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In arbitrary dimension, we consider the semi-discrete elliptic operator -∂ 2 t + A M , where A M is a finite difference approximation of the operator -∇ x (Γ(x)∇ x ). For this operator we derive a global Carleman estimate, in which the usual large parameter is connected to the discretization step-size. We address discretizations on some families of smoothly varying meshes. We present consequences of this estimate such as a partial spectral inequality of the form of that proven by G. Lebeau and L. Robbiano for A M and a null controllability result for the parabolic operator ∂ t + A M , for the lower part of the spectrum of A M . With the control function that we construct (whose norm is uniformly bounded) we prove that the L 2 -norm of the final state converges to zero exponentially, as the step-size of the discretization goes to zero. A relaxed observability estimate is then deduced.

The null-controllability problem consists in finding v ∈ L 2 ((0, T ) × Ω) such that y(T ) = 0. This problem was solved in the 90's by G. Lebeau and L. Robbiano [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] and A. Fursikov and O. Yu. Imanuvilov [START_REF] Fursikov | Controllability of evolution equations[END_REF].

Let us consider the elliptic operator on Ω given by

A = -∇ x • (Γ∇ x ) = - 1≤i≤d ∂ x i (γ i ∂ x i )
with homogeneous Dirichlet boundary conditions on ∂Ω. We shall introduce a finitedifference approximation of the operator A. For a mesh M that we shall describe below, associated with a discretization step h, the discrete operator will be denoted by A M . It will act on a finite dimensional space C M , of dimension |M|, and will be selfadjoint for a suitable inner product in C M . Our main result is a Carleman-type estimate for the "extended" semi-discrete elliptic operator, -∂ 2 t + A M . Here, the additional variable t is not directly connected to the time variable in the parabolic problem above. In the discrete setting, such a result was obtained in [START_REF] Boyer | Discrete Carleman estimates and uniform controllability of semi-discrete parabolic equations[END_REF] in the one-dimensional case. Here, we extend this result to any space dimension. Note that we also prove a Carleman estimate for A M itself. For Carleman estimates in the continuous case we refer to [START_REF] Hörmander | Linear Partial Differential Operators[END_REF][START_REF] Zuily | Uniqueness and Non Uniqueness in the Cauchy Problem[END_REF][START_REF]The Analysis of Linear Partial Differential Operators[END_REF][START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF]Stabilisation de l'équation des ondes par le bord[END_REF][START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators[END_REF]. Note that an earlier attempt at deriving discrete Carleman estimates can be found in [START_REF] Klibanov | A computational quasi-reversibility method for Cauchy problems for Laplace's equation[END_REF]. The result presented in [START_REF] Klibanov | A computational quasi-reversibility method for Cauchy problems for Laplace's equation[END_REF] cannot be used here as the condition imposed by these authors on the discretization step size, in connection to the large Carleman parameter, is too strong for the applications we have in mind to the problem of uniform controllability properties for semi-discrete parabolic problems.

We now describe an important consequence of the Carleman estimate we prove, which was the main motivation of this work. We denote by φ M a set of discrete orthonormal eigenfunctions, φ j ∈ C M , 1 ≤ j ≤ |M|, of the operator A M , and by µ M = {µ j , 1 ≤ j ≤ |M|} the set of the associated eigenvalues sorted in a nondecreasing sequence. The following (partial) spectral inequality is then a corollary of the semi-discrete Carleman estimate we prove:

µ k ∈µ M µ k ≤µ |α k | 2 = Ω µ k ∈µ M µ k ≤µ α k φ k 2 ≤ Ce C √ µ ω µ k ∈µ M µ k ≤µ α k φ k 2 , ∀(α k ) 1≤k≤|M| ⊂ C, (1.3) 
for µh 2 ≤ C S with C S and h sufficiently small (integrals of discrete functions are introduced below). This type of spectral inequality goes back to the work of G. Lebeau and L. Robbiano [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] (see also [START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF][START_REF] Jerison | Chicago Lectures in Mathematics, ch. Nodal sets of sums of eigenfunctions[END_REF]). As opposed to the continuous case this inequality is not valid for the whole spectrum. The condition µh 2 ≤ C S with C S small, states that it is only valid for a constant lower portion of the spectrum. This condition cannot be relaxed. The optimal value of C S is not known at this point and certainly depends, at least, on the geometry of ω.

The spectral inequality (1.3) then implies the null-controllability of system (1.1) for the lower part of the spectrum µ ≤ C S /h 2 , i.e., for any initial condition y 0 ∈ C M , there exists a control v in L 2 ((0, T ) × Ω) (the semi-discrete functional spaces we shall use will be made precise below) with v L 2 ((0,T )×Ω) ≤ C|y 0 | L 2 (Ω) such that (y(T ), φ k ) = 0 if µ k h 2 ≤ C S . Moreover, the remainder satisfies |y(T )| L 2 (Ω) ≤ e -C/h 2 |y 0 | L 2 (Ω) . We thus obtain an exponential convergence as h goes to 0. Accurate statements of the results we have just described are given in Section 1.2.

The form of the relaxed observability estimate that follows from this controllability result has been the inspiration for the study of Carleman estimates for semi-discrete parabolic operators [START_REF]Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF]. The spectral inequality (1.3) is also at the heart of the work carried out by the authors on the numerical analysis of the fully-discretized parabolic control problem in [START_REF]Uniform null-controllability properties for space/time-discretized parabolic equations[END_REF].

In two dimensions, for finite differences, there is a counterexample to the null and approximate controllabilities for uniform grids on a square domain for distributed or boundary controls due to O. Kavian (see [START_REF] Zuazua | Control and numerical approximation of the wave and heat equations[END_REF]). It exploits an explicit eigenfunction of A M in two dimensions that is solely localized on the diagonal of the square domain. This eigenfunction is associated with an eigenvalue in the higher part of the spectrum. Our result may thus seem rather optimal in dimension greater that two.

In dimension one, there is a null controllability result due to A. Lopez and E. Zuazua [START_REF] Lopez | Some new results to the null controllability of the 1-d heat equation[END_REF] for the entire spectrum in the case of a constant diffusion coefficient and for a constant step size finite-difference discretization. In dimension one, our method based on the proof of discrete Lebeau-Robbiano spectral inequality cannot achieve such a result. In fact, one can notice that (1.3) cannot hold for the full spectrum. In dimension one, the generalization of the result of [START_REF] Lopez | Some new results to the null controllability of the 1-d heat equation[END_REF] to a non constant coefficient and non uniform meshes remains an open problem.

We now present the precise settings we shall work with.

For 1

≤ i ≤ d, i ∈ N, we set Ω i = 1≤j≤d j =i [0, L j ].
For T > 0 we introduce

Q = (0, T ) × Ω, Q i = (0, T ) × Ω i , 1 ≤ i ≤ d.
We also set boundaries as (see Figure 1)

∂ - i Ω = 1≤j<i [0, L j ] × {0} × i<j≤d [0, L j ], ∂ + i Ω = 1≤j<i [0, L j ] × {L i } × i<j≤d [0, L j ], ∂ i Ω = ∂ + i Ω ∪ ∂ - i Ω, ∂Ω = ∪ 1≤i≤d ∂ i Ω. 0 Ω 1 ∂ + 1 Ω Ω 2 L 1 L 2 ∂ - 1 Ω ∂ + 2 Ω ∂ - 2 Ω
Fig. 1. Notation for the boundaries 1.1. Discrete settings. Here, we precisely define the type of mesh and discretization we shall use. The notation we introduce is technical, and yet will allow us to use a formalism as close as possible to the continuous case, in particular for norms and integrations. Then most of the computations we carry out can be read in a very intuitive manner, which will ease the reading of the article. Most of the discrete formalism will then be hidden in the subsequent sections. The notation below is however necessary for a complete and precise reading of the proofs.

We shall use the notation a, b = [a, b] ∩ N.

1.1.1. Primal mesh. For i ∈ 1, d and

N i ∈ N * , let 0 = x i,0 < x i,1 < • • • < x i,N i < x i,N i +1 = L i .
x i,l 0 x i,0 x i,1

x i, 1 2

x i,l-1

h i,l-1 2 x i,l-1 2 x i,l+ 1 2 h i,l Li x i,N i x i,N i +1
Fig. 2. Discretization in the ith direction.

We introduce the following set of indices,

N := k = (k 1 , . . . , k d ); k i ∈ 1, N i , i ∈ 1, d .
For k = (k 1 , . . . , k d ) ∈ N we set x k = (x 1,k 1 , . . . , x d,k d ) ∈ Ω. We refer to this discretization as to the primal mesh

M := x k ; k ∈ N , with |M| := i∈ 1,d N i .
For i ∈ 1, d and l ∈ 0, N i we set

h i,l+ 1 2 = x i,l+1 -x i,l , x i,l+ 1 2 = (x i,l+1 + x i,l
)/2, and 2, where the introduced notation is illustrated.

h i = max l∈ 0,Ni h i,l+ 1 2 , i ∈ 1, d , h = max i∈ 1,d h i . For i ∈ 1, d and l ∈ 1, N i , we set h i,l = x i,l+ 1 2 -x i,l-1 2 = (h i,l+ 1 2 + h i,l-1 2 )/2. See Figure
1.1.2. Boundary of the primal mesh. To introduce boundary conditions in the ith direction and related trace operators (see Section 1.1.5) we set

∂ i N = ∂ - i N ∪ ∂ + i N with ∂ - i N = k = (k 1 , . . . , k d ); k j ∈ 1, N j , j ∈ 1, d , j = i, k i = 0 , ∂ + i N = k = (k 1 , . . . , k d ); k j ∈ 1, N j , j ∈ 1, d , j = i, k i = N i + 1 ,
and

∂N = ∪ i∈ 1,d ∂ i N, ∂M = x k ; k ∈ ∂N , ∂ ± i M = x k ; k ∈ ∂ ± i N .
Notice that ∂ ± i M is nothing but the set of points of the primal mesh which are located on the boundary ∂ ± i Ω. 1.1.3. Dual meshes. We will need to operate discrete derivatives on functions defined on the primal mesh (see Section 1.1.6). It is easily seen that these derivatives are naturally associated to another set of meshes, called dual meshes. In fact there will be two kinds of such meshes: the ones associated to first order discrete derivation and the ones associated to second order discrete derivation. Let us define precisely these new meshes.

For i ∈ 1, d , we introduce a second type of sets of indices

N i := k = (k 1 , . . . , k d ); k j ∈ 1, N j j ∈ 1, d , j = i,
and

k i = l + 1 2 , l ∈ 0, N i . For j ∈ 1, d , j = i, we also set ∂ j N i = ∂ - j N i ∪ ∂ + j N i with ∂ - j N i = k = (k 1 , . . . , k d ); k i ∈ 1, N i , i ∈ 1, d , i = i, i = j, k i = l + 1 2 , l ∈ 0, N i , and k j = 0 , ∂ + j N i = k = (k 1 , . . . , k d ); k i ∈ 1, N i , i ∈ 1, d , i = i, i = j, k i = l + 1 2 , l ∈ 0, N i , and k j = N j + 1 ,
and

∂N i = ∪ j∈ 1,d j =i ∂ j N i . We moreover introduce ∂ i N i = ∂ - i N i ∪ ∂ + i N i with ∂ - i N i = k = (k 1 , . . . , k d ); k j ∈ 1, N j , j ∈ 1, d , j = i, k i = 1 2 , ∂ + i N i = k = (k 1 , . . . , k d ); k j ∈ 1, N j , j ∈ 1, d , j = i, k i = N i + 1 2 . Remark that ∂ i N i ⊂ N i whereas ∂ j N i ⊂ N i for j = i.
For i, j ∈ 1, d , i = j, we introduce a third type of sets of indices

N ij := k = (k 1 , . . . , k d ); k i ∈ 1, N i , i ∈ 1, d , i = i, i = j and k i = l 1 + 1 2 , l 1 ∈ 0, N i , k j = l 2 + 1 2 , l 2 ∈ 0, N j , .
For l ∈ 1, d , l = i, l = j, we also set

∂ l N ij = ∂ - l N ij ∪ ∂ + l N ij with ∂ - l N ij = k = (k 1 , . . . , k d ); k i ∈ 1, N i , i ∈ 1, d , i = i, i = j, i = l, k i = l 1 + 1 2 , l 1 ∈ 0, N i , k j = l 2 + 1 2 , l 2 ∈ 0, N j , and k l = 0 , ∂ + l N ij = k = (k 1 , . . . , k d ); k i ∈ 1, N i , i ∈ 1, d , i = i, i = j, i = l, k i = l 1 + 1 2 , l 1 ∈ 0, N i , k j = l 2 + 1 2 , l 2 ∈ 0, N j , and k l = N l + 1 ,
and 

∂N ij = ∪ l∈ 1,d l =i,l =j ∂ l N ij . Moreover we set ∂ i N ij = ∂ - i N ij ∪ ∂ + i N ij with ∂ - i N ij = k = (k 1 , . . . , k d ); k i ∈ 1, N i , i ∈ 1, d , i = i, i = j, k i = 1 2 , k j = l + 1 2 , l ∈ 0, N j , ∂ + i N ij = k = (k 1 , . . . , k d ); k i ∈ 1, N i , i ∈ 1, d , i = i, i = j, k i = N i + 1 2 , k j = l + 1 2 , l ∈ 0, N j . x 1,1 x 1,2 x 1,3 x 1,k x 1,k+1 x 1,N 1 (a) (c) (b) x 1, 1 2 x 1, 3 2 x 1, 5 2 x 1,N 1 -1 2 x 1,N 1 + 1 2 L 1 0 (d) x2,1 x 2,2 x 2,3 x 2,k x 2,k +1 x 2,N 2 L 2 = x 2,N 2 +1 0 = x 2,0 x 1,0 x 1,N 1 +1 0 L 1 x 2, 3 2 x 2, 5 2 x 2, 1 2 x 2,k -1 2 x 2,k + 1 2 x 2,N 2 -1 2 x 2,N 2 + 1 2 0 L2 Fig. 3.
M i := x k ; k ∈ N i , ∂M i := x k ; k ∈ ∂N i , ∂ ± j M i := x k ; k ∈ ∂ ± j N i , resp. M ij := x k ; k ∈ N ij , ∂M ij := x k ; k ∈ ∂N ij , ∂ ± l M ij := x k ; k ∈ ∂ ± l N ij .
The geometry of the different meshes we have introduced is illustrated in Figure 2 in the two dimensional case.

In the present article, we shall only consider some families of regular non uniform meshes, that will be precisely defined in Section 1.1.8. Note that the extension of our results to more general mesh families does not seem to be straightforward.

1.1.4. Discrete functions. We denote by C M (resp. C M i or C M ij ) the sets of discrete functions defined on M (resp. M i or M ij ) respectively. If u ∈ C M (resp. C M i or C M ij ), we denote by u k its value corresponding to x k for k ∈ N (resp. k ∈ N i or k ∈ N ij ). For u ∈ C M we define u M = k∈N 1 b k u k ∈ L ∞ (Ω), with b k = i∈ 1,d [x i,ki-1 2 , x i,ki+ 1 2 ], k ∈ N. (1.4)
Since no confusion is possible, by abuse of notation we shall often write u in place of u M . For u ∈ C M we define

Ω u := Ω u M (x) dx = k∈N b k u k , where b k = i∈ 1,d h i,k i , k ∈ N.
For some u ∈ C M , we shall need to associate boundary values

u ∂M = u k ; k ∈ ∂N ,
i.e., the values of u at the point x k ∈ ∂M. The set of such extended discrete functions is denoted by C M∪∂M . Homogeneous Dirichlet boundary conditions then consist in the choice u k = 0 for k ∈ ∂N, in short u ∂M = 0 or even u |∂Ω = 0 by abuse of notation (see also Section 1.1.5 below).

