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DISCRETE CARLEMAN ESTIMATES FOR ELLIPTIC OPERATORS
IN ARBITRARY DIMENSION AND APPLICATIONS∗

FRANCK BOYER†§ , FLORENCE HUBERT‡§ , AND JÉRÔME LE ROUSSEAU¶

Abstract. In arbitrary dimension, we consider the semi-discrete elliptic operator −∂2
t + AM,

where AM is a finite difference approximation of the operator −∇x(Γ(x)∇x). For this operator
we derive a global Carleman estimate, in which the usual large parameter is connected to the dis-
cretization step-size. We address discretizations on some families of smoothly varying meshes. We
present consequences of this estimate such as a partial spectral inequality of the form of that proven
by G. Lebeau and L. Robbiano for AM and a null controllability result for the parabolic operator
∂t + AM, for the lower part of the spectrum of AM. With the control function that we construct
(whose norm is uniformly bounded) we prove that the L2-norm of the final state converges to zero
exponentially, as the step-size of the discretization goes to zero. A relaxed observability estimate is
then deduced.

Key words. Elliptic operator – discrete and semi-discrete Carleman estimates – spectral in-
equality – control – parabolic equations.

AMS subject classifications. 35K05 - 65M06 - 93B05 - 93B07 - 93B40

1. Introduction and settings. Let d ≥ 2, L1, . . . , Ld be positive real numbers,
and Ω =

∏
1≤i≤d

[0, Li]. We set x = (x1, . . . , xd) ∈ Ω. With ω b Ω we consider the

following parabolic problem in (0, T )× Ω, with T > 0,

∂ty −∇x · (Γ∇xy) = 1ωv in (0, T )× Ω, y|∂Ω = 0, and y|t=0 = y0, (1.1)

where the diagonal diffusion tensor Γ(x) = Diag(γ1(x), . . . , γd(x)) with γi(x) > 0
satisfies

reg(Γ) def= sup
x∈Ω

i=1,...,d

(
γi(x) +

1
γi(x)

+ |∇xγi(x)|
)
< +∞. (1.2)

The null-controllability problem consists in finding v ∈ L2((0, T ) × Ω) such that
y(T ) = 0. This problem was solved in the 90’s by G. Lebeau and L. Robbiano [LR95]
and A. Fursikov and O. Yu. Imanuvilov [FI96].

Let us consider the elliptic operator on Ω given by

A = −∇x · (Γ∇x) = − ∑
1≤i≤d

∂xi(γi∂xi)

with homogeneous Dirichlet boundary conditions on ∂Ω. We shall introduce a finite-
difference approximation of the operator A. For a mesh M that we shall describe
below, associated with a discretization step h, the discrete operator will be denoted
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by AM. It will act on a finite dimensional space CM, of dimension |M|, and will be
selfadjoint for a suitable inner product in CM. Our main result is a Carleman-type
estimate for the “extended” semi-discrete elliptic operator, −∂2

t + AM. Here, the
additional variable t is not directly connected to the time variable in the parabolic
problem above. In the discrete setting, such a result was obtained in [BHL09a] in
the one-dimensional case. Here, we extend this result to any space dimension. Note
that we also prove a Carleman estimate for AM itself. For Carleman estimates in the
continuous case we refer to [Hör63, Zui83, Hör85, LR95, FI96, LR97, LL09]. Note that
an earlier attempt at deriving discrete Carleman estimates can be found in [KS91].
The result presented in [KS91] cannot be used here as the condition imposed by
these authors on the discretization step size, in connection to the large Carleman
parameter, is too strong for the applications we have in mind to the problem of
uniform controllability properties for semi-discrete parabolic problems.

We now describe an important consequence of the Carleman estimate we prove,
which was the main motivation of this work. We denote by φM a set of discrete
orthonormal eigenfunctions, φj ∈ CM, 1 ≤ j ≤ |M|, of the operator AM, and by
µM = {µj , 1 ≤ j ≤ |M|} the set of the associated eigenvalues sorted in a non-
decreasing sequence. The following (partial) spectral inequality is then a corollary of
the semi-discrete Carleman estimate we prove:

∑
µk∈µM

µk≤µ

|αk|2 =
∫
Ω

∣∣∣ ∑
µk∈µM

µk≤µ

αkφk

∣∣∣
2

≤ CeC
√
µ

∫
ω

∣∣∣ ∑
µk∈µM

µk≤µ

αkφk

∣∣∣
2

, ∀(αk)1≤k≤|M| ⊂ C,

(1.3)

for µh2 ≤ CS with CS and h sufficiently small (integrals of discrete functions are
introduced below). This type of spectral inequality goes back to the work of G. Lebeau
and L. Robbiano [LR95] (see also [LZ98a, JL99]). As opposed to the continuous case
this inequality is not valid for the whole spectrum. The condition µh2 ≤ CS with CS
small, states that it is only valid for a constant lower portion of the spectrum. This
condition cannot be relaxed. The optimal value of CS is not known at this point and
certainly depends, at least, on the geometry of ω.

The spectral inequality (1.3) then implies the null-controllability of system (1.1)
for the lower part of the spectrum µ ≤ CS/h

2, i.e., for any initial condition y0 ∈ CM,
there exists a control v in L2((0, T ) × Ω) (the semi-discrete functional spaces we
shall use will be made precise below) with ‖v‖L2((0,T )×Ω) ≤ C|y0|L2(Ω) such that
(y(T ), φk) = 0 if µkh2 ≤ CS . Moreover, the remainder satisfies |y(T )|L2(Ω) ≤
e−C/h

2 |y0|L2(Ω). We thus obtain an exponential convergence as h goes to 0. Accurate
statements of the results we have just described are given in Section 1.2.

The form of the relaxed observability estimate that follows from this controllabil-
ity result has been the inspiration for the study of Carleman estimates for semi-discrete
parabolic operators [BHL10]. The spectral inequality (1.3) is also at the heart of the
work carried out by the authors on the numerical analysis of the fully-discretized
parabolic control problem in [BHL09b].

In two dimensions, for finite differences, there is a counterexample to the null and
approximate controllabilities for uniform grids on a square domain for distributed or
boundary controls due to O. Kavian (see [Zua06]). It exploits an explicit eigenfunction
of AM in two dimensions that is solely localized on the diagonal of the square domain.
This eigenfunction is associated with an eigenvalue in the higher part of the spectrum.
Our result may thus seem rather optimal in dimension greater that two.
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In dimension one, there is a null controllability result due to A. Lopez and
E. Zuazua [LZ98b] for the entire spectrum in the case of a constant diffusion co-
efficient and for a constant step size finite-difference discretization. In dimension one,
our method based on the proof of discrete Lebeau-Robbiano spectral inequality can-
not achieve such a result. In fact, one can notice that (1.3) cannot hold for the full
spectrum. In dimension one, the generalization of the result of [LZ98b] to a non
constant coefficient and non uniform meshes remains an open problem.

We now present the precise settings we shall work with.
For 1 ≤ i ≤ d, i ∈ N, we set Ωi =

∏
1≤j≤d

j 6=i

[0, Lj ]. For T > 0 we introduce

Q = (0, T )× Ω, Qi = (0, T )× Ωi, 1 ≤ i ≤ d.

