with squares and red curve with triangles correspond respectively to

time execution and amount of memory allocated by the graph. On bottom row, green curve with circles and purple curve with

diamonds correspond respectively to the DSC and the Hausdorff distance between normal and γ-parametrized segmentations.

(a) book – 3012× 2048 (b) brain – 181 ×

217× 181

(c) ct-thorax – 245 ×

245× 151

Original Our algorithm

Image Time Memory Time Memory

book 5.58 1.08 Gb 3.25 231.25 Mb

brain / 3.59 Gb 9.02 734.64 Mb

ct-thorax / 4.58 Gb 8.25 606.27 Mb

Fig. 3: Speed (secs) and memory usage compared to standard

graph cuts for segmenting 2D/3D images (top) with a Boy-

kov/Jolly’s energy model [8].

[4] C. Cigla and A.A. Alatan, “Region-based image seg-

mentation via graph cuts,” in ICIP, 2008, pp. 2272–

2275.

[5] D. M. Greig, B. T. Porteous, and A. H. Seheult, “Exact

maximum a posteriori estimation for binary images,”

Journal of the Royal Statistical Society, vol. 51, no. 2,

pp. 271–279, 1989.

[6] Y. Boykov and V. Kolmogorov, “An experimental com-

parison of min-cut/max-flow algorithms for energy mi-

nimization in vision,” IEEE Transactions on PAMI, vol.

26, no. 9, pp. 1124–1137, 2004.

[7] A. Delong and Y. Boykov, “A scalable graph-cut algo-

rithm for n-d grids,” in CVPR, 2008, pp. 1–8.

[8] Y. Boykov and M-P. Jolly, “Interactive graph cuts for

optimal boundary and region segmentation of objects in

n-d images,” in ICCV, 2001, vol. 1, pp. 105–112.

[9] V. Kolmogorov and R. Zabih, “What energy functions

can be minimized via graph cuts ?,” IEEE Transactions

on PAMI, vol. 26, no. 2, pp. 147–159, 2004.

[10] F. Ranchin, A. Chambolle, and F. Dibos, Total Varia-

tion Minimization and Graph Cuts for Moving Objects

Segmentation, pp. 743–753, 2007.

[11] L. Dice, “Measure of the amount of ecological asso-

ciation between species,” Ecology, vol. 26, no. 3, pp.

297–302, 1945.