Similarly, for u ∈ C M i (resp. C M ij ) we shall associate the following boundary values

u ∂M i = u k ; k ∈ ∂N i resp. u ∂M ij = u k ; k ∈ ∂N ij .
The set of such extended discrete functions is denoted by

C M i ∪∂M i (resp. C M ij ∪∂M ij ). For u ∈ C M i (resp. C M ij ) we define u M i = k∈N i 1 b i k u k ∈ L ∞ (Ω) with b i k = l∈ 1,d [x l,k l -1 2 , x l,k l + 1 2 ], k ∈ N i , resp.u M ij = k∈N ij 1 b ij k u k ∈ L ∞ (Ω) with b ij k = l∈ 1,d [x l,k l -1 2 , x l,k l + 1 2 ], k ∈ N ij .
As above, for u ∈ C M i (resp. C M ij ), we define

Ω u := Ω u M i (x) dx = k∈N i b i k u k , where b i k = l∈ 1,d h l,k l , k ∈ N i , resp. Ω u := Ω u M ij (x) dx = k∈N ij b ij k u k , where b ij k = l∈ 1,d h l,k l , k ∈ N ij .
Remark With

u(t) in C M (resp. C M i or C M ij ) for all t ∈ (0, T ), we shall write Q u dt = T 0 Ω u(t) dt.
In particular we define the following L 2 inner product on C M (resp.

C M i or C M ij ) (u, v) L 2 (Ω) = Ω uv * = Ω u M (x)(v M (x)) * dx, (1.5) resp. (u, v) L 2 (Ω) = Ω uv * = Ω u M i (x)(v M i (x)) * dx, or (u, v) L 2 (Ω) = Ω uv * = Ω u M ij (x)(v M ij (x)) * dx .
The associated norms will be denoted by |u| L 2 (Ω) . For semi-discrete function u(t), t ∈ (0, T ), as above we shall also use the following L 2 norm:

u(t) 2 L 2 (Q) = T 0 Ω |u(t)| 2 dt. 1.1.5. Traces. Let i ∈ 1, d . For u ∈ C M∪∂M (resp. C M j ∪∂M j , j = i), its trace on ∂ + i Ω, corresponds to k ∈ ∂ + i N (resp. ∂ + i N j
), i.e., k i = N i + 1 in our discretization and will be denoted by u |ki=Ni+1 or simply u N i +1 . Similarly its trace on

∂ - i Ω, corresponds to k ∈ ∂ - i N (resp. ∂ - i N j ), i.e.
, k i = 0 and will be denoted by u |ki=0 or simply u 0 . The latter notation will be used if no confusion is possible, if the context indicates that the trace is taken on ∂ - i Ω. By abuse of notation, we shall also use ∂ i Ω, i ∈ 1, d , to denote the boundaries of Ω in the discrete setting. For homogeneous Dirichlet boundary condition we shall write

v |∂ i Ω = 0 ⇔ v |k i =0 = v |k i =N i +1 = 0. For v ∈ C M i ∪∂M i (resp. C M ij ∪∂M ij , j = i), its trace on ∂ + i Ω, corresponds to k ∈ ∂ + i N i (resp. ∂ + i N ij ), i.e., k i = N i + 1
2 in our discretization and will be denoted by v |ki=Ni+ 1 2 or simply v Ni+ 1 2 . Similarly its trace on

∂ - i Ω, corresponds to k ∈ ∂ - i N i (resp. ∂ - i N ij ), i.e.
, k i = 1 2 and will be denoted by v |k i = 1 2 or simply v 1 2 . The latter notation will be used if no confusion is possible, if the context indicates that the trace is taken on ∂ - i Ω. For such functions u ∈ C M∪∂M (resp. C M j ∪∂M j , j = i) we can then define surface integrals of the type

∂ + i Ω u |∂ + i Ω = Ωi u |ki=Ni+1 = k∈∂ + i N (resp. k∈∂ + i N j ) ∂ i b k u k ,
where

∂ i b k = l∈ 1,d l =i h l,k l , k ∈ ∂ + i N (resp. ∂ + i N j ),
and

for v ∈ C M i ∪∂M i (resp. C M ij ∪∂M ij , j = i) ∂ + i Ω v |∂ + i Ω = Ω i v |ki=Ni+ 1 2 = k∈∂ + i N i (resp. k∈∂ + i N ij ) ∂ i b i k v k ,
where

∂ i b i k = l∈ 1,d l =i h l,k l , k ∈ ∂ + i N i (resp. ∂ + i N ij ). Observe that if k ∈ ∂ + i N (resp. ∂ + i N j ) and k ∈ ∂ + i N i (resp. ∂ + i N ij ) with k l = k l for l = i then ∂ i b k = ∂ i b i k . We thus have ∂ + i Ω v |∂ + i Ω = Ωi v |k i =N i + 1 2 = Ωi (τ - i v) |ki=Ni+1 = ∂ + i Ω (τ - i v) |∂ + i Ω where τ - i v ∈ C M∪∂ - i M (resp. C M j ∪∂ - i M j
) with the translation operator τ - i defined in Section 1.1.6. It is then natural to define the following integrals

Ωi u N i +1 v Ni+ 1 2 = Ωi u |ki=Ni+1 v |ki=Ni+ 1 2 = Ωi (u τ - i v) |ki=Ni+1 = ∂ + i Ω u(τ - i v) |∂ + i Ω .
Such trace integrals will appear when applying discrete integrations by parts in the following sections. Similar definitions and considerations can be made for integrals over ∂ - i Ω.

For u ∈ C M∪∂M (resp. C M j ∪∂M j , j = i) we can then introduce the following L 2 norm for the trace on ∂ i Ω:

|u| 2 L 2 (∂ i Ω) = |u |∂ i Ω | 2 L 2 (∂ i Ω) = Ωi u |k i =N i +1 2 + Ωi u |k i =0 2 . For v ∈ C M i ∪∂M i (resp. C M ij ∪∂M ij , j = i)
we can then introduce the following L 2 norm for the trace on ∂ i Ω:

|v| 2 L 2 (∂ i Ω) = |v |∂ i Ω | 2 L 2 (∂ i Ω) = Ω i u |ki=Ni+ 1 2 2 + Ω i u |ki= 1 2 2 .
1.1.6. Difference operators. Let i, j ∈ 1, d , j = i. We define the following translations for indices:

τ ± i : N i (resp. N ij ) → N ∪ ∂ ± i N (resp. N j ∪ ∂ ± i N j ), k → τ ± i k, with (τ ± i k) l = k l if l = i, k l ± 1 2 if l = i. Translations operators mapping C M∪∂M → C M i and C M j ∪∂M j → C M ij are then given by (τ ± i u) k = u (τ ± i k) , k ∈ N i (resp. N ij ).
A difference operator D i and an averaging operator A i are then given by

(D i u) k = (h i,k i ) -1 ((τ + i u) k -(τ - i u) k ), k ∈ N i (resp. N ij ), (A i u) k = ũi k = 1 2 ((τ + i u) k + (τ - i u) k ), k ∈ N i (resp. N ij ). Both map C M∪∂M → C M i and C M j ∪∂M j → C M ij .
We also define the following translations for indices:

τ ± i : N (resp. N j ) → N i (resp. N ij ), k → τ ± i k, with (τ ± i k) l = k l if l = i, k l ± 1 2 if l = i. Translations operators mapping C M i → C M and C M ij → C M j are then given by (τ ± i v) k = v (τ ± i k) , k ∈ N (resp. N j ).
A difference operator D i and an averaging operator A i are then given by

(D i v) k = (h i,ki ) -1 ((τ + i v) k -(τ - i v) k ), k ∈ N (resp. N j ), (A i v) k = v i k = 1 2 ((τ + i v) k + (τ - i v) k ), k ∈ N (resp. N j ).
Both map

C M i → C M and C M ij → C M j .
1.1.7. Sampling of continuous functions. A continuous function f defined on Ω can be sampled on the primal mesh f M = {f (x k ); k ∈ N}, which we identify to

f M = k∈N 1 b k f k , f k = f (x k ), k ∈ N,
with b k as defined in (1.4). We also set

f ∂M = {f (x k ); k ∈ ∂N}, f M∪∂M = {f (x k ); k ∈ N ∪ ∂N}.
The function f can also be sampled on the dual meshes, e.g.

M i , f M i = {f (x k ); k ∈ N i } which we identify to f M i = k∈N i 1 b i k f k , f k = f (x k ), k ∈ N i with similar definitions for f ∂M i , f M i ∪∂M i and sampling on the meshes M ij , M ij ∪ ∂M ij .
In the sequel, we shall use the symbol f for both the continuous function and its sampling on the primal or dual meshes. In fact, from the context, one will be able to deduce the appropriate sampling. For example, with u defined on the primal mesh, M, in the following expression, D i (γD i u), it is clear that the function γ is sampled on the dual mesh M i as D i u is defined on this mesh and the operator D i acts on functions defined on this mesh.

To evaluate the action of multiple iterations of discrete operators, e.g. D i , D i , A i , A i on a continuous function we may require the function to be defined in a neighborhood of Ω. This will be the case here of the diffusion coefficients in the elliptic operator and the Carleman weight function we shall introduce. For a function f defined on a neighborhood of Ω we set

τ ± i f (x) := f x ± h i 2 e i , e i = (δ i1 , . . . , δ id ), D i f := (h i ) -1 (τ + i -τ - i )f, A i f = f i = 1 2 (τ + i + τ - i )f.
For a function f continuously defined in a neighborhood of Ω, the discrete function D i f is in fact D i f sampled on the dual mesh, M i , and D i f is D i f sampled on the primal mesh, M. We shall use similar meanings for averaging symbols, f , f , and for more general combinations: for instance, if i = j, D j f i , D i D j f i , D i D j f i will be respectively the functions D j f i sampled on M ij , D i D j f i sampled on M, and D i D j f i sampled on M j 1.1.8. Regular families of non-uniform meshes. In this paper, we address non uniform meshes that are obtained as the smooth image of an uniform grid.

More precisely, let Ω = (0, 1) and let ϑ i : R → R, i ∈ 1, d be increasing maps such that

ϑ i ∈ C ∞ , ϑ i (Ω ) = [0, L i ], inf Ω ϑ i > 0.
(1.6)

Let h i = 1 N i +1 and M 0 be the following uniform primal mesh on [0, 1] d M 0 = {x 0 k = (x 0 1,k 1 , . . . , x 0 d,k d ) = (k 1 h 1 , . . . , k d h d ), k ∈ N},
and M 0 i , i ∈ 1, d the associated dual meshes.

We define a non uniform mesh on Ω

M = {x k , k ∈ N}, with x k = (ϑ 1 (x 0 1,k1 ), . . . , ϑ d (x 0 d,k d )) (1.7)
We set h = sup i∈ 1,d h i . Once the functions ϑ i , i ∈ 1, d , are fixed we assume that for some C > 0 we have

Ch ≤ h i ≤ h , i ∈ 1, d .
For the mesh M, this in turn implies, for some C > 0, for all i ∈ 1, d ,

C h ≤ h i,l ≤ h, l ∈ 1, N i , C h ≤ h i,l+ 1 2 ≤ h, l ∈ 0, N i . In particular, C h ≤ h i ≤ h, i ∈ 1, d .
(1.8)

We define the following quantities in order to measure the regularity of the meshes under study

reg(ϑ i ) = max sup Ω ϑ i , sup Ω (ϑ i ) -1 , sup Ω |ϑ i | , reg(ϑ) = d i=1 reg(ϑ i ).
Note that reg(ϑ i ) ≥ 1 for any i ∈ 1, d . We shall call uniform meshes, the regular meshes that are obtained with the following linear choice:

ϑ i (x) = L i x.
1.1.9. Additional notation. We shall denote by z * the complex conjugate of z ∈ C. In the sequel, C will denote a generic constant independent of h, whose value may change from line to line. As usual, we shall denote by O(1) a bounded function. We shall denote by O µ (1) a function that depends on a parameter µ and is bounded once µ is fixed. The notation C µ will denote a constant whose value depends on the parameter µ.

We say that α is a multi

-index if α = (α 1 , . . . , α n ) ∈ N n . For α ∈ N n and ξ ∈ R n we write |α| = α 1 + • • • + α n , ∂ α = ∂ α1 x 1 • • • ∂ αn x n , ξ α = ξ α 1 1 • • • ξ αn n .
1.2. Statement of the main results. With the notation we have introduced, a consistent finite-difference approximation of Au with homogeneous boundary conditions is

A M u = - i∈ 1,d D i (γ i D i u) for u ∈ C M∪∂M satisfying u |∂Ω = u ∂M = 0.
Recall that, in each term, γ i is the sampling of the given continuous diffusion coefficient γ i on the dual mesh M i , so that for any u ∈ C M∪∂M we have

(A M u) k = - i∈ 1,d γ i x τ + i k (τ + i ) 2 u k -u k h i,k i + 1 2 -γ i x τ - i k u k -(τ - i ) 2 u k h i,k i -1 2 h i,ki , k ∈ N.
Note however that other consistent choices of discretization of γ i on the dual meshes are possible, such as the averaging on the dual mesh M i of the sampling of γ i on the primal mesh. Our results also holds for such discrete operators.

Remark 1.2. Finite differences are not well adapted to address anisotropic elliptic operators. Here, we only treat the case of a diagonal anisotropic operator, i.e. an anisotropy associated with the principal axes. Note however that the treatment we make of non uniform meshes naturally leads to such diagonal anisotropic operators by a change of variables, even starting from an isotropic diffusion coefficient.

We choose a function ψ that satisfies the following properties.

Assumption 1.3. Let Ω be a smooth open and connected bounded neighborhood of Ω in R d and set Q = (0, T ) × Ω. The function ψ is in C p ( Q, R)
, with p sufficiently large, and satisfies, for some c > 0,

|∇ψ| ≥ c and ψ > 0 in Q, ∂ n i ψ(t, x) < 0 in (0, T ) × V ∂ i Ω , ∂ 2 i ψ(t, x) ≥ 0 in (0, T ) × V ∂ i Ω , ∂ t ψ ≥ c on {0} × (Ω \ ω), ψ = Cst and ∂ t ψ ≤ -c on {T } × Ω, where V ∂ i Ω is a sufficiently small neighborhood of ∂ i Ω in Ω, in which the outward unit normal n i to Ω is extended from ∂ i Ω.
The construction of such a weight function is described in Section A. We then set ϕ = e λψ .

To state the Carleman estimate for the semi-discrete operator -∂ 2 t + A M , we introduce the following discrete gradient operator = (D 1 , . . . , D d ) t .