We also set boundaries as (see Figure 1)

∂−i Ω =
∏

1≤j<i
[0, Lj ]× {0} ×

∏
i<j≤d

[0, Lj ], ∂+
i Ω =

∏
1≤j<i

[0, Lj ]× {Li} ×
∏

i<j≤d
[0, Lj ],

∂iΩ = ∂+
i Ω ∪ ∂−i Ω, ∂Ω = ∪

1≤i≤d
∂iΩ.

0

Ω1

∂+
1 Ω

Ω2
L1

L2

∂−1 Ω

∂+
2 Ω

∂−2 Ω

Fig. 1. Notation for the boundaries

1.1. Discrete settings. Here, we precisely define the type of mesh and dis-
cretization we shall use. The notation we introduce is technical, and yet will allow us
to use a formalism as close as possible to the continuous case, in particular for norms
and integrations. Then most of the computations we carry out can be read in a very
intuitive manner, which will ease the reading of the article. Most of the discrete for-
malism will then be hidden in the subsequent sections. The notation below is however
necessary for a complete and precise reading of the proofs.

We shall use the notation Ja, bK = [a, b] ∩ N.

1.1.1. Primal mesh. For i ∈ J1, dK and Ni ∈ N∗, let

0 = xi,0 < xi,1 < · · · < xi,Ni < xi,Ni+1 = Li.
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xi,l

0

xi,0 xi,1

xi, 1
2

xi,l−1

hi,l− 1
2

xi,l− 1
2

xi,l+ 1
2

hi,l

Li

xi,Ni xi,Ni+1

Fig. 2. Discretization in the ith direction.

We introduce the following set of indices,

N :=
{
k = (k1, . . . , kd); ki ∈ J1, NiK, i ∈ J1, dK}.

For k = (k1, . . . , kd) ∈ N we set xk = (x1,k1 , . . . , xd,kd
) ∈ Ω. We refer to this

discretization as to the primal mesh

M :=
{
xk; k ∈ N

}
, with |M| := ∏

i∈J1,dK
Ni.

For i ∈ J1, dK and l ∈ J0, NiK we set

hi,l+ 1
2

= xi,l+1 − xi,l, xi,l+ 1
2

= (xi,l+1 + xi,l)/2,

and

hi = max
l∈J0,NiK

hi,l+ 1
2
, i ∈ J1, dK, h = max

i∈J1,dK
hi.

For i ∈ J1, dK and l ∈ J1, NiK, we set

hi,l = xi,l+ 1
2
− xi,l− 1

2
= (hi,l+ 1

2
+ hi,l− 1

2
)/2.

See Figure 2, where the introduced notation is illustrated.

1.1.2. Boundary of the primal mesh. To introduce boundary conditions in
the ith direction and related trace operators (see Section 1.1.5) we set ∂iN = ∂−i N ∪
∂+
i N with

∂−i N =
{
k = (k1, . . . , kd); kj ∈ J1, NjK, j ∈ J1, dK, j 6= i, ki = 0

}
,

∂+
i N =

{
k = (k1, . . . , kd); kj ∈ J1, NjK, j ∈ J1, dK, j 6= i, ki = Ni + 1

}
,

and

∂N = ∪
i∈J1,dK

∂iN, ∂M =
{
xk; k ∈ ∂N

}
, ∂±i M =

{
xk; k ∈ ∂±i N

}
.

Notice that ∂±i M is nothing but the set of points of the primal mesh which are located
on the boundary ∂±i Ω.

1.1.3. Dual meshes. We will need to operate discrete derivatives on functions
defined on the primal mesh (see Section 1.1.6). It is easily seen that these derivatives
are naturally associated to another set of meshes, called dual meshes. In fact there
will be two kinds of such meshes: the ones associated to first order discrete derivation
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and the ones associated to second order discrete derivation. Let us define precisely
these new meshes.

For i ∈ J1, dK, we introduce a second type of sets of indices

N
i

:=
{

k = (k1, . . . , kd); kj ∈ J1, NjK j ∈ J1, dK, j 6= i,

and ki = l +
1
2
, l ∈ J0, NiK

}
.

For j ∈ J1, dK, j 6= i, we also set ∂jN
i

= ∂−j N
i ∪ ∂+

j N
i

with

∂−j N
i

=
{

k = (k1, . . . , kd); ki′ ∈ J1, Ni′K, i′ ∈ J1, dK, i′ 6= i, i′ 6= j,

ki = l +
1
2
, l ∈ J0, NiK, and kj = 0

}
,

∂+
j N

i

=
{

k = (k1, . . . , kd); ki′ ∈ J1, Ni′K, i′ ∈ J1, dK, i′ 6= i, i′ 6= j,

ki = l +
1
2
, l ∈ J0, NiK, and kj = Nj + 1

}
,

and ∂N
i

= ∪ j∈J1,dK
j 6=i

∂jN
i

. We moreover introduce ∂iN
i

= ∂−i N
i ∪ ∂+

i N
i

with

∂−i N
i

=
{

k = (k1, . . . , kd); kj ∈ J1, NjK, j ∈ J1, dK, j 6= i, ki =
1
2

}
,

∂+
i N

i

=
{

k = (k1, . . . , kd); kj ∈ J1, NjK, j ∈ J1, dK, j 6= i, ki = Ni +
1
2

}
.

Remark that ∂iN
i ⊂ N

i

whereas ∂jN
i 6⊂ N

i

for j 6= i.

For i, j ∈ J1, dK, i 6= j, we introduce a third type of sets of indices

N
ij

:=
{

k = (k1, . . . , kd); ki′ ∈ J1, Ni′K, i′ ∈ J1, dK, i′ 6= i, i′ 6= j

and ki = l1 +
1
2
, l1 ∈ J0, NiK, kj = l2 +

1
2
, l2 ∈ J0, NjK,

}
.

For l ∈ J1, dK, l 6= i, l 6= j, we also set ∂lN
ij

= ∂−l N
ij ∪ ∂+

l N
ij

with

∂−l N
ij

=
{

k = (k1, . . . , kd); ki′ ∈ J1, Ni′K, i′ ∈ J1, dK, i′ 6= i, i′ 6= j, i′ 6= l,

ki = l1 +
1
2
, l1 ∈ J0, NiK, kj = l2 +

1
2
, l2 ∈ J0, NjK, and kl = 0

}
,

∂+
l N

ij

=
{

k = (k1, . . . , kd); ki′ ∈ J1, Ni′K, i′ ∈ J1, dK, i′ 6= i, i′ 6= j, i′ 6= l,

ki = l1 +
1
2
, l1 ∈ J0, NiK, kj = l2 +

1
2
, l2 ∈ J0, NjK, and kl = Nl + 1

}
,

and ∂N
ij

= ∪ l∈J1,dK
l6=i,l6=j

∂lN
ij

. Moreover we set ∂iN
ij

= ∂−i N
ij ∪ ∂+

i N
ij

with

∂−i N
ij

=
{

k = (k1, . . . , kd); ki′ ∈ J1, Ni′K, i′ ∈ J1, dK, i′ 6= i, i′ 6= j,

ki =
1
2
, kj = l +

1
2
, l ∈ J0, NjK

}
,

∂+
i N

ij

=
{

k = (k1, . . . , kd); ki′ ∈ J1, Ni′K, i′ ∈ J1, dK, i′ 6= i, i′ 6= j,

ki = Ni +
1
2
, kj = l +

1
2
, l ∈ J0, NjK

}
.
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x1,1
x1,2

x1,3 x1,k

x1,k+1
x1,N1

(a)