Theorem 1.4. Let ϑ i , i ∈ 1, d satisfy (1.6) and ψ be a weight function satisfying (1.3) for the observation domain ω. For the parameter λ ≥ 1 sufficiently large, there exist C, s 0 ≥ 1, h 0 > 0, ε 0 > 0, depending on ω, T , (ϑ i ) i∈ 1,d and reg(Γ), such that for any mesh M obtained from (ϑ i ) i∈ 1,d by (1.7), we have

s 3 e sϕ u 2 L 2 (Q) + s e sϕ ∂ t u 2 L 2 (Q) + s e sϕ u 2 L 2 (Q) + s|e sϕ(0,.) ∂ t u(0, .)| 2 L 2 (Ω) + se 2sϕ(T ) |∂ t u(T , .)| 2 L 2 (Ω) + s 3 e 2sϕ(T ) |u(T , .)| 2 L 2 (Ω) ≤ C e sϕ (-∂ 2 t + A M )u 2 L 2 (Q) + se 2sϕ(T ) | u(T , .)| 2 L 2 (Ω) + s|e sϕ(0,.) ∂ t u(0, .)| 2 L 2 (ω) , (1.9) for all s ≥ s 0 , 0 < h ≤ h 0 and sh ≤ ε 0 , and u ∈ C 2 ([0, T ], C M∪∂M ), satisfying u |{0}×Ω = 0, u |(0,T )×∂Ω = 0.
Denoting by φ M a set of discrete L 2 orthonormal eigenfunctions, φ j ∈ C M , 1 ≤ j ≤ |M|, of the operator A M with homogeneous Dirichlet boundary conditions, and by µ M the set of the associated eigenvalues sorted in a non-decreasing sequence, µ j , 1 ≤ j ≤ |M| we have the following result.

Theorem 1.5 (Partial discrete Lebeau-Robbiano inequality). Let ϑ satisfying (1.6). There exist C > 0, ε 1 > 0 and h 0 such that, for any mesh M obtained from ϑ by (1.7) such that h ≤ h 0 , for all 0 < µ ≤ ε 1 /h 2 , we have

µ k ∈µ M µ k ≤µ |α k | 2 = Ω µ k ∈µ M µ k ≤µ α k φ k 2 ≤ Ce C √ µ ω µ k ∈µ M µ k ≤µ α k φ k 2 , ∀(α k ) 1≤k≤|M| ⊂ C.
The proof is given in [BHL09a, Section 6] following the approach introduced in [Le 07].

We introduce the following finite dimensional spaces

E j = Span{φ k ; 1 ≤ µ k ≤ 2 2j } ⊂ C M , j ∈ N,
and denote by Π Ej the L 2 -orthogonal projection onto E j . The controllability result we can deduce from the above results is the following.

Theorem 1.6. Let T > 0 and ϑ satisfying (1.6). There exist h 0 > 0, C T > 0 and C 1 , C 2 , C 3 > 0 such that for all meshes M defined by (1.7), with 0 < h ≤ h 0 , and all initial data y 0 ∈ C M , there exists a semi-discrete control function v such that the solution to

∂ t y - i∈ 1,d D i (γ i D i y) = 1 ω v, y ∂M = 0, y| t=0 = y 0 .
(1.10)

satisfies Π E j M y(T ) = 0, for j M = max{j; 2 2j ≤ C 1 /h 2 }, with v L 2 (Q) ≤ C T |y 0 | L 2 (Ω)
and furthermore |y(T

)| L 2 (Ω) ≤ C 2 e -C 3 /h 2 |y 0 | L 2 (Ω) .
For a proof see [BHL09a, Section 7].

Finally, in the spirit of the work of [START_REF] Labbé | Uniform controllability of semidiscrete approximations of parabolic control systems[END_REF] the controllability result we have obtained yields the following relaxed observability estimate Corollary 1.7. There exist C T > 0 and C > 0 depending on Ω, ω, T , and ϑ, such that the semi-discrete solution

q in C ∞ ([0, T ], C M ) to      -∂ t q + A M q = 0 in (0, T ) × Ω, q = 0 on (0, T ) × ∂Ω, q(T ) = q F ∈ C M , in the case h ≤ h 0 , satisfies |q(0)| L 2 (Ω) ≤ C T T 0 ω |q(t)| 2 dt 1 2 + Ce -C/h 2 |q F | L 2 (Ω) .
As mentioned above, these results can also be used for the analysis of the space/time discretized parabolic control problem [START_REF]Uniform null-controllability properties for space/time-discretized parabolic equations[END_REF].

1.3. Outline. In Section 2 we have gathered preliminary discrete calculus results. Many of the proofs of these results can be found in [START_REF] Boyer | Discrete Carleman estimates and uniform controllability of semi-discrete parabolic equations[END_REF]. Additional proofs have been placed in Appendix B to ease the reading. Section 3 is devoted to the proof of the semi-discrete elliptic Carleman estimate for uniform meshes. Again, to ease the reading, a large number of proofs of intermediate estimates have been placed in Appendix C. This result is then extended to non-uniform meshes in Section 4. For completeness, in Appendix D we give the counterpart of the Carleman estimate of Theorem 1.4 in the case of a fully-discrete elliptic operator. This result will be used in [START_REF]Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF] for the treatment of semi-discrete parabolic operators.

2. Some preliminary discrete calculus results. Here, to prepare for Section 3, we only consider uniform meshes, i.e., constant-step discretizations in each direction, i.e., h i,j+ 1 2 = h i = Li N i +1 , j ∈ 0, N i , i ∈ 1, d . This section aims to provide calculus rules for discrete operators such as D i , D i and also to provide estimates for the successive applications of such operators on the weight functions.

2.1. Discrete calculus formulae. We present calculus results for the finitedifference operators that were defined in the introductory section. Proofs are similar to that given in the one-dimension case in [START_REF] Boyer | Discrete Carleman estimates and uniform controllability of semi-discrete parabolic equations[END_REF].

Lemma 2.1. Let the functions f 1 and f 2 be continuously defined in a neighborhood of Ω. For i ∈ 1, d , we have

D i (f 1 f 2 ) = D i (f 1 ) f i 2 + f i 1 D i (f 2 ).
Note that the immediate translation of the proposition to discrete functions

f 1 , f 2 ∈ C M (resp. C M j , j = i), and g 1 , g 2 ∈ C M i (resp. C M ij , j = i) is D i (f 1 f 2 ) = D i (f 1 ) f i 2 + f i 1 D i (f 2 ), D i (g 1 g 2 ) = D i (g 1 ) g i 2 + g i 1 D i (g 2 ).
Lemma 2.2. Let the functions f 1 and f 2 be continuously defined in a neighborhood of Ω. For i ∈ 1, d , we have

f 1 f 2 i = f i 1 f i 2 + h 2 i 4 D i (f 1 )D i (f 2 ).
Note that the immediate translation of the proposition to discrete functions

f 1 , f 2 ∈ C M (resp. C M j , j = i), and g 1 , g 2 ∈ C M i (resp. C M ij , j = i) f 1 f 2 i = f i 1 f i 2 + h 2 i 4 D i (f 1 )D i (f 2 ), g 1 g 2 i = g i 1 g i 2 + h 2 i 4 D i (g 1 )D i (g 2 ).
Some of the following properties can be extended in such a manner to discrete functions. We shall not always write it explicitly.

Averaging a function twice gives the following formula. Lemma 2.3. Let the function f be continuously defined in a neighborhood of Ω. For i ∈ 1, d we have

A 2 i f := f i i = f + h 2 i 4 D i D i f.
The following proposition covers discrete integrations by parts and related formulae.

Proposition 2.4.

Let f ∈ C M∪∂M and g ∈ C M i . For i ∈ 1, d we have Ω f (D i g) = - Ω (D i f )g + Ωi (f N i +1 g N i + 1 2 -f 0 g 1 2 ), Ω f g i = Ω f i g - h i 2 Ω i (f N i +1 g N i + 1 2 + f 0 g 1 2 ). Lemma 2.5. Let i ∈ 1, d and v ∈ C M∪∂M (resp. C M j ∪∂M j for j = i) be such that v |∂iΩ = 0. Then Ω v = Ω ṽi .
Lemma 2.6. Let f be a smooth function defined in a neighborhood of Ω. For i ∈ 1, d we have

τ ± i f = f ± h i 2 1 0 ∂ i f (. ± σh i /2) dσ, A i f = f + C h 2 i 1 -1 (1 -|σ|) ∂ 2 i f (. + l σh i ) dσ, D i f = ∂ i f + C h 2 i 1 -1 (1 -|σ|) +1 ∂ +2 i f (. + l σh i ) dσ, = 1, 2, l 1 = 1 2 , l 2 = 1, with h i = h i e i .
For i, j ∈ 1, d , i = j, we have

D i D j f = ∂ 2 ij f + C |h + ij | 4 h i h j 1 -1 (1 -|σ|) 3 f (4) (. + σh + ij /2; η + , . . . , η + ) dσ + C |h + ij | 4 h i h j 1 -1 (1 -|σ|) 3 f (4) (x + σh - ij /2; η -, . . . , η -) dσ, with h ± ij = h i e i ± h j e j and η ± = 1 |h ± ij | (h ± ij ).
Note that

|h + ij | 4 h i h j = O(h 2 ) by (1.8), for i, j ∈ 1, d , j = i.
Proof. This series of results follow from Taylor formulae,

f (x + η) = n-1 j=0 1 j! f (j) (x; η, . . . , η) + 1 0 (1 -σ) n-1 (n -1)! f (n) (x + ση; η, . . . , η) dσ, at order n = 1, n = 2, n = 3 or n = 4.
2.2. Calculus results related to the weight functions. We now present some technical lemmata related to discrete operations performed on the Carleman weight function that is of the form e sϕ with ϕ = e λψ , ψ ∈ C p , with p sufficiently large. For concision, we set r = e sϕ and ρ = r -1 . The positive parameters s and h will be large and small respectively and we are particularly interested in the dependence on s, h and λ in the following basic estimates.

We assume s ≥ 1 and λ ≥ 1. We shall use multi-indices of the form α = (α t , α x ) with α t ∈ N and α x ∈ N d . Lemma 2.7. Let α and β be multi-indices. We have

∂ β (r∂ α ρ) =|α| |β| (-sϕ) |α| λ |α+β| (∇ψ) α+β (2.1) + |α||β|(sϕ) |α| λ |α+β|-1 O(1) + s |α|-1 |α|(|α| -1)O λ (1) = O λ (s |α| ). Let σ ∈ [-1, 1] and i ∈ 1, d . We have ∂ β (r(x)(∂ α ρ)(x + σh i )) = O λ (s |α| (1 + (sh) |β| )) e O λ (sh) .
(2.2)

Provided sh ≤ K we have ∂ β (r(x)(∂ α ρ)(x+σh i )) = O λ,K (s |α| ).
The same expressions hold with r and ρ interchanged and with s changed into -s.

For a proof see [BHL09a, proof of Lemma 3.7].

With Leibniz formula we have the following estimate. Corollary 2.8. Let α, β and δ be multi-indices. We have

∂ δ (r 2 (∂ α ρ)∂ β ρ) =|α + β| |δ| (-sϕ) |α+β| λ |α+β+δ| (∇ψ) α+β+δ + |δ||α + β|(sϕ) |α+β| λ |α+β+δ|-1 O(1) + s |α+β|-1 (|α|(|α| -1) + |β|(|β| -1))O λ (1) = O λ (s |α+β| ).
The proofs of the following properties can be found in Appendix B. Proposition 2.9. Let α be a multi-index. Let i, j ∈ 1, d , provided sh ≤ K, we have

rτ ± i ∂ α ρ = r∂ α ρ + s |α| O λ,K (sh) = s |α| O λ,K (1), rA k i ∂ α ρ = r∂ α ρ + s |α| O λ,K ((sh) 2 ) = s |α| O λ,K (1), k = 1, 2, rA k i D i ρ = r∂ x ρ + sO λ,K ((sh) 2 ) = sO λ,K (1), k = 0, 1, rD k i i D k j j ρ = r∂ k i i ∂ k j j ρ + s 2 O λ,K ((sh) 2 ) = s 2 O λ,K (1), k i + k j ≤ 2.
The same estimates hold with ρ and r interchanged.

Lemma 2.10. Let α and β be multi-indices and k ∈ N. Let i, j ∈ 1, d , provided sh ≤ K, we have

D ki i D kj j (∂ β (r∂ α ρ)) = ∂ ki i ∂ kj j ∂ β (r∂ α ρ) + h 2 O λ,K (s |α| ), k i + k j ≤ 2, A k i ∂ β (r∂ α ρ) = ∂ β (r∂ α ρ) + h 2 O λ,K (s |α| ). Let σ ∈ [-1, 1], we have D k i i D k j j ∂ β (r(x)∂ α ρ(x + σh i )) = O λ,K (s |α| ), for k i + k j ≤ 2.
The same estimates hold with r and ρ interchanged.

Lemma 2.11. Let α, β and δ be multi-indices and k ∈ N. Let i, j ∈ 1, d , provided sh ≤ K, we have

A k i ∂ δ (r 2 (∂ α ρ)∂ β ρ) = ∂ δ (r 2 (∂ α ρ)∂ β ρ) + h 2 O λ,K (s |α|+|β| ) = O λ,K (s |α|+|β| ), D k i i D kj j ∂ δ (r 2 (∂ α ρ)∂ β ρ) = ∂ k i i ∂ kj j (∂ δ (r 2 (∂ α ρ)∂ β ρ)) + h 2 O λ,K (s |α|+|β| ) = O λ,K (s |α|+|β| ), k i + k j ≤ 2. Let σ, σ ∈ [-1, 1]. We have A k i ∂ δ r(x) 2 (∂ α ρ(x + σh i ))∂ β ρ(x + σ h j ) = O λ,K (s |α|+|β| ), D k i i D kj j ∂ δ r(x) 2 (∂ α ρ(x + σh i ))∂ β ρ(x + σ h j ) = O λ,K (s |α|+|β| ), k i + k j ≤ 2.
The same estimates hold with r and ρ interchanged.

Proposition 2.12. Let α be a multi-index and k ∈ N. Let i, j ∈ 1, d , provided sh ≤ K, we have

D ki i D k j j A k i ∂ α (r D i ρ i ) = ∂ ki i ∂ k j j ∂ α (r∂ x ρ) + sO λ,K ((sh) 2 ) = sO λ,K (1), D k i i D k j j (rD 2 i ρ) = ∂ k i i ∂ k j j (r∂ 2 i ρ) + s 2 O λ,K ((sh) 2 ) = s 2 O λ,K (1), D k i i D k j j (rA 2 i ρ) = O λ,K ((sh) 2 ).
The same estimates hold with r and ρ interchanged.

Proposition 2.13. Let α, β be multi-indices, i, j ∈ 1, d and k i , k i , k j , k j ∈ N.

For k i + k j ≤ 2, provided sh ≤ K we have A k i i A k j j D k i i D k j j ∂ β (r 2 (∂ α ρ) D i ρ i ) = ∂ k i i ∂ k j j ∂ β (r 2 (∂ α ρ)∂ i ρ) + s |α|+1 O λ,K ((sh) 2 ) = s |α|+1 O λ,K (1), A k i i A k j j D ki i D kj j ∂ β (r 2 (∂ α ρ)A 2 i ρ) = ∂ ki i ∂ kj j ∂ β (r(∂ α ρ)) + s |α| O λ,K ((sh) 2 ) = s |α| O λ,K (1), A k i i A k j j D k i i D k j j ∂ β (r 2 (∂ α ρ)D 2 i ρ) = ∂ k i i ∂ k j j ∂ β (r 2 (∂ α ρ)∂ 2 i ρ) + s |α|+2 O λ,K ((sh) 2 ) = s |α|+2 O λ,K (1),

and we have

A k i i A k j j D k i i D kj j ∂ α (r 2 D i ρ i D 2 j ρ) = ∂ k i i ∂ kj j ∂ α (r 2 (∂ i ρ)∂ 2 j ρ) + s 3 O λ,K ((sh) 2 ) = s 3 O λ,K (1), A k i i A k j j D k i i D k j j ∂ α (r 2 D i ρ i A 2 j ρ) = ∂ k i i ∂ k j j ∂ α (r∂ i ρ) + sO λ,K ((sh) 2 ) = sO λ,K (1).
3. A semi-discrete elliptic Carleman estimate for uniform meshes. Here we consider constant-step discretizations in each direction. The case of regular nonuniform meshes is treated in Section 4.

In preparation to this section, we shall prove here the Carleman estimate on uniform meshes, for a slightly more general semi-discrete elliptic operator that we define now. For all i ∈ 1, d , let ξ 1,i ∈ R M and ξ 2,i ∈ R M i be two positive discrete functions. We denote by reg(ξ) the following quantity

reg(ξ) = max i∈ 1,d reg(ξ 1,i , ξ 2,i ), (3.1) with reg(ξ 1,i , ξ 2,i ) = max sup M ξ 1,i + 1 ξ 1,i , sup M i ξ 2,i + 1 ξ 2,i , max j∈ 1,d sup M j |D j ξ 1,i |, sup M |D i ξ 2,i |, max j∈ 1,d i =j sup M ij |D j ξ 2,i | . (3.2)
Hence, reg(ξ) measures the boundedness of ξ 1,i and ξ 2,i and of their discrete derivatives as well as the distance to zero of ξ 1,i and ξ 2,i , i ∈ 1, d . By abuse of notation, the letters ξ 1,i , ξ 2,i will also refer to a Q 1 -interpolation of these values on M and M i respectively. Note that the resulting interpolated functions are Lipschitz continuous with

ξ 1,i W 1,∞ ≤ Creg(ξ), ξ 2,i W 1,∞ ≤ Creg(ξ).
We introduce the following notation related to the coefficients ξ 1,i and ξ 2,i , for

any function f D i,ξ f = ξ 1,i ξ 2,i D i f, i ∈ 1, d ξ f = ξ 1,1 ξ 2,1 D 1 f, . . . , ξ 1,d ξ 2,d D d f t = D 1,ξ f, . . . , D d,ξ f t , ∇ ξ f = ∂ t f, ξ 1,1 ξ 2,1 ∂ x 1 f, . . . , ξ 1,d ξ 2,d ∂ x d f t = ∂ t f ξ f , ∆ ξ f = ∂ 2 t f + i∈ 1,d ξ 1,i ξ 2,i ∂ 2 x i f.
We let ω Ω be a nonempty open subset. We set the operator P M to be

P M = -∂ 2 t - i∈ 1,d ξ 1,i D i (ξ 2,i D i ),
continuous in the variable t ∈ (0, T ), with T > 0, and discrete in the variable x ∈ Ω. The Carleman weight function is of the form r = e sϕ with ϕ = e λψ , where ψ satisfies Assumption 1.3.

The enlarged neighborhood Ω of Ω introduced in Assumption 1.3 allows us to apply multiple discrete operators such as D i and A i on the weight functions. In particular, this then yields on

∂ i Ω (rD i ρ i ) |ki=0 ≤ 0, (rD i ρ i ) |ki=Ni+1 ≥ 0, i ∈ 1, d . (3.3)
We are now in position to state and prove the following semi-discrete Carleman estimate.

Theorem 3.1. Let reg 0 > 0 be given. For the parameter λ ≥ 1 sufficiently large, there exist C, s 0 ≥ 1, h 0 > 0, ε 0 > 0, depending on ω, T , reg 0 , such that for any ξ 1,i , ξ 2,i , i ∈ 1, d , with reg(ξ) ≤ reg 0 we have

s 3 e sϕ u 2 L 2 (Q) + s e sϕ ∂ t u 2 L 2 (Q) + s i∈ 1,d e sϕ D i u 2 L 2 (Q) + s|e sϕ(0,.) ∂ t u(0, .)| 2 L 2 (Ω) + se 2sϕ(T ) |∂ t u(T , .)| 2 L 2 (Ω) + s 3 e 2sϕ(T ) |u(T , .)| 2 L 2 (Ω) ≤ C e sϕ P M u 2 L 2 (Q) + s i∈ 1,d e 2sϕ(T ) |D i u(T , .)| 2 L 2 (Ω) + s|e sϕ(0,.) ∂ t u(0, .)| 2 L 2 (ω) , (3.4)
for all s ≥ s 0 , 0 < h ≤ h 0 and sh ≤ ε 0 , and

u ∈ C 2 ([0, T ], C M∪∂M ), satisfying u |{0}×Ω = 0, u |(0,T )×∂Ω = 0.
Proof. We set f := -P M u. At first, we shall work with the function v = ru, i.e., u = ρv, that satisfies

r ∂ 2 t (ρv) + i∈ 1,d ξ 1,i D i ξ 2,i D i (ρv) = rf. (3.5) We have ∂ 2 t (ρv) = (∂ 2 t ρ)v + 2(∂ t ρ)∂ t v + ρ∂ 2 t v and by Lemma 2.1 D i (ξ 2,i D i (ρv)) = (D i (ξ 2,i D i ρ)) ṽi i + ξ 2,i D i ρ i D i v i + (D i ρ i ) ξ 2,i D i v i + ρi i D i (ξ 2,i D i v).
By Lemma 2.2 we have, for i ∈ 1, d ,

ξ 2,i D i v i = ξ 2,i i D i v i + h i 4 (D i ξ 2,i )(τ + i D i v -τ - i D i v), ξ 2,i D i ρ i = ξ 2,i i D i ρ i + h 2 i 4 (D i ξ 2,i )(D i D i ρ), D i (ξ 2,i D i ρ) = (D i ξ 2,i )D i ρ i + ξ 2,i i D i D i ρ.
Using that ρr = 1 and the above equalities, Equation (3.5) thus reads Av

+ B 1 v = g with Av = A 1 v + A 2 v where A 1 v = ∂ 2 t v + i∈ 1,d ξ 1,i r ρi i D i (ξ 2,i D i v), A 2 v = r(∂ 2 t ρ) v + i∈ 1,d ξ 1,i ξ 2,i r(D i D i ρ) ṽi i , B 1 v = 2r(∂ t ρ)∂ t v + 2 i∈ 1,d ξ 1,i ξ 2,i rD i ρ i D i v i , g = rf - i∈ 1,d h i 4 ξ 1,i rD i ρ i (D i ξ 2,i )(τ + i D i v -τ - i D i v) - i∈ 1,d h 2 i 4 ξ 1,i (D i ξ 2,i )r(D i D i ρ)D i v i -h i i∈ 1,d O(1)rD i ρ i D i v i - i∈ 1,d ξ 1,i r(D i ξ 2,i )D i ρ i + h i O(1)r(D i D i ρ) ṽi i , since ξ 2,i i -ξ 2,i ∞ ≤ Ch i .
Following [START_REF] Fursikov | Controllability of evolution equations[END_REF] we now set

Bv = B 1 -2s(∆ ξ ϕ)v =B2v , g = g -2s(∆ t,x ϕ)v.
An explanation for the introduction of this additional term B 2 v is provided in [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators[END_REF]. Equation (3.5) now reads Av + Bv = g and we write

Av 2 L 2 (Q) + Bv 2 L 2 (Q) + 2 Re (Av, Bv) L 2 (Q) = g 2 L 2 (Q) . (3.6)
We shall need the following estimation of g L 2 (Q) . The proof can be adapted from the one-dimensional case (see Lemma 4.2 and its proof in [START_REF] Boyer | Discrete Carleman estimates and uniform controllability of semi-discrete parabolic equations[END_REF]).

Lemma 3.2 (Estimate of the r.h.s.). For sh ≤ K we have

g 2 L 2 (Q) ≤ C λ,K rf 2 L 2 (Q) + s 2 v 2 L 2 (Q) + (sh) 2 i∈ 1,d D i v 2 L 2 (Q) . (3.7)
Most of the remaining of the proof will be dedicated to computing the innerproduct Re (Av, Bv) L 2 (Q) . Developing this term, we set

I ij = Re (A i v, B j v) L 2 (Q) .
Lemma 3.3 (Estimate of I 11 ). For sh ≤ K, the term I 11 can be estimated from below in the following way

I 11 ≥ -sλ 2 ϕ 1 2 |∇ ξ ψ|∂ t v 2 L 2 (Q) + ϕ 1 2 |∇ ξ ψ| ξ v 2 L 2 (Q) + sλ Ω ϕ(∂ t ψ)| ξ v| 2 (T ) -sλ Ω ϕ(∂ t ψ)|∂ t v| 2 T 0 + Y 11 -X 11 -W 11 -J 11 ,
with

Y 11 = i∈ 1,d Q i (ξ 2 1,i ξ 2 2,i + O λ,K ((sh) 2 )) rD i ρ i |k i =N i +1 |D i v| 2 |k i =N i + 1 2 -(ξ 2 1,i ξ 2 2,i + O λ,K ((sh) 2 )) rD i ρ i |ki=0 |D i v| 2 |ki= 1 2 dt,
and

X 11 = Q β 11 |∂ t v| 2 dt + i∈ 1,d Q ν 11,i |D i v| 2 dt + i∈ 1,d Q ν 11,i |D i v i | 2 dt,
with β 11 , ν 11,i , ν 11,i of the form sλϕO(1) + sO λ,K (sh) and

W 11 = Q γ 11,it |D i ∂ t v| 2 dt + i,j∈ 1,d i =j Q γ 11,ij |D i D j v| 2 dt + i∈ 1,d Q γ 11,ii |D i D i v| 2 dt,
with γ 11,it , γ 11,ij , and γ 11,ii of the form h 2 sλϕO(1) + sO λ,K (sh) and

J 11 = i∈ 1,d Ω δ 11,i |D i v| 2 (T ) + i∈ 1,d Q i (δ (2) 11,i ) |ki=Ni+ 1 2 |D i v| 2 |k i =N i + 1 2 + (δ (2) 11,i ) |ki= 1 2 |D i v| 2 |k i = 1 2 dt,
with δ 11,i = sO λ,K (sh), and δ

(2) 11,i = sh i λϕO(1) + sh i O λ,K (sh). The proof can be found in Appendix C.

The following lemma can be readily adapted from its counterpart in [BHL09a, Lemma 4.4] (use also Lemma 4.8 in [START_REF] Boyer | Discrete Carleman estimates and uniform controllability of semi-discrete parabolic equations[END_REF]).

Lemma 3.4 (Estimate of I 12 ). For sh ≤ K, the term I 12 is of the following form

I 12 ≥ 2sλ 2 ϕ 1 2 |∇ ξ ψ|∂ t v 2 L 2 (Q) + ϕ 1 2 |∇ ξ ψ| ξ v 2 L 2 (Q) -X 12 -J 12 , with X 12 = Q β 12 |∂ t v| 2 dt + i∈ 1,d Q ν 12,i |D i v| 2 dt + Q µ 12 |v| 2 dt, J 12 = Ω η 12 |v| 2 (T ) + Ω O(1)|∂ t v| 2 (T ),
where

β 12 = sλϕO(1), µ 12 = s 2 O λ,K (1), η 12 = s 2 O λ,K (1),
ν 12,i = sλϕO(1) + sO λ,K (sh).

Lemma 3.5 (Estimate of I 21 ). For sh ≤ K, the term I 21 can be estimated from below in the following way

I 21 ≥ 3s 3 λ 4 ϕ 3 2 |∇ ξ ψ| 2 v 2 L 2 (Q) -(sλ) 3 Ω (ϕ 3 (∂ t ψ)|∇ ξ ψ| 2 )(T ) |v| 2 (T ) + Y 21 -W 21 -X 21 -J 21 ,
with

W 21 = i∈ 1,d Q γ 21,it |D i ∂ t v| 2 dt + i,j∈ 1,d i =j Q γ 21,ij |D i D j v| 2 dt, Y 21 = i∈ 1,d Qi O λ,K ((sh) 2 )(rD i ρ i ) 0 |D i v| 2 | 1 2 dt + i∈ 1,d Qi O λ,K ((sh) 2 )(rD i ρ i ) N x +1 |D i v| 2 |N x + 1 2 dt, X 21 = Q µ 21 |v| 2 dt + i∈ 1,d Q ν 21,i |D i v| 2 dt J 21 = Ω η 21 |v| 2 (T ) + i∈ 1,d Ω δ 21,i |D i v| 2 (T ),
where

γ 21,it = hO(sh), γ 21,ij = hO λ,K ((sh) 2 ), µ 21 = (sλϕ) 3 O(1) + s 2 O λ,K (1) + s 3 O λ,K (sh), ν 21,i = sO λ,K ((sh) 2 ), η 21 = s 3 O λ,K ((sh) 2 ) + s 2 O λ,K (1) 
, and δ 21,i = sO λ,K ((sh) 2 ).

The proof can be found in Appendix C.

The following lemma can be readily adapted from its counterpart in [BHL09a, Lemma 4.6].

Lemma 3.6 (Estimate of I 22 ). For sh ≤ K, the term I 22 is of the following form

I 22 = -2s 3 λ 4 ϕ 3 2 |∇ ξ ψ| 2 v 2 L 2 (Q) -X 22 , with X 22 = Q µ 22 |v| 2 dt + i∈ 1,d Q ν 22,i |D i v| 2 dt
where µ 22 = (sλϕ) 3 O(1) + s 2 O λ,K (1) + s 3 O λ,K (sh), and ν 22,i = sO λ,K (sh).

Continuation of the proof of Theorem 3.1.

Collecting the terms we have obtained in the previous lemmata, from (3.6) we obtain, for sh ≤ K,

2s 3 λ 4 ϕ 3 2 |∇ ξ ψ| 2 v 2 L 2 (Q) + 2sλ 2 ϕ 1 2 |∇ ξ ψ|∂ t v 2 L 2 (Q) + ϕ 1 2 |∇ ξ ψ| ξ v 2 L 2 (Q) + 2sλ i∈ 1,d Ω ξ 1,i ξ 2,i (ϕ∂ t ψ)(T ) |D i v| 2 (T ) - Ω ϕ(∂ t ψ) |∂ t v| 2 T 0 -2(sλ) 3 Ω (ϕ 3 (∂ t ψ)|∇ ξ ψ| 2 )(T ) |v| 2 (T ) + 2Y ≤ C λ,K rf 2 L 2 (Q) + 2X + 2W + 2J, (3.8) 
where

Y = Y 11 +Y 21 , X = X 11 +X 12 +X 21 +X 22 +C λ,K s 2 v 2 L 2 (Q) +(sh) 2 i∈ 1,d D i v 2 L 2 (Q) , W = W 11 + W 21 , and J = J 11 + J 12 + J 21 .
With the following lemma, we may in fact ignore the term Y .

Lemma 3.7. Let sh ≤ K. For all λ there exists ε 1 (λ) > 0 such that for 0 < sh ≤ ε 1 (λ), we have Y ≥ 0.