(c)

(b)

x1, 1
2

x1, 3
2x1, 5

2
x1,N1− 1

2

x1,N1+ 1
2

L10

(d)

x2,1

x2,2

x2,3

x2,k′

x2,k′+1

x2,N2

L2 = x2,N2+1

0 = x2,0

x1,0 x1,N1+1

0 L1

x2, 3
2

x2, 5
2

x2, 1
2

x2,k′− 1
2

x2,k′+ 1
2

x2,N2− 1
2

x2,N2+ 1
2

0

L2

Fig. 3. Primal mesh and dual meshes in the two-dimensional case. The mesh points are marked
by black discs. Available boundary mesh points are marked with white discs. (a) M and ∂M; (b)

M
1

and ∂M
1
; (c) M

2
and ∂M

2
; (d) M

12
.

For k = (k1, . . . , kd) ∈ N
i

or ∂N
i

(resp. N
ij

or ∂N
ij

) we also set xk = (x1,k1 , . . . , xd,kd
),

which gives the following dual meshes

M
i

:=
{
xk; k ∈ N

i}
, ∂M

i

:=
{
xk; k ∈ ∂N

i}
, ∂±j M

i

:=
{
xk; k ∈ ∂±j N

i}
,

(
resp. M

ij

:=
{
xk; k ∈ N

ij}
, ∂M

ij

:=
{
xk; k ∈ ∂N

ij}
,

∂±l M
ij

:=
{
xk; k ∈ ∂±l N

ij})
.

The geometry of the different meshes we have introduced is illustrated in Figure 2 in
the two dimensional case.

In the present article, we shall only consider some families of regular non uniform
meshes, that will be precisely defined in Section 1.1.8. Note that the extension of our
results to more general mesh families does not seem to be straightforward.

1.1.4. Discrete functions. We denote by CM (resp. CMi or CMij ) the sets of
discrete functions defined on M (resp. M

i

or M
ij

) respectively. If u ∈ CM (resp. CMi

or CMij ), we denote by uk its value corresponding to xk for k ∈ N (resp. k ∈ N
i

or
k ∈ N

ij

). For u ∈ CM we define

uM =
∑

k∈N

1bk
uk ∈ L∞(Ω), with bk =

∏
i∈J1,dK

[xi,ki− 1
2
, xi,ki+

1
2
], k ∈ N. (1.4)
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Since no confusion is possible, by abuse of notation we shall often write u in place of
uM. For u ∈ CM we define

∫∫
Ω

u :=
∫∫
Ω

uM(x) dx =
∑

k∈N

∣∣bk
∣∣uk, where

∣∣bk
∣∣ =

∏
i∈J1,dK

hi,ki
, k ∈ N.

For some u ∈ CM, we shall need to associate boundary values

u∂M =
{
uk; k ∈ ∂N

}
,

i.e., the values of u at the point xk ∈ ∂M. The set of such extended discrete functions
is denoted by CM∪∂M. Homogeneous Dirichlet boundary conditions then consist in
the choice uk = 0 for k ∈ ∂N, in short u∂M = 0 or even u|∂Ω = 0 by abuse of notation
(see also Section 1.1.5 below).

Similarly, for u ∈ CMi (resp. CMij ) we shall associate the following boundary
values

u∂Mi

=
{
uk; k ∈ ∂N

i} (
resp. u∂Mij

=
{
uk; k ∈ ∂N

ij})
.

The set of such extended discrete functions is denoted by CMi∪∂Mi (resp. CMij∪∂Mij ).
For u ∈ CMi (resp. CMij ) we define

uMi

=
∑

k∈N
i

1
b

i
k
uk ∈ L∞(Ω) with b

i

k =
∏

l∈J1,dK
[xl,kl− 1

2
, xl,kl+

1
2
], k ∈ N

i

,

(
resp.uMij

=
∑

k∈N
ij

1
b

ij
k
uk ∈ L∞(Ω) with b

ij

k =
∏

l∈J1,dK
[xl,kl− 1

2
, xl,kl+

1
2
], k ∈ N

ij
)
.

As above, for u ∈ CMi (resp. CMij ), we define
∫∫
Ω

u :=
∫∫
Ω

uMi

(x) dx =
∑

k∈N
i

∣∣bi

k

∣∣uk, where
∣∣bi

k

∣∣ =
∏

l∈J1,dK
hl,kl

, k ∈ N
i

,

(
resp.

∫∫
Ω

u :=
∫∫
Ω

uMij

(x) dx =
∑

k∈N
ij

∣∣bij

k

∣∣uk, where
∣∣bij

k

∣∣ =
∏

l∈J1,dK
hl,kl

, k ∈ N
ij
)
.

Remark 1.1. Above, the definitions of bk, b
i

k, and b
ij

k look similar. They are
however different as each time the multi-index k = (k1, . . . , kd) is chosen in a different
set: N, N

i

and N
ij

respectively.

With u(t) in CM (resp. CMi or CMij ) for all t ∈ (0, T ), we shall write
∫∫∫

Q
u dt =∫ T

0

∫∫
Ω
u(t) dt. In particular we define the following L2 inner product on CM (resp.

CMi or CMij )

(u, v)L2(Ω) =
∫∫
Ω

uv∗ =
∫∫
Ω

uM(x)(vM(x))∗ dx, (1.5)
(
resp. (u, v)L2(Ω) =

∫∫
Ω

uv∗ =
∫∫
Ω

uMi

(x)(vMi

(x))∗ dx,

or (u, v)L2(Ω) =
∫∫
Ω

uv∗ =
∫∫
Ω

uMij

(x)(vMij

(x))∗ dx
)
.

The associated norms will be denoted by |u|L2(Ω). For semi-discrete function u(t),
t ∈ (0, T ), as above we shall also use the following L2 norm:

‖u(t)‖2L2(Q) =
T∫
0

∫∫
Ω

|u(t)|2dt.
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1.1.5. Traces. Let i ∈ J1, dK. For u ∈ CM∪∂M (resp. CMj∪∂Mj , j 6= i), its trace
on ∂+

i Ω, corresponds to k ∈ ∂+
i N (resp. ∂+

i N
j

), i.e., ki = Ni + 1 in our discretiza-
tion and will be denoted by u|ki=Ni+1 or simply uNi+1. Similarly its trace on ∂−i Ω,
corresponds to k ∈ ∂−i N (resp. ∂−i N

j

), i.e., ki = 0 and will be denoted by u|ki=0 or
simply u0. The latter notation will be used if no confusion is possible, if the context
indicates that the trace is taken on ∂−i Ω.

By abuse of notation, we shall also use ∂iΩ, i ∈ J1, dK, to denote the boundaries
of Ω in the discrete setting. For homogeneous Dirichlet boundary condition we shall
write

v|∂iΩ = 0 ⇔ v|ki=0 = v|ki=Ni+1 = 0.