As |∇ ξ ψ| ≥ C > 0 in Q and recall the properties of the coefficients ξ 1,i and ξ 2,i we then have

2s 3 λ 4 ϕ 3 2 v 2 L 2 (Q) + 2sλ 2 ϕ 1 2 ∂ t v 2 L 2 (Q) + ϕ 1 2 v 2 L 2 (Q) + 2sλ i∈ 1,d Ω ξ 1,i ξ 2,i (ϕ∂ t ψ)(T ) |D i v| 2 (T ) - Ω ϕ(∂ t ψ) |∂ t v| 2 T 0 -2(sλ) 3 Ω (ϕ 3 (∂ t ψ)|∇ ξ ψ| 2 )(T ) |v| 2 (T )+ ≤ C λ,K rf 2 L 2 (Q) + 2X + 2W + 2J, (3.9)
Lemma 3.8. We have

sλ 2 ϕ 1 2 ∂ t v 2 L 2 (Q) + ϕ 1 2 v 2 L 2 (Q) ≥ ν(h, λ) + CH -X -W,
where ν(h, λ) ≥ 0 for 0 < h ≤ h 1 (λ) for some h 1 (λ) sufficiently small and

H = sλ 2 i∈ 1,d Q ϕ D i v i 2 dt + sλ 2 h 2 i∈ 1,d Q ϕ|D i ∂ t v| 2 dt + i,j∈ 1,d i =j Q ϕ|D i D j v| 2 dt + i∈ 1,d Q ϕ|D i D i v| 2 dt , X = sh 2 Q O λ (1) ∂ t v 2 dt + i∈ 1,d Q O λ (1)|D i v| 2 dt + i∈ 1,d Q O λ (1) D i v i 2 dt ,
and

W = sh 4 i∈ 1,d Q O λ (1)|∂ t D i v| 2 dt + i,j∈ 1,d i =j Q O λ (1)|D i D j v| 2 dt + i∈ 1,d Q O λ (1)|D i D i v| 2 dt .
End of the proof of Theorem 3.1. Recalling the properties satisfied by ψ listed in Assumption 1.3, if we choose λ 1 ≥ 1 sufficiently large, then for λ = λ 1 (fixed for the rest of the proof) and sh ≤ ε 1 (λ 1 ) and 0 < h ≤ h 1 (λ 1 ), from (3.8) and Lemmata 3.7 and 3.8, we obtain

s 3 v 2 L 2 (Q) + s ∂ t v 2 L 2 (Q) + s i∈ 1,d D i v 2 L 2 (Q) + H + s|∂ t v(0, .)| 2 L 2 (Ω) + s|∂ t v(T , .)| 2 L 2 (Ω) + s 3 |v(T , .)| 2 L 2 (Ω) ≤ C λ 1 ,K rf 2 L 2 (Q) + s i∈ 1,d |D i v(T , .)| 2 L 2 (Ω) + s|∂ t v(0, .)| 2 L 2 (ω) + X + W + J, (3.10)
where

H = s i∈ 1,d D i v i 2 L 2 (Q) + sh 2 i∈ 1,d D i ∂ t v 2 L 2 (Q) + i,j∈ 1,d i =j D i D j v 2 L 2 (Q) + i∈ 1,d D i D i v 2 L 2 (Q) , X = Q µ 1 |v| 2 dt + i∈ 1,d Q ν 1,i |D i v| 2 dt + i∈ 1,d Q ν 1,i |D i v i | 2 dt + Q β 1 |∂ t v| 2 dt, with µ 1 = s 2 O λ 1 ,K (1) + s 3 O λ 1 ,K (sh)
and ν 1,i , ν 1,i , β 1 , all of the form sO λ 1 ,K (sh), and where

W = i∈ 1,d Q γ 1,it |D i ∂ t v| 2 dt + i,j∈ 1,d i =j Q γ 1,ij |D i D j v| 2 dt + i∈ 1,d Q γ 1,ii |D i D i v| 2 dt,
where γ 1,it , γ 1,ij and γ 1,ii are of the form sh 2 O λ1,K (sh), and where

J = Ω η 1 |v| 2 (T ) + i∈ 1,d Ω δ 1,i |D i v| 2 (T ) + i∈ 1,d Q i (δ (2) 1,i ) Ni+ 1 2 |D i v| 2 N i + 1 2 + (δ (2) 1,i ) 1 2 |D i v| 2 1 2 dt, with η 1 = s 3 O λ 1 ,K (sh) + s 2 O λ 1 ,K (1) and δ 1,i = sO λ 1 ,K (sh), δ (2) 
1,i = sh i O λ,K (sh). The last term in J was obtained by "absorbing" the following term in J 11

sλ i∈ 1,d Q i h i (ϕ) N i + 1 2 O(1)|D i v| 2 N i + 1 2 + (ϕ) 1 2 O(1)|D i v| 2 1 2 dt,
by the volume term

sλ 2 i∈ 1,d Q ξ 1,i ξ 2,i ϕ|∇ ξ ψ| 2 |D i v| 2 dt,
for λ large.

We can now choose ε 0 and h 0 sufficiently small, with 0 < ε 0 ≤ ε 1 (λ 1 ), 0 < h 0 ≤ h 1 (λ 1 ), and s 0 ≥ 1 sufficiently large, such that for s ≥ s 0 , 0 < h ≤ h 0 , and sh ≤ ε 0 , we obtain

s 3 v 2 L 2 (Q) + s ∂ t v 2 L 2 (Q) + s i∈ 1,d D i v 2 L 2 (Q) + H + s|∂ t v(0, .)| 2 L 2 (Ω) + s|∂ t v(T , .)| 2 L 2 (Ω) + s 3 |v(T , .)| 2 L 2 (Ω) ≤ C λ 1 ,K,ε 0 ,s 0 rf 2 L 2 (Q) + s i∈ 1,d |D i v(T , .)| 2 L 2 (Ω) + s|∂ t v(0, .)| 2 L 2 (ω) . (3.11)
To finish the proof, we need to express all the terms in the estimate above in terms of the original function u. We can proceed exactly as in the end of proof of Theorem 4.1 in [START_REF] Boyer | Discrete Carleman estimates and uniform controllability of semi-discrete parabolic equations[END_REF].

4. Carleman estimates for non uniform meshes. We consider here the notation introduced in section 1.1.8.

We define, for i ∈ 1, d , ζ i ∈ C M i and ζi ∈ C M as follows

ζ i,k = h i,ki h i , k ∈ N i , ζi,k = h i,ki h i , k ∈ N.
Even though these two formulae look similar they are in fact different as the indices k are taken in different sets.

Lemma 4.1. We have the following properties

reg(ϑ) -1 ≤ ζ i,k ≤ reg(ϑ), i ∈ 1, d , k ∈ N i , reg(ϑ) -1 ≤ ζi,k ≤ reg(ϑ), i ∈ 1, d , k ∈ N, |D i ζ i | L ∞ (Ω) ≤ reg(ϑ) 2 , and |D i ζi | L ∞ (Ω) ≤ reg(ϑ) 2 .
For u ∈ C M∪∂M , we define Q M 0 M u ∈ C M 0 ∪∂M 0 to be the discrete function corresponding to the reference uniform mesh M 0 which takes the same values as u for each index k ∈ N. Similarly, for i ∈ 1, d and u ∈ C M i , we denote by Q M 0 i M i u ∈ C M 0 i the discrete function defined on M 0 i which takes the same values as u for each index

k ∈ N i . We denote by Q M M 0 and Q M 0 i M i the inverse of the operators Q M 0 M and Q M i M 0 i respectively. Lemma 4.2. • For any i ∈ 1, d , any u ∈ C M∪∂M and any v ∈ C M i , we have D i (Q M 0 M u) = Q M 0 i M i (ζ i D i u), D i (Q M 0 i M i v) = Q M 0 M ( ζi D i v).
• For any u ∈ C M∪∂M and any i ∈ 1, d , we have

D i (γ i D i u) = ( ζi ) -1 Q M M 0 D i Q M 0 i M i γ i ζ i D i (Q M 0 M u) .
Lemma 4.3. For any u ∈ C M , and any v ∈ C M i , i ∈ 1, d , we have

reg(ϑ) -1 |u| 2 L 2 (Ω) ≤ |Q M 0 M u| 2 L 2 (Ω ) ≤ reg(ϑ)|u| 2 L 2 (Ω) , reg(ϑ) -1 |v| 2 L 2 (Ω) ≤ |Q M 0 i M i v| 2 L 2 (Ω ) ≤ reg(ϑ)|v| 2 L 2 (Ω) .
We can now prove the Carleman estimate of Theorem 1.4 for the semi-discrete elliptic operator

P M = -∂ 2 t - i∈ 1,d D i (γ i D i •).
We only give a sketch of the proof, since it is very similar to the one which is detailed in [START_REF] Boyer | Discrete Carleman estimates and uniform controllability of semi-discrete parabolic equations[END_REF] for the one-dimensional case.

Proof of Theorem 1.4. The key idea is to perform a change of variables that transforms P M defined on a non-uniform mesh into an semi-discrete elliptic operator defined on a uniform mesh. All the geometric information concerning the initial mesh is then contained in the coefficients of this new operator.

More precisely, we consider the discrete function w = Q M 0 M u which is defined on the uniform mesh M 0 . By using Lemma 4.2 we observe that

Q M 0 M (P M u) = -∂ 2 t w - i∈ 1,d Q M 0 M ( ζi ) -1 D i Q M 0 i M i γ i ζ i D i w .
We introduce the operator

P M 0 = -∂ 2 t -i∈ 1,d ξ 1,i D i (ξ 2,i D i w) with ξ 1,i = Q M 0 M ( ζi ) -1 , ξ 2,i = Q M 0 i M i γ i ζ i ,
so that we may now apply the Carleman estimate of Theorem 3.1 to w and P M 0 on the uniform mesh M 0 and with the weight function

x ∈ [0, 1] d → ψ • (ϑ 1 (x 1 ) . . . ϑ d (x d )).
We note that reg(ξ) is bounded by some constant depending only on reg(ϑ) and reg(Γ) and independent of the size of the mesh. We can thus find reg 0 sufficiently large for which Theorem 3.1 leads to a Carleman inequality for the function w, and the weight function defined above.

Using Lemmata 4.2 and 4.3 we then deduce result. Note that the values of h 0 , ε 0 , may change, depending only on the values of reg(ϑ) and reg(Γ) and not on the mesh size.

Appendix A. Construction of a weight function.

A weight function that satisfies the conditions listed in Assumption 1.3 can be constructed as follows.

We first start with a function

φ 1 ∈ C ∞ ([0, T ]) such that ∂ t φ 1 (0) ≥ C > 0, ∂ t φ 1 (T ) ≤ -C < 0,
and φ 1 (0) = φ 1 (T ) = 0, and φ 1 (t) > 0 if t ∈ (0, T ). We choose φ 1 with a single critical point.

Let also φ 2 ∈ C ∞ ( Ω) be such that φ 2 ≥ C > 0 and ∂ n x φ 2 ≤ -C < 0 and

∂ 2 i φ 2 ≥ C > 0 in V ∂Ω .
This can be achieved with φ 2 (x) = e ζ φ2(x) + C -1, with φ2 = 0 on ∂Ω, φ2 > 0, in Ω, φ2 = 0 and ∂ n x φ2 ≤ -C < 0, on ∂Ω and ζ > 0 sufficiently large and by taking the neighborhood V ∂Ω sufficiently small. The function φ 2 can be chosen with a finite number of critical points by means of Morse theorem [START_REF] Aubin | Applied Non Linear Analysis[END_REF].

We next set φ(t, x) = φ 1 (t)φ 2 (x). This function satisfies the desired properties listed in Assumption 1.3 on the boundaries (0, T ) × ∂Ω (and in its neighborhood (0, T ) × V ∂Ω ), {0} × (Ω \ ω) and {T } × Ω. It is also characterized by a finite number of critical points.

We choose y 0 in {0}×ω. We enlarge Q in a small neighborhood of y 0 which leaves ∂Q unchanged outside of {0} × ω. We call Q this extension of Q and we extend the function φ to Q in a C k manner. The critical points of φ can be pulled back to the interior of Q \ Q by composing φ with a finite number of diffeomorphisms (see [START_REF] Fursikov | Controllability of evolution equations[END_REF] for the construction of these diffeomorphisms). The resulting function is the weight function ψ and it satisfies all the properties listed in Assumption 1.3.

Appendix B. Proofs of some technical results in Section 2. B.1. Proof of Proposition 2.9. We recall that rρ = 1. By Lemma 2.6 we have

τ + i ∂ α ρ(x) = ∂ α ρ(x) + Ch i ρ(x) 1 0 r(x)∂ i ∂ α ρ(x + σh i /2) dσ, which by Lemma 2.7 yields rτ + i ∂ α ρ = r∂ α ρ + s |α| O λ (sh)e O λ (sh) = s |α| O λ,K (1). The proof is the same for rτ - i ∂ α ρ. For rD i ρ, rA i ∂ α ρ = r ∂ α ρ i , rA 2 i ∂ α ρ = r ∂ α ρ i i
, and rD k i i D k j j ρ we proceed similarly, exploiting the formula in Lemma 2.6 and then applying the result of Lemma 2.7, e.g.,

D i ρ(x) = ∂ i ρ(x) + Ch 2 i ρ(x) 1 -1 (1 -|σ|) 2 r(x)(∂ 3 i ρ)(x + σh i /2) dσ = ∂ i ρ(x) + sρ(x)O λ,K ((sh) 2 ) = sr(x)O λ,K (1). Noting that A i D i ρ(x) = D i ρ i (x) = (2h i ) -1 (ρ(x + h i ) -ρ(x -h i ))
we proceed as we did for D i r.

B.2. Proof of Lemma 2.10. By Lemma 2.6, we write

D i (∂ β (r∂ α ρ))(x) = ∂ i ∂ β (r∂ α ρ)(x) + Ch 2 i 1 -1 (1 -|σ|) 2 ∂ 3 i ∂ β (r∂ α ρ)(x + σh i /2) dσ.
By Lemma 2.7 we have

∂ 3 i ∂ β (r∂ α ρ) = O λ (s |α|
), which yields the first result in the case k i + k j = 1. For the case k i + k j = 2, we proceed similarly, making use of the other formulae listed in Lemma 2.6. For the averaging cases, we make use of the second formula in Lemma 2.6.

Following the proof of Lemma 2.7 in [START_REF] Boyer | Discrete Carleman estimates and uniform controllability of semi-discrete parabolic equations[END_REF] we set ν(x, σh i ) := r(x)ρ(x+σh i ). We have

D i ∂ β ν(x, σh i ) = 1 2 1 -1 (∂ i ∂ β ν)(x + σ h i /2, σh i ) dσ = O λ,K (1), for |β | ≤ |β|,
(B.1) for sh ≤ K by Lemma 2.7. Next, with µ α = r∂ α ρ, we write r(x)∂ α ρ(x + σh i ) = ν(x, σh i )µ α (x + σh i ), which gives D i ∂ β (r(x)∂ α ρ(x + σh i )) as a linear combination of terms of the form

A i (∂ β ν(., σh i )) D i (∂ β µ α (.+σh i ))+D i (∂ β ν(., σh i )) A i (∂ β µ α (.+σh i )), β +β = β,
by the continuous and discrete Leibniz rules (Lemma 2.1). By the first part and Lemma 2.7 we have

D i (∂ β µ α (x+σh i )) = O λ,K (s |α| ). By Lemma 2.7, ∂ β ν(x, σh i ) = O λ,K (1) and ∂ β µ α (x + σh i ) = O λ,K (s |α| ).
The last result hence follows from (B.1). We proceed in a similar way for the case k i + k j = 2. B.3. Proof of Lemma 2.11. For the first two results, we proceed as in Lemma 2.10 and use Corollary 2.8.

For the last results we use the continuous and discrete Leibniz rules (Lemma 2.1) and Lemma 2.10. B.4. Proof of Proposition 2.12. Taylor formulae yield

D i ρ i (x) = ρ(x + h i ) -ρ(x -h i ) 2h i = ∂ i ρ(x) + Ch 2 i 1 -1 (1 -|σ|) 2 ∂ 3 i ρ(x + σh i ) dσ, (B.2)
which in turn gives

D k i i D k j j A k i ∂ α (r D i ρ i ))(x) = D k i i D k j j A k i ∂ α (r∂ i ρ)(x) + Ch 2 i 1 -1 (1 -|σ|) 2 D k i i D k j j A k i ∂ α (r(x)∂ 3 i ρ(x + σh i )) dσ,
and the first result follows by Lemma 2.10 (and Lemma 2.7 for the second equality).

Next, from Lemma 2.6, we write

D ki i D k j j (rD 2 i ρ)(x) = D ki i D k j j (r∂ 2 i ρ)(x) + Ch 2 i 1 -1 (1 -|σ|) 3 D ki i D k j j (r(x)∂ 4 i ρ(x + σh i )) dσ,
and the third result follows as above. For D ki i D k j j (rA 2 ρ) we use the formula for A 2 ρ given in Lemma 2.6 and proceed as above.

B.5. Proof of Proposition 2.13. From (B.2) we write

A k i i A k j j D k i i D k j j ∂ β r 2 (∂ α ρ) D i ρ i = A k i i A k j j D k i i D k j j ∂ β r 2 (∂ α ρ)∂ i ρ + Ch 2 i 1 -1 (1 -|σ|) 2 A k i i A k j j D ki i D kj j ∂ β r 2 (∂ α ρ)∂ 3 i ρ(. + σh i ) dσ,
and we conclude with Lemma 2.11. For the next two results we use the formulae listed in Lemma 2.6 and proceed as above.

From Lemma 2.6, equation (B.2), and by Lemma 2.11 we have

A k i i A k j j D k i i D k j j ∂ α (r 2 D i ρ i D 2 j ρ) = A k i i A k j j D k i i D k j j ∂ α (r 2 (∂ i ρ)∂ 2 j ρ) + Ch 2 i 1 -1 (1 -|σ|) 2 A k i i A k j j D k i i D k j j ∂ α (r 2 ∂ 3 i ρ(. + σh i )∂ 2 j ρ) dσ + Ch 2 j 1 -1 (1 -|σ|) 3 A k i i A k j j D k i i D k j j ∂ α (r 2 (∂ i ρ)∂ 4 j ρ(. + σh j ) dσ + Ch 2 i h 2 j [-1,1] 2 (1 -|σ|) 2 (1 -|σ |) 3 × A k i i A k j j D k i i D k j j ∂ α (r 2 ∂ 3 i ρ(. + σh i )∂ 4 j ρ(. + σ h j )) dσ dσ = ∂ ki i ∂ kj j ∂ α (r 2 (∂ i ρ)∂ 2 j ρ) + s 3 O λ,K ((sh) 2 ).
The last result follows similarly.

Appendix C. Proofs of intermediate results in Section 3.

C.1. Proof of Lemma 3.3. From the forms of A 1 v and B 1 v we have

I 11 = k,l∈{t,1,...,d} Q kl with Q tt = 2 Re Q r(∂ t ρ) (∂ 2 t v)∂ t v * dt, Q ti = 2 Re Q ξ 1,i ξ 2,i rD i ρ i (∂ 2 t v)D i v * i dt, i ∈ 1, d , Q it = 2 Re Q ξ 1,i r 2 (∂ t ρ)ρ i i D i (ξ 2,i D i v)∂ t v * dt, i ∈ 1, d , Q ii = 2 Re Q ξ 2 1,i ξ 2,i r 2 ρi i D i ρ i D i (ξ 2,i D i v)D i v * i dt, i ∈ 1, d , Q ij = 2 Re Q ξ 1,i ξ 1,j ξ 2,j r 2 ρi i D j ρ j D i (ξ 2,i D i v)D j v * j dt, i, j ∈ 1, d , i = j.
We start by computing each term.

Computation of Q tt . We set q tt = -∂ t r(∂ t ρ) . An integration by parts w.r.t. t yields

Q tt = Q q tt |∂ t v| 2 dt -sλ Ω ϕ(∂ t ψ) |∂ t v| 2 T 0 .
Lemma C.1. We have

q tt = sλ 2 ϕ(∂ t ψ) 2 + sλϕO(1).
The estimation of follows from Lemma 2.7.

Computation of Q ti . Setting p ti = -ξ 1,i ξ 2,i rD i ρ i and q ti = ∂ t p ti we have, by integration by parts w.r.t. t since v |t=0 = 0,

Q ti = 2 Re Q (∂ t v)∂ t p ti D i v * i dt -2 Re Ω p ti (∂ t v)D i v * i (T ) = 2 Re Q q ti (∂ t v)D i v * i dt + 2 Re Q p ti (∂ t v)∂ t D i v * i dt Q a ti ,
using that p ti (T ) = 0 for ψ |t=T = Cst. As v |∂Ω = 0 with Proposition 2.4, Lemma 2.2, and a discrete integration by parts w.r.t. x i , we then write

Q a ti = 2 Re Q p ti (∂ t v) i ∂ t D i v * dt = 2 Re Q p ti i ∂ t v i ∂ t D i v * dt + h 2 i 2 Q (D i p ti )|∂ t D i v| 2 dt = - Q (D i p ti i )|∂ t v| 2 dt + h 2 i 2 Q (D i p ti )|∂ t D i v| 2 dt.
We thus have

Q ti = - Q (D i p ti i )|∂ t v| 2 dt + 2 Re Q q ti (∂ t v)D i v * i dt + h 2 i 2 Q (D i p ti )|∂ t D i v| 2 dt. (C.1)
Lemma C.2. We have

D i p ti = sλ 2 ξ 1,i ξ 2,i ϕ(∂ i ψ) 2 + sλϕO(1) + sO λ,K (sh), D i p ti i = sλ 2 ξ 1,i ξ 2,i ϕ(∂ i ψ) 2 + sλϕO(1) + sO λ,K (sh),
q ti = sλ 2 ξ 1,i ξ 2,i ϕ(∂ t ψ)(∂ i ψ) + sλϕO(1) + sO λ,K ((sh) 2 ).
Proof. We set α = -ξ 1,i ξ 2,i . Then

D i p ti = (D i α) rD i ρ i i + αi D i rD i ρ i .
With Proposition 2.12 we find

D i p ti = (D i α)r∂ i ρ + αi (∂ i (r∂ i ρ)) + sO λ,K ((sh) 2 ). (C.2)
Then with Lemma 2.7 we obtain the estimate of D i p ti as D i α = O(1). Averaging (C.2) we obtain

D i p ti i = D i α i r∂ i ρ i + αi i ∂ i (r∂ i ρ) i + h 2 4 (D i D i α)(D i (r∂ i ρ)) + h 2 4 (D i αi )D i (∂ i (r∂ i ρ)) + sO λ,K ((sh) 2 ).
By Lemma 2.10 we have

D i α i r∂ i ρ i = sλϕO(1) + h 2 O λ,K (s). (C.3) as D i α i = O(1).
Note also that αi i = α+hO(1). Then by Lemma 2.10 and Lemma 2.7 we have

αi i ∂ i (r∂ i ρ) i = -αsλ 2 ϕ(∂ i ψ) 2 + sλϕO(1) + O λ,K (sh). (C.4) 
Since hD i D i α = O(1), by Lemma 2.10 we obtain

h 2 4 (D i D i α)(D i (r∂ i ρ)) = O λ,K (sh). (C.5)
Similarly we have

h 2 4 (D i αi )D i (∂ i (r∂ i ρ)) = hO λ,K (sh), (C.6) as D i αi = D i α i = O(1). Collecting estimates (C.3)-(C.6
), we obtain the second result.

Finally we write q ti = α∂ t (rD i ρ i ); Proposition 2.12 and Lemma 2.7 yield the estimates for q ti . Computation of Q it . We set p it = -ξ 1,i r 2 (∂ t ρ)ρ i i and q it = ξ 2,i D i p it . Since v |∂Ω = 0, with a discrete integration by parts w.r.t. x i (Proposition 2.4) we then write

Q it = 2 Re Q D i (p it ∂ t v * ) ξ 2,i D i v dt = 2 Re Q q it ∂ t v * i + ξ 2,i p it i (∂ t D i v * ) D i v dt = 2 Re Q q it D i v i ∂ t v * dt - Q ξ 2,i (∂ t p it i )|D i v| 2 dt + Ω ξ 2,i p it i |D i v| 2 (T ),
after an integration by parts w.r.t. t, to yield

Q it = 2 Re Q q it i D i v i ∂ t v * dt + h 2 i 2 Re Q D i (q it )(D i D i v)∂ t v * dt - Q ξ 2,i (∂ t p it i )|D i v| 2 dt + Ω ξ 2,i p it i |D i v| 2 (T ).
Lemma C.3. We have

ξ 2,i p it i = sλξ 1,i ξ 2,i ϕ(∂ t ψ) + sO λ,K (sh), ξ 2,i ∂ t p it i = sλ 2 ξ 1,i ξ 2,i ϕ(∂ t ψ) 2 + sλϕO(1) + sO λ,K (sh),
q it i = sλ 2 ξ 1,i ξ 2,i ϕ(∂ i ψ)(∂ t ψ) + sλξ 1,i ξ 2,i ϕO(1) + sO λ,K (sh), hD i (q it ) = sλϕO(1) + O λ,K (sh).
Proof. The first three estimates follow from Proposition 2.13 and Corollary 2.8 following the method of the proof of Lemma C.2 (see also the proof of similar technical lemmata in [BHL09a, Appendix B]).

For the fourth estimate we first write

h i D i q it = h i D i (ξ 2,i D i p it ) = h i (D i ξ 2,i )D i p it i + h i ξ 2,i i D i D i p it = O λ,K (sh) + h i O(1)D i D i p it ,
following the method of the proof of Lemma C.2. We then write

D i p it = -(D i ξ 1,i )r 2 (∂ t ρ)ρ i i i -ξ 1,i i D i (r 2 (∂ t ρ)ρ i i ).
and obtain

h i D i D i p it = -h i (D i D i ξ 1,i )r 2 (∂ t ρ)ρ i i i i -2h i D i ξ 1,i i D i (r 2 (∂ t ρ)ρ i i ) i -h i ξ 1,i i i D i D i (r 2 (∂ t ρ)ρ i i ) = sλϕO(1) + O λ,K (sh),
arguing as in the proof of Lemma C.2, as D i ξ 1,i = O(1). The result follows.

Computation of Q ii . We set p ii = -ξ 2 1,i ξ 2,i r 2 ρi i D i ρ i and q ii = D i (ξ 2,i i p ii ). By Lemmata 2.1 and 2.4, we have

Q ii = Q q ii |D i v| 2 dt - Q i ξ 2,i i p ii Ni+1 |D i v| 2 Ni+ 1 2 -ξ 2,i i p ii 0 |D i v| 2 1 2 dt -2 Q p ii D i (ξ 2,i ) D i v i 2 dt.
For the first term we write

Q q ii |D i v| 2 dt = - Q q ii |D i v| 2 dt + 2 Q q ii |D i v| 2 i dt =Q a ii + h i Q i (q ii ) 1 2 |D i v| 2 1 2 + (q ii ) Ni+ 1 2 |D i v| 2 Ni+ 1
by Proposition 2.4 and with Lemma 2.2 we further have

Q a ii = 2 Q q ii i |D i v| 2 i dt + h 2 i 2 Q (D i q ii ) D i |D i v| 2 dt.
A further use of Lemma 2.2 and a discrete integration by parts w.r.t. x i (Proposition 2.4) yield,

Q a ii = 2 Q q ii i D i v i 2 dt + h 2 i 2 Q q ii i |D i D i v| 2 dt - h 2 i 2 Q (D i D i q ii )|D i v| 2 dt + h 2 i 2 Q i (D i q ii ) Ni+1 |D i v| 2 N i + 1 2 -(D i q ii ) 0 |D i v| 2 1 2
dt.

We thus have

Q ii = - Q q ii |D i v| 2 dt + 2 Q q ii i D i v i 2 dt -2 Q p ii D i (ξ 2,i ) D i v i 2 dt - Qi ξ 2,i i p ii N i +1 |D i v| 2 Nx+ 1 2 -ξ 2,i i p ii 0 |D i v| 2 1 2 dt + h i Q i (q ii i ) N i +1 |D i v| 2 N x + 1 2 + (q ii i ) 0 |D i v| 2 1 2 dt + h 2 i 2 Q q ii i |D i D i v| 2 dt - h 2 i 2 Q (D i D i q ii )|D i v| 2 dt.
Lemma C.4. We have

ξ 2,i i p ii = -ξ 2 1,i ξ 2 2,i + O λ,K (sh) rD i ρ i ,
p ii D i (ξ 2,i ) = sλϕO(1) + sO λ,K (sh),

q ii = sλ 2 ξ 2 1,i ξ 2 2,i ϕ(∂ i ψ) 2 + sλϕO(1) + sO λ,K (sh), q ii i = sλ 2 ξ 2 1,i ξ 2 2,i ϕ(∂ i ψ) 2 + sλϕO(1) + sO λ,K (sh), h 2 i D i D i q ii = sλϕO(1) + sO λ,K (sh).
Moreover for h i sufficiently small we have

(q ii i ) N i +1 ≥ sλ(ϕ) N i + 1 2 O(1) + sO λ,K (sh), (C.7) (q ii i ) 0 ≥ sλ(ϕ) 1 2 O(1) + sO λ,K (sh).
Proof. The first estimate follows from Proposition 2.9. The next three estimates all follow from Proposition 2.13 and Corollary 2.8, following the method of the proof of Lemma C.2.