For v ∈ CMi∪∂Mi (resp. CMij∪∂Mij , j 6= i), its trace on ∂+
i Ω, corresponds to

k ∈ ∂+
i N

i

(resp. ∂+
i N

ij

), i.e., ki = Ni + 1
2 in our discretization and will be denoted

by v|ki=Ni+
1
2

or simply vNi+
1
2
. Similarly its trace on ∂−i Ω, corresponds to k ∈ ∂−i N

i

(resp. ∂−i N
ij

), i.e., ki = 1
2 and will be denoted by v|ki=

1
2

or simply v 1
2
. The latter

notation will be used if no confusion is possible, if the context indicates that the trace
is taken on ∂−i Ω.

For such functions u ∈ CM∪∂M (resp. CMj∪∂Mj , j 6= i) we can then define surface
integrals of the type

∫
∂+

i Ω

u|∂+
i Ω =

∫
Ωi

u|ki=Ni+1 =
∑

k∈∂
+
i

N

(resp. k∈∂
+
i

Nj)

∣∣∂ibk
∣∣uk,

where
∣∣∂ibk

∣∣ =
∏

l∈J1,dK
l6=i

hl,kl
, k ∈ ∂+

i N (resp. ∂+
i N

j

),

and for v ∈ CMi∪∂Mi (resp. CMij∪∂Mij , j 6= i)
∫
∂+

i Ω

v|∂+
i Ω =

∫
Ωi

v|ki=Ni+
1
2

=
∑

k∈∂
+
i

Ni

(resp. k∈∂
+
i

Nij)

∣∣∂ibi

k

∣∣ vk,

where
∣∣∂ibi

k

∣∣ =
∏

l∈J1,dK
l 6=i

hl,kl
, k ∈ ∂+

i N
i

(resp. ∂+
i N

ij

).

Observe that if k ∈ ∂+
i N (resp. ∂+

i N
j

) and k′ ∈ ∂+
i N

i

(resp. ∂+
i N

ij

) with kl = k′l for
l 6= i then

∣∣∂ibk
∣∣ =

∣∣∂ibi

k′
∣∣. We thus have

∫
∂+

i Ω

v|∂+
i Ω =

∫
Ωi

v|ki=Ni+
1
2

=
∫
Ωi

(τ−i v)|ki=Ni+1 =
∫
∂+

i Ω

(τ−i v)|∂+
i Ω

where τ−i v ∈ CM∪∂−i M (resp. CMj∪∂−i Mj ) with the translation operator τ−i defined in
Section 1.1.6. It is then natural to define the following integrals

∫
Ωi

uNi+1vNi+
1
2

=
∫
Ωi

u|ki=Ni+1v|ki=Ni+
1
2

=
∫
Ωi

(u τ−i v)|ki=Ni+1 =
∫
∂+

i Ω

u(τ−i v)|∂+
i Ω.

Such trace integrals will appear when applying discrete integrations by parts in the
following sections.

Similar definitions and considerations can be made for integrals over ∂−i Ω.
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For u ∈ CM∪∂M (resp. CMj∪∂Mj , j 6= i) we can then introduce the following L2

norm for the trace on ∂iΩ:

|u|2L2(∂iΩ) = |u|∂iΩ|2L2(∂iΩ) =
∫
Ωi

∣∣u|ki=Ni+1

∣∣2 +
∫
Ωi

∣∣u|ki=0

∣∣2.

For v ∈ CMi∪∂Mi (resp. CMij∪∂Mij , j 6= i) we can then introduce the following L2

norm for the trace on ∂iΩ:

|v|2L2(∂iΩ) = |v|∂iΩ|2L2(∂iΩ) =
∫
Ωi

∣∣u|ki=Ni+
1
2

∣∣2 +
∫
Ωi

∣∣u|ki=
1
2

∣∣2.

1.1.6. Difference operators. Let i, j ∈ J1, dK, j 6= i. We define the following
translations for indices:

τ±i : N
i

(resp. N
ij

) → N ∪ ∂±i N (resp. N
j ∪ ∂±i N

j

),

k 7→ τ±i k,

with

(τ±i k)l =

{
kl if l 6= i,

kl ± 1
2 if l = i.

Translations operators mapping CM∪∂M → CMi and CMj∪∂Mj → CMij are then given
by

(τ±i u)k = u(τ±i k), k ∈ N
i

(resp. N
ij

).

A difference operator Di and an averaging operator Ai are then given by

(Diu)k = (hi,ki)
−1((τ+

i u)k − (τ−i u)k), k ∈ N
i

(resp. N
ij

),

(Aiu)k = ũi

k =
1
2
((τ+

i u)k + (τ−i u)k), k ∈ N
i

(resp. N
ij

).

Both map CM∪∂M → CMi and CMj∪∂Mj → CMij .
We also define the following translations for indices:

τ±i : N (resp. N
j

) → N
i

(resp. N
ij

),

k 7→ τ±i k,

with

(τ±i k)l =

{
kl if l 6= i,

kl ± 1
2 if l = i.

Translations operators mapping CMi → CM and CMij → CMj are then given by

(τ±i v)k = v(τ±i k), k ∈ N (resp. N
j

).

A difference operator Di and an averaging operator Ai are then given by

(Div)k = (hi,ki)
−1((τ+

i v)k − (τ−i v)k), k ∈ N (resp. N
j

),

(Aiv)k = vi

k =
1
2
((τ+

i v)k + (τ−i v)k), k ∈ N (resp. N
j

).

Both map CMi → CM and CMij → CMj .
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1.1.7. Sampling of continuous functions. A continuous function f defined
on Ω can be sampled on the primal mesh fM = {f(xk); k ∈ N}, which we identify to

fM =
∑

k∈N

1bk
fk, fk = f(xk), k ∈ N,

with bk as defined in (1.4). We also set

f∂M = {f(xk); k ∈ ∂N}, fM∪∂M = {f(xk); k ∈ N ∪ ∂N}.

The function f can also be sampled on the dual meshes, e.g. M
i

, fMi = {f(xk); k ∈
N

i} which we identify to

fMi

=
∑

k∈N
i

1
b

i
k
fk, fk = f(xk), k ∈ N

i

with similar definitions for f∂Mi , fMi∪∂Mi and sampling on the meshes M
ij

, M
ij ∪

∂M
ij

.
In the sequel, we shall use the symbol f for both the continuous function and its

sampling on the primal or dual meshes. In fact, from the context, one will be able to
deduce the appropriate sampling. For example, with u defined on the primal mesh,
M, in the following expression, Di(γDiu), it is clear that the function γ is sampled
on the dual mesh M

i

as Diu is defined on this mesh and the operator Di acts on
functions defined on this mesh.

To evaluate the action of multiple iterations of discrete operators, e.g.Di, Di, Ai, Ai
on a continuous function we may require the function to be defined in a neighborhood
of Ω. This will be the case here of the diffusion coefficients in the elliptic operator
and the Carleman weight function we shall introduce. For a function f defined on a
neighborhood of Ω we set

τ±i f(x) := f
(
x± hi

2
ei

)
, ei = (δi1, . . . , δid),

Dif := (hi)−1(τ+
i − τ−i )f, Aif = f̂

i

=
1
2
(τ+
i + τ−i )f.