To estimate

h 2 i D i D i q ii , introducing α = -ξ 2 1,i ξ 2,i ξ 2,i i and γ = r 2 ρi i D i ρ i we first write D i D i q ii = (D i D i D i α) γi i i + 3 D i D i α i D i γ i i + 3 D i α i i D i D i γ i + αi i i (D i D i D i γ).
We note that we have

h 2 D i D i D i α = O(1), h D i D i α i = O(1), D i α i i = O(1), αi i i = O(1),
and, with Proposition 2.13,

γi i i = sλϕO(1) + sO λ,K ((sh) 2 ), D i γ i i = sO λ,K (1), D i D i γ i = sO λ,K (1), hD i D i D i γ = sO λ,K (1).
The estimate for h 2 i D i D i q ii then follows. For the second part of the proof we only address the first inequality in (C.7). The second inequality follows similarly. We have

q ii i = -D i ξ 2 1,i ξ 2,i ξ 2,i i r 2 ρi i D i ρ i i i =sλϕO(1)+sO λ,K (sh) +ξ 2 1,i ξ 2,i ξ 2,i i i ≥0 b ii i
where the estimation of the first term follows as in the proof of Lemma C.2 and with

b ii = D i (-r 2 ρi i D i ρ i ). It remains thus to prove that (b ii ) k i ≥ 0, k i = N i + 1 2 , N i + 3 2 , for h i suffi- ciently small. Observing that ∂ 2 i ϕ(x) = λ 2 (∂ i ψ) 2 ϕ + λ(∂ 2 i ψ)ϕ
, with the assumption made on ψ in the neighborhood of the boundary ∂ i Ω, we see that the function

x i → ϕ(t, x 1 , . . . , x d ) is convex in a neighborhood of {x i = L i }. It thus follows that ϕ k i +1 + ϕ k i -1 -2ϕ k i ≥ 0, for k i h i close to L i = (N i + 1)h i . As ρ = e -sϕ it follows that ρ k i +1 ρ k i ≤ ρ k i ρ k i -1 , for k i h i close to (N i + 1)h i . (C.8)
We now write

(-r 2 ρi i D i ρ i ) k i = 1 8h i 1 + ρ ki-1 ρ ki 2 -1 + ρ ki+1 ρ ki 2 ,
which gives

h i (b ii ) ki+ 1 2 = 1 8h i 1 + ρ ki ρ ki+1 2 -1 + ρ ki-1 ρ ki 2 ≥0 + 1 + ρ ki+1 ρ ki 2 -1 + ρ ki+2 ρ ki+1 2 ≥0 , by (C.8) if k i h i close to L i = (N i + 1)h i . Inequality (C.7) thus follows for h i small, noting that (ϕ) ki+1 = (ϕ) ki+ 1 2 + h 2 O λ (1). Computation of Q ij , i = j. We set p ij = -ξ 1,i ξ 1,j ξ 2,j r 2 ρi i D j ρ j and q ij = ξ 2,i D i p ij .
As v |∂Ω = 0, a discrete integration by parts w.r.t. x i (see Lemma 2.4) yields

Q ij =2 Re Q ξ 2,i D i p ij D j v * j D i v dt,
which can be written as

Q ij = Q a ij + Q b ij with Q a ij = 2 Re Q q ij D j v * j i D i v dt, Q b ij = 2 Re Q ξ 2,i p ij i D j D i v * j D i v dt.
By Proposition 2.4 we write

Q a ij = 2 Re Q q ij D i v i D j v * j dt = 2 Re Q q ij i D i v i D j v * j dt + h 2 i 2 Re Q (D i q ij ) (D i D i v) D j v * j dt.
We also have

Q b ij = 2 Re Q ξ 2,i p ij i D i v j D j D i v * dt = 2 Re Q ξ 2,i p ij i j D i v j D j D i v * dt + h 2 j 2 Q D j (ξ 2,i p ij i ) |D j D i v| 2 dt = - Q D j (ξ 2,i p ij i ) j |D i v| 2 dt + h 2 j 2 Q D j (ξ 2,i p ij i ) |D j D i v| 2 dt.
We thus have

Q ij = - Q D j (ξ 2,i p ij i ) j |D i v| 2 dt + 2 Re Q q ij i D i v i D j v * j dt (C.9) + h 2 i 2 Re Q (D i q ij ) (D i D i v) D j v * j dt + h 2 j 2 Q D j (ξ 2,i p ij i ) |D j D i v| 2 dt
Lemma C.5. We have

D j (ξ 2,i p ij i ) j = sλ 2 ξ 1,i ξ 2,i ξ 1,j ξ 2,j ϕ(∂ j ψ) 2 + sλϕO(1) + sO λ,K (sh), q ij i = sλ 2 ξ 1,i ξ 2,i ξ 1,j ξ 2,j ϕ(∂ i ψ)(∂ j ψ) + sλϕO(1) + sO λ,K (sh), D j (ξ 2,i p ij i ) = sλ 2 ξ 1,i ξ 2,i ξ 1,j ξ 2,j ϕ(∂ j ψ) 2 + sλϕO(1) + sO λ,K (sh), hD i q ij = sλϕO(1) + O λ,K (sh).
The estimates all follow from Proposition 2.13 and Corollary 2.8, arguing as in the proof of Lemma C.2.

Estimate of I 11 . We now collect the different terms that we have just computed and use Lemmata C.1 to C.5 to write

I 11 = I 11 + Y 11 + I 11 + I 11 -(J 11 + Z 11 + Z 11 + Z 11 ),
where

I 11 = -sλ 2 Q ϕ|∇ ξ ψ| 2 |∂ t v| 2 dt -sλ 2 i∈ 1,d Q ϕξ 1,i ξ 2,i |∇ ξ ψ| 2 |D i v| 2 dt + sλ i∈ 1,d Ω ϕξ 1,i ξ 2,i (∂ t ψ)|D i v| 2 (T ) -sλ Ω ϕ(∂ t ψ)|∂ t v| 2 T 0 and Y 11 = i∈ 1,d Qi (ξ 2 1,i ξ 2 2,i + O λ,K (sh)) rD i ρ i Ni+1 |D i v| 2 Ni+ 1 2 -(ξ 2 1,i ξ 2 2,i + O λ,K (sh)) rD i ρ i 0 |D i v| 2 1 2 dt,
and

I 11 = 2sλ 2 Q ϕ (∂ t ψ) 2 |∂ t v| 2 + i∈ 1,d ξ 2 1,i ξ 2 2,i (∂ i ψ) 2 D i v i 2 dt + 2sλ 2 Re Q ϕ 2(∂ t ψ)∂ t v i∈ 1,d ξ 1,i ξ 2,i (∂ i ψ)D i v * i + i,j∈ 1,d i =j ξ 1,i ξ 2,i ξ 1,j ξ 2,j (∂ i ψ)(∂ j ψ)D i v i D j v * j dt, = 2sλ 2 Q ϕ (∂ t ψ)∂ t v + i∈ 1,d ξ 1,i ξ 2,i (∂ i ψ)D i v i 2 dt ≥ 0,
and

I 11 = i∈ 1,d sλ 2 h 2 i 2 Q ϕξ 1,i ξ 2,i (∂ i ψ) 2 |D i ∂ t v| 2 dt + i,j∈ 1,d i =j sλ 2 h 2 j 2 Q ϕξ 1,i ξ 2,i ξ 1,j ξ 2,j (∂ j ψ) 2 |D i D j v| 2 dt + i∈ 1,d sλ 2 h 2 i 2 Q ϕξ 2 1,i ξ 2 2,i (∂ i ψ) 2 |D i D i v| 2 dt ≥ 0,
and

J 11 = i∈ 1,d Ω δ 11,i |D i v| 2 (T ) + i∈ 1,d Q i (δ (2) 11,i ) Nx+ 1 2 |D i v| 2 N x + 1 2 + (δ (2) 11,i ) 1 2 |D i v| 2 1 2
dt with δ 11,i = sO λ,K (sh), and δ

(2)

11,i = h(sλϕO(1) + sO λ,K (sh)), and

Z 11 = Q β 11 |∂ t v| 2 dt + i∈ 1,d Q ν 11,i |D i v| 2 dt + i∈ 1,d Q ν 11,i D i v i 2 dt and Z 11 = Re i,j∈ 1,d i =j Q α 11,ij D i v i D j v * j dt + Re i∈ 1,d Q α 11,ti D i v i ∂ t v * dt
where β 11 , ν 11,i , ν 11,i , α 11,ij , and α 11,ti are of the form sλϕO(1) + sO λ,K (sh), and

Z 11 = i∈ 1,d Q γ 11,ti |D i ∂ t v| 2 dt + i,j∈ 1,d i =j Q γ 11,ij |D i D j v| 2 dt + i∈ 1,d Q γ 11,ii |D i D i v| 2 dt + Re i∈ 1,d Q γ 11,iit (D i D i v)∂ t v * dt + Re i,j∈ 1,d i =j Q γ 11,iij (D i D i v)D j v * j dt,
where γ 11,ti , γ 11,ij , and γ 11,ii are of the form h 2 sλϕO(1) + sO λ,K (sh) , and γ 11,iit , γ 11,iij are of the form h sλϕO(1) + O λ,K (sh) .

We conclude with Cauchy-Schwarz inequalities that yields

|Z 11 | ≤ i∈ 1,d Q α 11,i D i v i 2 dt + Q α 11,t ∂ t v 2 dt,
with α 11,i and α 11,t of the form sλϕO(1) + sO λ,K (sh), and

|Z 11 | ≤ i∈ 1,d Q γ 11,ti |D i ∂ t v| 2 dt + i,j∈ 1,d i =j Q γ 11,ij |D i D j v| 2 dt + i∈ 1,d Q γ 11,ii |D i D i v| 2 dt + Q γ 11,t |∂ t v| 2 dt + i∈ 1,d Q γ 11,i |D i v i | 2 dt,
with γ 11,ti , γ 11,ij , and γ 11,ii are of the form h 2 sλϕO(1) + sO λ,K (sh) and γ 11,t and γ 11,i are of the form sλϕO(1) + O λ,K (sh).

C.2. Proof of Lemma 3.5. As compared to the computation of the counterpart of I 21 in the proof of the semi-discrete Carleman estimate in [START_REF] Boyer | Discrete Carleman estimates and uniform controllability of semi-discrete parabolic equations[END_REF] (also denoted I 21 there) we need to compute the following additional terms,

Q ij = -2 Re Q p ij ṽj j D i v * i dt, for i = j, where p ij = -ξ 1,i ξ 2,i ξ 1,j ξ 2,j r 2 (D j D j ρ) D i ρ i . With Proposition 2.4, we have Q ij = -2 Re Q p ij D i v * i j ṽj dt = -2 Re Q p ij j D i v * i j ṽj dt Q a ij - h 2 2 Re Q (D j p ij )(D j D i v * i )ṽ j dt.
We now write

Q a ij = -2 Re Q p ij j ṽj i D i v * j dt = -2 Re Q p ij j i ṽj i D i v * j dt Q b ij - h 2 2 Q (D i p ij j ) |D i ṽj | 2 dt,
and with a discrete integration by parts in x i (Proposition 2.4) and Lemma 2.2 we have, as ṽj = 0 on

∂ i Q, Q b ij = - Q p ij j i D i |ṽ j | 2 dt = Q D i p ij j i |ṽ j | 2 dt = Q D i p ij j i |v| 2 j dt - h 2 4 Q D i p ij j i |D j v| 2 dt = Q D i p ij j i j |v| 2 dt - h 2 4 Q D i p ij j i |D j v| 2 dt
We thus have

Q ij = Q D i p ij j i j |v| 2 dt - h 2 2 Q (D i p ij j ) |D i ṽj | 2 dt - h 2 4 Q D i p ij j i |D j v| 2 dt - h 2 2 Re Q (D j p ij )(D j D i v * i ) ṽj dt,
Lemma C.6. We have

D i p ij j i j = 3s 3 λ 4 ξ 1,i ξ 2,i ξ 1,j ξ 2,j ϕ 3 (∂ i ψ) 2 (∂ j ψ) 2 + (sλϕ) 3 O(1) + s 2 O λ,K (1) + s 3 O λ,K ((sh) 2 ), D i p ij j = s 3 O λ,K (1), D i p ij j i = s 3 O λ,K (1), D j p ij = s 3 O λ,K (1).
The estimations follow from Proposition 2.13 and Corollary 2.8 arguing as in the proof of Lemmata C.2. By Young's inequality we now note that

h 2 2 Re Q (D i p ij )(D i D j v * j ) ṽi dt ≤ s 3 (sh) Q O λ,K (1)|ṽ i | 2 dt + sh 2 (sh) Q O λ,K (1)|D i D j v j | 2 dt ≤ s 3 (sh) Q O λ,K (1) |v| 2 i dt + sh 2 (sh) Q O λ,K (1)|D i D j v| 2 j dt ≤ s 3 (sh) Q O λ,K (1)|v| 2 dt + sh 2 (sh) Q O λ,K (1)|D i D j v| 2 dt,
since |ṽ i | 2 ≤ |v| 2 i and using Proposition 2.4. Proceeding similarly for the term in

|D i ṽj | 2 = D i v j 2 we then obtain Q ij ≥ 3s 3 λ 4 Q ξ 1,i ξ 2,i ξ 1,j ξ 2,j ϕ 3 (∂ i ψ) 2 (∂ j ψ) 2 |v| 2 dt + Q µ |v| 2 dt + Q ν i |D i v| 2 dt (C.10) + Q ν j |D j v| 2 dt + Q γ|D i D j v| 2 dt, with µ = (sλϕ) 3 O(1) + s 2 O λ,K (1) + s 3 O λ,K (sh), ν i = sO λ,K ((sh) 2 ), ν j = sO λ,K ((sh) 2 ), γ = sh 2 O λ,K (sh).
With the computation performed in [START_REF] Boyer | Discrete Carleman estimates and uniform controllability of semi-discrete parabolic equations[END_REF] (See Lemma 4.5 and its proof in Section B.4 in [START_REF] Boyer | Discrete Carleman estimates and uniform controllability of semi-discrete parabolic equations[END_REF]) we then obtain the sought estimate from below for I 21 .

C.3. Proof of Lemma 3.7. We see that 

Y = i∈ 1,d Q i (q i ) Nx+1 |D i v| 2 N i + 1 2 -(q i ) 0 |D i v| 2 1 2 dt with q i = (1 + O λ,K ((sh) 2 )) rD i ρ i .
Q ϕ|∂ t v| 2 dt = Q ϕ|∂ t v| 2 dt = Q ϕ i |∂ t v| 2 i dt + h 2 i 4 Q D i (ϕ)D i |∂ t v| 2 dt = Q ϕ i ∂ t v i 2 dt + h 2 i 4 Q ϕ i |D i ∂ t v| 2 dt - Q D i D i (ϕ)|∂ t v| 2 dt .
We thus have

Q ϕ|∂ t v| 2 dt ≥ h 2 i 4 Q ϕ i |D i ∂ t v| 2 dt - h 2 i 4 Q D i D i (ϕ)|∂ t v| 2 dt. (C.11)
Similarly, for i, j ∈ 1, d with i = j, we obtain

Q ϕ |D i v| 2 dt ≥ h 2 j 4 Q ϕ j |D j D i v| 2 dt - h 2 j 4 Q D j D j (ϕ) |D i v| 2 dt. (C.12) For i ∈ 1, d , we also write Q ϕ |D i v| 2 dt = h i 2 Q i (ϕ |D i v| 2 ) 1 2 + (ϕ |D i v| 2 ) Ni+ 1 2 dt + Q ϕ |D i v| 2 i dt =Q i
, by Proposition 2.4, and Lemma 2.2 yields

Q i = Q ϕ i |D i v| 2 i dt + h 2 i 4 Q (D i ϕ) D i |D i v| 2 dt = Q ϕ i D i v i 2 dt + h 2 i 4 Q ϕ i D i D i v 2 dt - h 2 i 4 Q (D i D i ϕ) |D i v| 2 dt + h 2 i 4 Q i (D i ϕ) Ni+1 |D i v| 2 N i + 1 2 -(D i ϕ) 0 |D i v| 2 1 2 dt.
We observe that

ν(h, λ) = h i 2 Q i (ϕ |D i v| 2 ) 1 2 + (ϕ |D i v| 2 ) N i + 1 2 dt + h 2 i 4 Q i (D i ϕ) Ni+1 |D i v| 2 N i + 1 2 -(D i ϕ) 0 |D i v| 2 1 2 dt,
can be made non-negative for h sufficiently small once λ is fixed as

D i ϕ = O λ (1).
We have

ϕ i = ϕ + h 2 O λ (1), ϕ i = ϕ + h 2 O λ (1), D j D i ϕ = O λ (1), i, j ∈ 1, d , j = i, D i D i ϕ = O λ (1), D i D i ϕ = O λ (1), i 1, d .
The result follows.

Appendix D. A fully-discrete elliptic Carleman estimate for uniform meshes.

In Section 3 we have derived a Carleman estimate for a semi-discrete elliptic operator having in mind applications to the controllability of semi-discrete and discrete parabolic equations. For completeness, in the present section we treat the case of fully discrete elliptic operator. Here we thus only consider variables in Ω ⊂ R d . The operator we consider is A M = -i∈ 1,d ξ 1,i D i ξ 2,i D i . The case of a non uniform mesh can be treated as in Section 4.

We choose here to treat the case of an inner-observation in ω Ω. The weight function we choose is different from that introduced in Section 3. It is of the form r = e sϕ with ϕ = e λψ , with ψ fulfilling the following assumption. Construction of such a weight function is classical (see e.g. [START_REF] Fursikov | Controllability of evolution equations[END_REF]). 