For a function f continuously defined in a neighborhood of Ω, the discrete function
Dif is in fact Dif sampled on the dual mesh, M

i

, and Dif is Dif sampled on the
primal mesh, M. We shall use similar meanings for averaging symbols, f̃ , f , and
for more general combinations: for instance, if i 6= j, D̃jf

i

, DiDjf
i

, DiDjf
i

will be

respectively the functions D̂jf
i

sampled on M
ij

, D̂iDjf
i

sampled on M, and D̂iDjf
i

sampled on M
j

1.1.8. Regular families of non-uniform meshes. In this paper, we address
non uniform meshes that are obtained as the smooth image of an uniform grid.

More precisely, let Ω? = (0, 1) and let ϑi : R 7→ R, i ∈ J1, dK be increasing maps
such that

ϑi ∈ C∞, ϑi(Ω?) = [0, Li], inf
Ω?
ϑ′i > 0. (1.6)

Let h?i = 1
Ni+1 and M0 be the following uniform primal mesh on [0, 1]d

M0 = {x0
k = (x0

1,k1 , . . . , x
0
d,kd

) = (k1h
?
1, . . . , kdh

?
d), k ∈ N},
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and M0
i
, i ∈ J1, dK the associated dual meshes.

We define a non uniform mesh on Ω

M = {xk, k ∈ N},

with

xk = (ϑ1(x0
1,k1), . . . , ϑd(x

0
d,kd

)) (1.7)

We set h? = supi∈J1,dK h?i . Once the functions ϑi, i ∈ J1, dK, are fixed we assume
that for some C > 0 we have

Ch? ≤ h?i ≤ h?, i ∈ J1, dK.

For the mesh M, this in turn implies, for some C ′ > 0, for all i ∈ J1, dK,

C ′h ≤ hi,l ≤ h, l ∈ J1, NiK, C ′h ≤ hi,l+ 1
2
≤ h, l ∈ J0, NiK.

In particular,

C ′h ≤ hi ≤ h, i ∈ J1, dK. (1.8)

We define the following quantities in order to measure the regularity of the meshes
under study

reg(ϑi) = max
(

sup
Ω?

ϑ′i, sup
Ω?

(ϑ′i)
−1, sup

Ω?

|ϑ′′i |
)
,

reg(ϑ) =
d∏
i=1

reg(ϑi).

Note that reg(ϑi) ≥ 1 for any i ∈ J1, dK.
We shall call uniform meshes, the regular meshes that are obtained with the

following linear choice: ϑi(x) = Lix.

1.1.9. Additional notation. We shall denote by z∗ the complex conjugate of
z ∈ C. In the sequel, C will denote a generic constant independent of h, whose value
may change from line to line. As usual, we shall denote by O(1) a bounded function.
We shall denote by Oµ(1) a function that depends on a parameter µ and is bounded
once µ is fixed. The notation Cµ will denote a constant whose value depends on the
parameter µ.

We say that α is a multi-index if α = (α1, . . . , αn) ∈ Nn. For α ∈ Nn and ξ ∈ Rn
we write

|α| = α1 + · · ·+ αn, ∂α = ∂α1
x1
· · · ∂αn

xn
, ξα = ξα1

1 · · · ξαn
n .

1.2. Statement of the main results. With the notation we have introduced,
a consistent finite-difference approximation of Au with homogeneous boundary con-
ditions is

AMu = − ∑
i∈J1,dK

Di(γiDiu)
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for u ∈ CM∪∂M satisfying u|∂Ω = u∂M = 0. Recall that, in each term, γi is the
sampling of the given continuous diffusion coefficient γi on the dual mesh M

i

, so that
for any u ∈ CM∪∂M we have

(AMu)k = − ∑
i∈J1,dK

γi

(
xτ+

i k

)(
(τ+

i )2u
)

k
−uk

h
i,ki+

1
2

− γi

(
xτ−i k

)
uk−

(
(τ−i )2u

)
k

h
i,ki− 1

2

hi,ki

, k ∈ N.

Note however that other consistent choices of discretization of γi on the dual meshes
are possible, such as the averaging on the dual mesh M

i

of the sampling of γi on the
primal mesh. Our results also holds for such discrete operators.

Remark 1.2. Finite differences are not well adapted to address anisotropic el-
liptic operators. Here, we only treat the case of a diagonal anisotropic operator, i.e.
an anisotropy associated with the principal axes. Note however that the treatment we
make of non uniform meshes naturally leads to such diagonal anisotropic operators
by a change of variables, even starting from an isotropic diffusion coefficient.

We choose a function ψ that satisfies the following properties.
Assumption 1.3. Let Ω̃ be a smooth open and connected bounded neighborhood

of Ω in Rd and set Q̃ = (0, T )× Ω̃. The function ψ is in C p(Q̃,R), with p sufficiently
large, and satisfies, for some c > 0,

|∇ψ| ≥ c and ψ > 0 in Q̃,

∂niψ(t,x) < 0 in (0, T )× V∂iΩ, ∂2
i ψ(t,x) ≥ 0 in (0, T )× V∂iΩ,

∂tψ ≥ c on {0} × (Ω \ ω), ψ = Cst and ∂tψ ≤ −c on {T } × Ω,

where V∂iΩ is a sufficiently small neighborhood of ∂iΩ in Ω̃, in which the outward unit
normal ni to Ω is extended from ∂iΩ. The construction of such a weight function is
described in Section A. We then set ϕ = eλψ.

To state the Carleman estimate for the semi-discrete operator −∂2
t + AM, we

introduce the following discrete gradient operator g = (D1, . . . , Dd)t.

Theorem 1.4. Let ϑi, i ∈ J1, dK satisfy (1.6) and ψ be a weight function satisfying
(1.3) for the observation domain ω. For the parameter λ ≥ 1 sufficiently large, there
exist C, s0 ≥ 1, h0 > 0, ε0 > 0, depending on ω, T , (ϑi)i∈J1,dK and reg(Γ), such that
for any mesh M obtained from (ϑi)i∈J1,dK by (1.7), we have

s3‖esϕu‖2L2(Q) + s‖esϕ∂tu‖2L2(Q) + s‖esϕgu‖2L2(Q) + s|esϕ(0,.)∂tu(0, .)|2L2(Ω)

+ se2sϕ(T )|∂tu(T , .)|2L2(Ω) + s3e2sϕ(T )|u(T , .)|2L2(Ω)

≤ C
(
‖esϕ(−∂2

t +AM)u‖2L2(Q) + se2sϕ(T )|gu(T , .)|2L2(Ω)

+ s|esϕ(0,.)∂tu(0, .)|2L2(ω)

)
, (1.9)

for all s ≥ s0, 0 < h ≤ h0 and sh ≤ ε0, and u ∈ C 2([0, T ],CM∪∂M), satisfying
u|{0}×Ω = 0, u|(0,T )×∂Ω = 0.

Denoting by φM a set of discrete L2 orthonormal eigenfunctions, φj ∈ CM, 1 ≤
j ≤ |M|, of the operator AM with homogeneous Dirichlet boundary conditions, and
by µM the set of the associated eigenvalues sorted in a non-decreasing sequence, µj ,
1 ≤ j ≤ |M| we have the following result.
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Theorem 1.5 (Partial discrete Lebeau-Robbiano inequality). Let ϑ satisfying
(1.6). There exist C > 0, ε1 > 0 and h0 such that, for any mesh M obtained from ϑ
by (1.7) such that h ≤ h0, for all 0 < µ ≤ ε1/h

2, we have

∑
µk∈µM

µk≤µ

|αk|2 =
∫
Ω

∣∣∣ ∑
µk∈µM

µk≤µ

αkφk

∣∣∣
2

≤ CeC
√
µ

∫
ω

∣∣∣ ∑
µk∈µM

µk≤µ

αkφk

∣∣∣
2

, ∀(αk)1≤k≤|M| ⊂ C.

The proof is given in [BHL09a, Section 6] following the approach introduced in
[Le 07].

We introduce the following finite dimensional spaces

Ej = Span{φk; 1 ≤ µk ≤ 22j} ⊂ CM, j ∈ N,
and denote by ΠEj

the L2-orthogonal projection onto Ej . The controllability result
we can deduce from the above results is the following.

Theorem 1.6. Let T > 0 and ϑ satisfying (1.6). There exist h0 > 0, CT > 0
and C1, C2, C3 > 0 such that for all meshes M defined by (1.7), with 0 < h ≤ h0,
and all initial data y0 ∈ CM, there exists a semi-discrete control function v such that
the solution to

∂ty −
∑

i∈J1,dK
Di(γiDiy) = 1ωv, y∂M = 0, y|t=0 = y0. (1.10)

satisfies ΠE
jM
y(T ) = 0, for jM = max{j; 22j ≤ C1/h

2}, with ‖v‖L2(Q) ≤ CT |y0|L2(Ω)

and furthermore |y(T )|L2(Ω) ≤ C2e
−C3/h

2 |y0|L2(Ω).

For a proof see [BHL09a, Section 7].

Finally, in the spirit of the work of [LT06] the controllability result we have
obtained yields the following relaxed observability estimate

Corollary 1.7. There exist CT > 0 and C > 0 depending on Ω, ω, T , and ϑ,
such that the semi-discrete solution q in C∞([0, T ],CM) to





−∂tq +AMq = 0 in (0, T )× Ω,
q = 0 on (0, T )× ∂Ω,
q(T ) = qF ∈ CM,

in the case h ≤ h0, satisfies

|q(0)|L2(Ω) ≤ CT

( T∫
0

∫
ω

|q(t)|2 dt
) 1

2
+ Ce−C/h

2 |qF |L2(Ω).

As mentioned above, these results can also be used for the analysis of the space/time
discretized parabolic control problem [BHL09b].

1.3. Outline. In Section 2 we have gathered preliminary discrete calculus re-
sults. Many of the proofs of these results can be found in [BHL09a]. Additional
proofs have been placed in Appendix B to ease the reading. Section 3 is devoted to
the proof of the semi-discrete elliptic Carleman estimate for uniform meshes. Again,
to ease the reading, a large number of proofs of intermediate estimates have been
placed in Appendix C. This result is then extended to non-uniform meshes in Sec-
tion 4. For completeness, in Appendix D we give the counterpart of the Carleman
estimate of Theorem 1.4 in the case of a fully-discrete elliptic operator. This result
will be used in [BHL10] for the treatment of semi-discrete parabolic operators.
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2. Some preliminary discrete calculus results. Here, to prepare for Sec-
tion 3, we only consider uniform meshes, i.e., constant-step discretizations in each
direction, i.e., hi,j+ 1

2
= hi = Li

Ni+1 , j ∈ J0, NiK, i ∈ J1, dK.
This section aims to provide calculus rules for discrete operators such as Di, Di

and also to provide estimates for the successive applications of such operators on the
weight functions.

2.1. Discrete calculus formulae. We present calculus results for the finite-
difference operators that were defined in the introductory section. Proofs are similar
to that given in the one-dimension case in [BHL09a].

Lemma 2.1. Let the functions f1 and f2 be continuously defined in a neighborhood
of Ω. For i ∈ J1, dK, we have

Di(f1f2) = Di(f1) f̂
i

2 + f̂
i

1 Di(f2).

Note that the immediate translation of the proposition to discrete functions f1, f2 ∈
CM (resp. CMj , j 6= i), and g1, g2 ∈ CMi (resp. CMij , j 6= i) is

Di(f1f2) = Di(f1) f̃
i

2 + f̃
i

1 Di(f2), Di(g1g2) = Di(g1) gi

2 + gi

1 Di(g2).

Lemma 2.2. Let the functions f1 and f2 be continuously defined in a neighborhood
of Ω. For i ∈ J1, dK, we have

f̂1f2
i

= f̂
i

1f̂
i

2 +
h2
i

4
Di(f1)Di(f2).

Note that the immediate translation of the proposition to discrete functions f1, f2 ∈
CM (resp. CMj , j 6= i), and g1, g2 ∈ CMi (resp. CMij , j 6= i)

f̃1f2
i

= f̃
i

1f̃
i

2 +
h2
i

4
Di(f1)Di(f2), g1g2

i = gi

1g
i

2 +
h2
i

4
Di(g1)Di(g2).

Some of the following properties can be extended in such a manner to discrete
functions. We shall not always write it explicitly.

Averaging a function twice gives the following formula.
Lemma 2.3. Let the function f be continuously defined in a neighborhood of Ω.

For i ∈ J1, dK we have

A2
i f :=

̂̂
f

i
i

= f +
h2
i

4
DiDif.

The following proposition covers discrete integrations by parts and related for-
mulae.

Proposition 2.4. Let f ∈ CM∪∂M and g ∈ CMi . For i ∈ J1, dK we have
∫∫
Ω

f(Dig) = − ∫∫
Ω

(Dif)g +
∫
Ωi

(fNi+1gNi+
1
2
− f0g 1

2
),

∫∫
Ω

fgi =
∫∫
Ω

f̃
i

g − hi
2

∫
Ωi

(fNi+1gNi+
1
2

+ f0g 1
2
).
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Lemma 2.5. Let i ∈ J1, dK and v ∈ CM∪∂M (resp. CMj∪∂Mj for j 6= i) be such
that v|∂iΩ = 0. Then

∫∫
Ω
v =

∫∫
Ω
ṽi.

Lemma 2.6. Let f be a smooth function defined in a neighborhood of Ω. For
i ∈ J1, dK we have

τ±i f = f ± hi
2

1∫
0

∂if(.± σhi/2) dσ, A`if = f + C`h
2
i

1∫
−1

(1− |σ|) ∂2
i f(.+ l`σhi) dσ,

D`if = ∂`i f + C ′`h
2
i

1∫
−1

(1− |σ|)`+1 ∂`+2
i f(.+ l`σhi) dσ, ` = 1, 2, l1 =

1
2
, l2 = 1,

with hi = hiei.
For i, j ∈ J1, dK, i 6= j, we have

DiDjf = ∂2
ijf + C ′′

|h+
ij |4

hihj

1∫
−1

(1− |σ|)3f (4)(.+ σh+
ij/2; η+, . . . ,η+) dσ

+ C ′′′
|h+
ij |4

hihj

1∫
−1

(1− |σ|)3f (4)(x+ σh−ij/2; η−, . . . ,η−) dσ,

with h±ij = hiei ± hjej and η± = 1
|h±ij |

(h±ij).