ψ > 0 in Ω, |∇ψ| ≥ c in Ω \ ω 0 , ∂ ni ψ(t, x) ≤ -c < 0 in (0, T ) × V ∂iΩ , ∂ 2 i ψ(x) ≥ 0 in V ∂ i Ω .
where

V ∂ i Ω is a sufficiently small neighborhood of ∂ i Ω in Ω, in which the outward unit normal n i to Ω is extended from ∂ i Ω. We also set ρ = r -1 .
The following notation is adapted to the fully-discrete setting of the present section

∇ ξ f = ξ 1,1 ξ 2,1 ∂ x1 f, . . . , ξ 1,d ξ 2,d ∂ x d f t , ∆ ξ f = i∈ 1,d ξ 1,i ξ 2,i ∂ 2 x i f.
As in Section 3 we use reg(ξ) to measure the boundedness of ξ 1,i and ξ 2,i and of their discrete derivatives as well as the distance to zero of ξ 1,i and ξ 2,i , i ∈ 1, d (see (3.1)-(3.2)). Here, by abuse of notation, the letters ξ 1,i , ξ 2,i will also refer to a Q 1 -interpolation on M and M i respectively. Note that the resulting interpolated functions are Lipschitz continuous with

ξ 1,i W 1,∞ ≤ Creg(ξ), ξ 2,i W 1,∞ ≤ Creg(ξ).
The enlarged neighborhood Ω of Ω introduced in Assumption 1.3 allows us to apply multiple discrete operators such as D i and A i on the weight functions. In particular, this then yields on

∂ i Ω (rD i ρ i ) |ki=0 ≤ 0, (rD i ρ i ) |ki=Ni+1 ≥ 0, i ∈ 1, d .
Theorem D.2. Let reg 0 > 0 be given. For the parameter λ ≥ 1 sufficiently large, there exist C, s 0 ≥ 1, h 0 > 0, ε 0 > 0, depending on ω and reg 0 , such that for any ξ 1,i , ξ 2,i , i ∈ 1, d , with reg(ξ) ≤ reg 0 we have

s 3 e sϕ u 2 L 2 (Ω) + s i∈ 1,d e sϕ D i u 2 L 2 (Ω) + s i∈ 1,d |e sϕ D i u| 2 L 2 (∂ i Ω)
≤ C λ 1 ,K,ε 0 ,s 0 e sϕ A M u 2 L 2 (Ω) + s 3 e sϕ u 2 L 2 (ω) .

for all s ≥ s 0 , 0 < h ≤ h 0 and sh ≤ ε 0 , and u ∈ C M∪∂M , satisfying u |∂Ω = 0.

Proof. We set f := -A M u and v = ru that satisfies

r i∈ 1,d ξ 1,i D i ξ 2,i D i (ρv) = rf.
Arguing as in the proof of Theorem 3.1 we then write Av + Bv = g with A = A 1 + A 2 and B = B 1 + B 2 and

A 1 v = i∈ 1,d ξ 1,i r ρi i D i (ξ 2,i D i v), A 2 v = i∈ 1,d ξ 1,i ξ 2,i r(D i D i ρ) ṽi i , B 1 v = 2 i∈ 1,d ξ 1,i ξ 2,i rD i ρ i D i v i , B 2 v = -2s(∆ ξ ϕ)v g = rf - i∈ 1,d h i 4 ξ 1,i rD i ρ i (D i ξ 2,i )(τ + i D i v -τ - i D i v) - i∈ 1,d h 2 i 4 ξ 1,i (D i ξ 2,i )r(D i D i ρ)D i v i -h i i∈ 1,d O(1)rD i ρ i D i v i - i∈ 1,d ξ 1,i r(D i ξ 2,i )D i ρ i + h i O(1)r(D i D i ρ) ṽi i -2s(∆ t,x ϕ)v.
The proof of Lemma 3.2 can be directly adapted and we have , with δ

g 2 L 2 (Ω) ≤ C λ,K rf 2 L 2 (Ω) + s 2 v 2 L 2 (Ω) + (sh) 2 i∈ 1,d D i v 2 L 2 (Ω) . (D.
(2) 11,i = sh i λϕO(1) + sh i O λ,K (sh). For a proof, see the proof of Lemma 3.3 in Appendix C and only consider the terms Q ii and Q ij .

Lemma D.4 (Estimate of I 12 ). For sh ≤ K, the term I 12 is of the following form

I 12 ≥ 2sλ 2 ϕ 1 2 |∇ ξ ψ| ξ v 2
L 2 (Ω) -X 12 , with

X 12 = i∈ 1,d Ω ν 12,i |D i v| 2 + Ω µ 12 |v| 2 ,
where µ 12 = s 2 O λ,K (1), and ν 12,i = sλϕO(1) + sO λ,K (sh).

Lemma D.5 (Estimate of I 21 ). For sh ≤ K, the term I 21 can be estimated from below in the following way where µ 22 = (sλϕ) 3 O(1) + s 2 O λ,K (1) + s 3 O λ,K (sh), and ν 22,i = sO λ,K (sh).

I 21 ≥ 3s 3 λ 4 ϕ 3 2 |∇ ξ ψ| 2 v 2 L 2 (Ω) + Y 21 -W 21 -X 21 , with Y 21 = i∈ 1,d Ωi O λ,K ((sh) 2 )(rD i ρ i ) 0 |D i v | 1 2 | 2 + i∈ 1,d Ω i O λ,K ((sh) 2 )(rD i ρ i ) Nx+1 |D i v |N x + 1 2 | 2 , W 21 = i,
With the previous lemmata, arguing as in the proof of Theorem 3.1, using that

(rD i ρ i ) N i +1 ≥ c > 0 and -(rD i ρ i ) 0 ≥ c > 0 on Ω i , 1 ≤ i ≤ d
by Assumption D.1 since rD i ρ i = -sλ(∂ i ψ)ϕ + sO λ,K (sh), we obtain that for some λ 1 ≥ 1 sufficiently large, s 1 (λ 1 ) > 1, h 1 (λ) > 0 and ε 1 (λ 1 ) > 0 then for λ = λ 1 (fixed for the rest of the proof), s ≥ s 1 (λ 1 ), 0 < h ≤ h 1 (λ 1 ) and sh ≤ ε 1 (λ 1 ) we have

s 3 v 2 L 2 (Ω) + s i∈ 1,d D i v 2 L 2 (Ω) + s i∈ 1,d |D i v| 2 L 2 (∂iΩ) ≤ C λ1,K,ε0,s0 rf 2 L 2 (Ω) + s 3 v 2 L 2 (ω 0 ) + s i∈ 1,d D i v 2 L 2 (ω 0 ) .
Observe that the terms

s 3 v 2 L 2 (ω0) + s i∈ 1,d D i v 2 L 2 (ω0)
in the r.h.s. appear as we only have |∇ψ| ≥ c > 0 in Ω\ω 0 . Adding these two terms on the both sides of the estimate allows us to then proceed as in Section 3. In particular We can then use a result similar to that of Lemma 3.8. Proceeding as in the end of proof of Theorem 4.1 in [START_REF] Boyer | Discrete Carleman estimates and uniform controllability of semi-discrete parabolic equations[END_REF] It thus remains to eliminate the last term in the r.h.s.. To that purpose we adapt the procedure followed in the continuous case (see e.g. [START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems and application to controllability[END_REF][START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators[END_REF]). We multiply the equation satisfied by u, i.e. A M u = f , by sr 2 χu * , where χ ∈ C ∞ c (ω) is such that χ ≥ 0 and χ = 1 in a neighborhood of ω 0 . We then integrate over Ω:

-Re s i∈ 1,d Ω ξ 1,i r 2 χu * D i (ξ 2,i D i u) = Re s Ω r 2 χu * f. (D.2)
We first note that the r.h.s. can be estimated by In ω 0 , for h sufficiently small, we have

ξ 1,i r 2 χ i ≥ ξ 1,i r 2 i = ξ 1,i i r 2 i + h 2 i 4 (D i ξ 1,i )(D i r 2 ).
The results of the lemmata of Section 2.2 remain valid for r 2 in place of r, i.e. for s changed into 2s. As ξ 1,i i = ξ 1,i + hO(1) and D i ξ 1,i = O(1) we thus find ξ 1,i r 2 χ i ≥ r 2 (ξ 1,i + hO(1) + O λ,K ((sh) 2 ).

For the first term in the r.h.s. of (D.4) it follows that, for h and sh sufficiently small, For s sufficiently large we thus obtain the desired Carleman estimate.

s i∈ 1,d Ω ξ 2,i ξ 1,i r 2 χ i |D i u| 2 ≥

  1. Introduction and settings. Let d ≥ 2, L 1 , . . . , L d be positive real numbers, and Ω = 1≤i≤d [0, L i ]. We set x = (x 1 , . . . , x d ) ∈ Ω. With ω Ω we consider the following parabolic problem in (0, T ) × Ω, with T > 0,∂ t y -∇ x • (Γ∇ x y) = 1 ω v in (0, T ) × Ω, y |∂Ω =0, and y |t=0 = y 0 , (1.1) where the diagonal diffusion tensor Γ(x) = Diag(γ 1 (x), . . . , γ d (x)) with γ i (x) > 0 satisfies reg(Γ) def = sup x∈Ω i=1,...,d γ i (x) + 1 γ i (x) + |∇ x γ i (x)| < +∞. (1.2)

  1.1. Above, the definitions of b k , b i k , and b ij k look similar. They are however different as each time the multi-index k = (k 1 , . . . , k d ) is chosen in a different set: N, N i and N ij respectively.

Assumption D. 1 .

 1 Let ω 0 ω be an open set. Let Ω be a smooth open and connected neighborhood of Ω in R d . The function ψ = ψ(x) is in C p ( Ω, R), p sufficiently large, and satisfies, for some c > 0,

2

  j∈ 1,d i =j Ω γ 21,ij |D i D j v| 2 , X 21 = Ω µ 21 |v| 2 + i∈ 1,d Ω ν 21,i |D i v| 2 ,whereγ 21,ij = hO λ,K ((sh) 2 ), µ 21 = (sλϕ) 3 O(1) + s 2 O λ,K (1) + s 3 O λ,K (sh), ν 21,i = sO λ,K ((sh) 2 ).For a proof, adapt the proof of Lemma 3.5 in Appendix C as was done for Lemma D.3. Lemma D.6 (Estimate of I 22 ). For sh ≤ K, the term I 22 is of the following formI 22 = -2s 3 λ 4 ϕ 3 |∇ ξ ψ| 2 v 2 L 2 (Ω) -X 22 , with X 22 = Ω µ 22 |v| 2 + i∈ 1,d Ω ν 22,i |D i v| 2

Re s Ω r 2

 2 χu * f ≤ C rf 2 L 2 (Ω) + s 2 C ru 2 L 2 (ω) . (D.3)In the l.h.s. of (D.2) we perform a discrete integration by parts to yield-Re s i∈ 1,d Ω ξ 1,i r 2 χu * D i (ξ 2,i D i u) = Re s i∈ 1,d Ω D i (ξ 1,i r 2 χu * )ξ 2,i D i u = s i∈ 1,d Ω ξ 2,i ξ 1,i r 2 χ i |D i u| 2 + Re s i∈ 1,d Ω ξ 2,i D i (ξ 1,i r 2 χ) u * i D i u (D.4)

  By (3.3) we have Y ≥ 0 for sh sufficiently small. C.4. Proof of Lemma 3.8. We choose i ∈ 1, d . With Lemmata 2.5 and 2.2 and Proposition 2.4, we have

  1)Developing the inner-product Re (Av, Bv) L 2 (Ω) , we setI ij = Re (A i v, B j v) L 2 (Ω) .Lemma D.3 (Estimate of I 11 ). For sh ≤ K, the term I 11 can be estimated from below in the following wayI 11 ≥ -sλ 2 ϕ 1 2 |∇ ξ ψ| ξ v 2 L 2 (Ω) + Y 11 -X 11 -W 11 -J 11 ,with ν 11,i and ν 11,i of the form sλϕO(1) + sO λ,K (sh) and 11,ij|D i D j v| 2 + i∈ 1,d Ω γ 11,ii |D i D i v| 2 ,with γ 11,ij and γ 11,ii of the form h 2 sλϕO(1) + sO λ,K (sh) and

	with				
	Y 11 =	i∈ 1,d Ω i	(ξ 2 1,i ξ 2 2,N i + 1 2
						-(ξ 2 1,i ξ 2 2,1 2	,
	and				
			X 11 =	
				i∈ 1,d Ω
		W 11 =		
				i,j∈ 1,d	
				i =j	
		J 11 =	i∈ 1,d Ω i	(δ	(2) 11,i ) Ni+ 1 2 |D i v| 2 N i + 1 2	+ (δ 11,i ) 1 (2) 2 |D i v| 2 1 2

i + O λ,K ((sh) 2 )) rD i ρ i N i +1 |D i v| 2 i + O λ,K ((sh) 2 )) rD i ρ i 0 |D i v| 2 ν 11,i |D i v| 2 + i∈ 1,d Ω ν 11,i |D i v i | 2 , Ω γ

  we obtains 3 e sϕ u 2 L 2 (Ω) + s ≤ C λ 1 ,K,ε 0 ,s 0 e sϕ f 2 L 2 (Ω) + s 3 e sϕ u 2 L 2 (ω 0 ) + s i∈ 1,d e sϕ D i u 2 L 2 (ω 0 ) .

	i∈ 1,d	e sϕ D i u 2 L 2 (Ω) + s	i∈ 1,d	|e sϕ D i u| 2 L 2 (∂iΩ)

  D i (ξ 1,i r 2 χ) u * i D i u D i (r 2 ) ξ 1,i χ i D i |u| 2 .Arguing as above, the first term in the r.h.s. of (D.6) can be estimated byRe s Ω ξ 2,i r 2 i D i (ξ 1,i χ) u * i D i u ≤ C rD i u 2 L 2 (Ω) + Cs 2 ru 2 L 2 (ω) , (D.7)for h and sh sufficiently small, as supp(χ) ω. For the second term in the r.h.s. of (D.6) a discrete integration by parts yieldsD i (ξ 2,i D i (r 2 ) ξ 1,i χ i )|u| 2With the results of Section 2.2, using thatD i ξ 1,i = O(1) and D i ξ 2,i = O(1) we find D i (r 2 ) ξ 1,i χ i D i |u| 2 ≤ Cs 3 ru 2 L 2 (ω) ,

	1 2	s	i∈ 1,d Ω	ξ 2,i D i (r 2 ) ξ 1,i χ i D i |u| 2 = -	1 2	s	i∈ 1,d Ω
						1 2	s	i∈ 1,d Ω	ξ 2,i (D.8)
	for h and sh sufficiently small.
	With (D.2)-(D.8) we conclude that
	s	i∈ 1,d	rD i u 2 L 2 (ω0) ≤ C rf 2 L 2 (Ω) + s 3 ru 2 L 2 (ω) +	i∈ 1,d	rD i u 2 L 2 (Ω) .
								Cs	i∈ 1,d	rD i u 2 L 2 (ω 0 ) .	(D.5)
	For second term in the r.h.s. of (D.4) we write
	Re s ξ 2,i = Re s i∈ 1,d Ω i∈ 1,d Ω	ξ 2,i r 2 i D i (ξ 1,i χ) u * i D i u +	1 2	s	i∈ 1,d Ω	ξ 2,i (D.6)
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