Note that
|h+

ij |4
hihj

= O(h2) by (1.8), for i, j ∈ J1, dK, j 6= i.

Proof. This series of results follow from Taylor formulae,

f(x + η) =
n−1∑
j=0

1
j!
f (j)(x;η, . . . ,η) +

1∫
0

(1− σ)n−1

(n− 1)!
f (n)(x + ση; η, . . . ,η) dσ,

at order n = 1, n = 2, n = 3 or n = 4.

2.2. Calculus results related to the weight functions. We now present
some technical lemmata related to discrete operations performed on the Carleman
weight function that is of the form esϕ with ϕ = eλψ, ψ ∈ C p, with p sufficiently large.
For concision, we set r = esϕ and ρ = r−1. The positive parameters s and h will be
large and small respectively and we are particularly interested in the dependence on
s, h and λ in the following basic estimates.

We assume s ≥ 1 and λ ≥ 1. We shall use multi-indices of the form α = (αt, αx)
with αt ∈ N and αx ∈ Nd.

Lemma 2.7. Let α and β be multi-indices. We have

∂β(r∂αρ) =|α||β|(−sϕ)|α|λ|α+β|(∇ψ)α+β (2.1)

+ |α||β|(sϕ)|α|λ|α+β|−1O(1) + s|α|−1|α|(|α| − 1)Oλ(1) = Oλ(s|α|).

Let σ ∈ [−1, 1] and i ∈ J1, dK. We have

∂β(r(x)(∂αρ)(x + σhi)) = Oλ(s|α|(1 + (sh)|β|)) eOλ(sh). (2.2)

Provided sh ≤ K we have ∂β(r(x)(∂αρ)(x+σhi)) = Oλ,K(s|α|). The same expressions
hold with r and ρ interchanged and with s changed into −s.

For a proof see [BHL09a, proof of Lemma 3.7].
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With Leibniz formula we have the following estimate.
Corollary 2.8. Let α, β and δ be multi-indices. We have

∂δ(r2(∂αρ)∂βρ) =|α+ β||δ|(−sϕ)|α+β|λ|α+β+δ|(∇ψ)α+β+δ

+ |δ||α+ β|(sϕ)|α+β|λ|α+β+δ|−1O(1)

+ s|α+β|−1(|α|(|α| − 1) + |β|(|β| − 1))Oλ(1) = Oλ(s|α+β|).

The proofs of the following properties can be found in Appendix B.
Proposition 2.9. Let α be a multi-index. Let i, j ∈ J1, dK, provided sh ≤ K, we

have

rτ±i ∂
αρ = r∂αρ+ s|α|Oλ,K(sh) = s|α|Oλ,K(1),

rAki ∂
αρ = r∂αρ+ s|α|Oλ,K((sh)2) = s|α|Oλ,K(1), k = 1, 2,

rAkiDiρ = r∂xρ+ sOλ,K((sh)2) = sOλ,K(1), k = 0, 1,

rDki
i D

kj

j ρ = r∂ki
i ∂

kj

j ρ+ s2Oλ,K((sh)2) = s2Oλ,K(1), ki + kj ≤ 2.

The same estimates hold with ρ and r interchanged.

Lemma 2.10. Let α and β be multi-indices and k ∈ N. Let i, j ∈ J1, dK, provided
sh ≤ K, we have

Dki
i D

kj

j (∂β(r∂αρ)) = ∂ki
i ∂

kj

j ∂
β(r∂αρ) + h2Oλ,K(s|α|), ki + kj ≤ 2,

Aki ∂
β(r∂αρ) = ∂β(r∂αρ) + h2Oλ,K(s|α|).

Let σ ∈ [−1, 1], we have Dki
i D

kj

j ∂
β(r(x)∂αρ(x + σhi)) = Oλ,K(s|α|), for ki + kj ≤ 2.

The same estimates hold with r and ρ interchanged.

Lemma 2.11. Let α, β and δ be multi-indices and k ∈ N. Let i, j ∈ J1, dK,
provided sh ≤ K, we have

Aki ∂
δ(r2(∂αρ)∂βρ) = ∂δ(r2(∂αρ)∂βρ) + h2Oλ,K(s|α|+|β|) = Oλ,K(s|α|+|β|),

Dki
i D

kj

j ∂
δ(r2(∂αρ)∂βρ) = ∂ki

i ∂
kj

j (∂δ(r2(∂αρ)∂βρ)) + h2Oλ,K(s|α|+|β|)

= Oλ,K(s|α|+|β|), ki + kj ≤ 2.

Let σ, σ′ ∈ [−1, 1]. We have

Aki ∂
δ
(
r(x)2(∂αρ(x + σhi))∂βρ(x + σ′hj)

)
= Oλ,K(s|α|+|β|),

Dki
i D

kj

j ∂
δ
(
r(x)2(∂αρ(x + σhi))∂βρ(x + σ′hj)

)
= Oλ,K(s|α|+|β|), ki + kj ≤ 2.

The same estimates hold with r and ρ interchanged.

Proposition 2.12. Let α be a multi-index and k ∈ N. Let i, j ∈ J1, dK, provided
sh ≤ K, we have

Dki
i D

kj

j Aki ∂
α(rD̂iρ

i

) = ∂ki
i ∂

kj

j ∂
α(r∂xρ) + sOλ,K((sh)2) = sOλ,K(1),

Dki
i D

kj

j (rD2
i ρ) = ∂ki

i ∂
kj

j (r∂2
i ρ) + s2Oλ,K((sh)2) = s2Oλ,K(1),

Dki
i D

kj

j (rA2
i ρ) = Oλ,K((sh)2).
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The same estimates hold with r and ρ interchanged.

Proposition 2.13. Let α, β be multi-indices, i, j ∈ J1, dK and ki, k′i, kj , k
′
j ∈ N.

For ki + kj ≤ 2, provided sh ≤ K we have

A
k′i
i A

k′j
j Dki

i D
kj

j ∂
β(r2(∂αρ)D̂iρ

i

) = ∂ki
i ∂

kj

j ∂
β(r2(∂αρ)∂iρ) + s|α|+1Oλ,K((sh)2)

= s|α|+1Oλ,K(1),

A
k′i
i A

k′j
j Dki

i D
kj

j ∂
β(r2(∂αρ)A2

i ρ) = ∂ki
i ∂

kj

j ∂
β(r(∂αρ)) + s|α|Oλ,K((sh)2)

= s|α|Oλ,K(1),

A
k′i
i A

k′j
j Dki

i D
kj

j ∂
β(r2(∂αρ)D2

i ρ) = ∂ki
i ∂

kj

j ∂
β(r2(∂αρ)∂2

i ρ) + s|α|+2Oλ,K((sh)2)

= s|α|+2Oλ,K(1),

and we have

A
k′i
i A

k′j
j Dki

i D
kj

j ∂
α(r2D̂iρ

i

D2
jρ) = ∂ki

i ∂
kj

j ∂
α(r2(∂iρ)∂2

j ρ) + s3Oλ,K((sh)2) = s3Oλ,K(1),

A
k′i
i A

k′j
j Dki

i D
kj

j ∂
α(r2D̂iρ

i

A2
jρ) = ∂ki

i ∂
kj

j ∂
α(r∂iρ) + sOλ,K((sh)2) = sOλ,K(1).

3. A semi-discrete elliptic Carleman estimate for uniform meshes. Here
we consider constant-step discretizations in each direction. The case of regular non-
uniform meshes is treated in Section 4.

In preparation to this section, we shall prove here the Carleman estimate on
uniform meshes, for a slightly more general semi-discrete elliptic operator that we
define now. For all i ∈ J1, dK, let ξ1,i ∈ RM and ξ2,i ∈ RMi be two positive discrete
functions. We denote by reg(ξ) the following quantity

reg(ξ) = max
i∈J1,dK

reg(ξ1,i, ξ2,i), (3.1)

with

reg(ξ1,i, ξ2,i) = max
(

sup
M

(
ξ1,i +

1
ξ1,i

)
, sup

Mi

(
ξ2,i +

1
ξ2,i

)
,

max
j∈J1,dK

sup
Mj

|Djξ1,i|, sup
M

|Diξ2,i|, max
j∈J1,dK

i 6=j

sup
Mij

|Djξ2,i|
)
.

(3.2)

Hence, reg(ξ) measures the boundedness of ξ1,i and ξ2,i and of their discrete derivatives
as well as the distance to zero of ξ1,i and ξ2,i, i ∈ J1, dK.

By abuse of notation, the letters ξ1,i, ξ2,i will also refer to a Q1-interpolation of
these values on M and M

i

respectively. Note that the resulting interpolated functions
are Lipschitz continuous with

‖ξ1,i‖W 1,∞ ≤ Creg(ξ), ‖ξ2,i‖W 1,∞ ≤ Creg(ξ).

We introduce the following notation related to the coefficients ξ1,i and ξ2,i, for
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any function f

Di,ξf =
√
ξ1,iξ2,iDif, i ∈ J1, dK

gξf =
(√

ξ1,1ξ2,1D1f, . . . ,
√
ξ1,dξ2,dDdf

)t
=

(
D1,ξf, . . . ,Dd,ξf

)t
,

∇ξf =
(
∂tf,

√
ξ1,1ξ2,1∂x1f, . . . ,

√
ξ1,dξ2,d∂xd

f
)t

=
(
∂tf
gξf

)
,

∆ξf = ∂2
t f +

∑
i∈J1,dK

ξ1,iξ2,i∂
2
xi
f.

We let ω b Ω be a nonempty open subset. We set the operator PM to be

PM = −∂2
t −

∑
i∈J1,dK

ξ1,iDi(ξ2,iDi),

continuous in the variable t ∈ (0, T ), with T > 0, and discrete in the variable x ∈ Ω.
The Carleman weight function is of the form r = esϕ with ϕ = eλψ, where ψ

satisfies Assumption 1.3.

The enlarged neighborhood Ω̃ of Ω introduced in Assumption 1.3 allows us to
apply multiple discrete operators such as Di and Ai on the weight functions. In
particular, this then yields on ∂iΩ

(rDiρ
i

)|ki=0 ≤ 0, (rDiρ
i

)|ki=Ni+1 ≥ 0, i ∈ J1, dK. (3.3)

We are now in position to state and prove the following semi-discrete Carleman
estimate.

Theorem 3.1. Let reg0 > 0 be given. For the parameter λ ≥ 1 sufficiently large,
there exist C, s0 ≥ 1, h0 > 0, ε0 > 0, depending on ω, T , reg0, such that for any ξ1,i,
ξ2,i, i ∈ J1, dK, with reg(ξ) ≤ reg0 we have

s3‖esϕu‖2L2(Q) + s‖esϕ∂tu‖2L2(Q) + s
∑

i∈J1,dK
‖esϕDiu‖2L2(Q) + s|esϕ(0,.)∂tu(0, .)|2L2(Ω)

+ se2sϕ(T )|∂tu(T , .)|2L2(Ω) + s3e2sϕ(T )|u(T , .)|2L2(Ω)

≤ C
(
‖esϕPMu‖2L2(Q) + s

∑
i∈J1,dK

e2sϕ(T )|Diu(T , .)|2L2(Ω) + s|esϕ(0,.)∂tu(0, .)|2L2(ω)

)
,

(3.4)

for all s ≥ s0, 0 < h ≤ h0 and sh ≤ ε0, and u ∈ C 2([0, T ],CM∪∂M), satisfying
u|{0}×Ω = 0, u|(0,T )×∂Ω = 0.

Proof. We set f := −PMu. At first, we shall work with the function v = ru, i.e.,
u = ρv, that satisfies

r

(
∂2
t (ρv) +

∑
i∈J1,dK

ξ1,iDi

(
ξ2,iDi(ρv)

)
)

= rf. (3.5)

We have ∂2
t (ρv) = (∂2

t ρ)v + 2(∂tρ)∂tv + ρ∂2
t v and by Lemma 2.1

Di(ξ2,iDi(ρv)) = (Di(ξ2,iDiρ)) ṽi
i

+ ξ2,iDiρ
i

Div
i

+ (Diρ
i

) ξ2,iDiv
i

+ ρ̃i
i

Di(ξ2,iDiv).
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By Lemma 2.2 we have, for i ∈ J1, dK,

ξ2,iDiv
i

= ξ2,i
i

Div
i

+
hi
4

(Diξ2,i)(τ+
i Div − τ−i Div),

ξ2,iDiρ
i

= ξ2,i
i

Diρ
i

+
h2
i

4
(Diξ2,i)(DiDiρ),

Di(ξ2,iDiρ) = (Diξ2,i)Diρ
i

+ ξ2,i
i

DiDiρ.

Using that ρr = 1 and the above equalities, Equation (3.5) thus reads Av +B1v = g′

with Av = A1v +A2v where

A1v = ∂2
t v +

∑
i∈J1,dK

ξ1,irρ̃
i
i

Di(ξ2,iDiv),

A2v = r(∂2
t ρ) v +

∑
i∈J1,dK

ξ1,iξ2,ir(DiDiρ) ṽi
i

,

B1v = 2r(∂tρ)∂tv + 2
∑

i∈J1,dK
ξ1,iξ2,irDiρ

i

Div
i

,

g′ = rf − ∑
i∈J1,dK

hi
4
ξ1,irDiρ

i

(Diξ2,i)(τ+
i Div − τ−i Div)

− ∑
i∈J1,dK

h2
i

4
ξ1,i(Diξ2,i)r(DiDiρ)Div

i − hi
∑

i∈J1,dK
O(1)rDiρ

i

Div
i

− ∑
i∈J1,dK

ξ1,i

(
r(Diξ2,i)Diρ

i

+ hiO(1)r(DiDiρ)
)
ṽi

i

,

since ‖ξ2,ii − ξ2,i‖∞ ≤ Chi.
Following [FI96] we now set

Bv = B1−2s(∆ξϕ)v︸ ︷︷ ︸
=B2v

, g = g′ − 2s(∆t,xϕ)v.

An explanation for the introduction of this additional term B2v is provided in [LL09].
Equation (3.5) now reads Av +Bv = g and we write

‖Av‖2L2(Q) + ‖Bv‖2L2(Q) + 2Re (Av,Bv)L2(Q) = ‖g‖2L2(Q). (3.6)

We shall need the following estimation of ‖g‖L2(Q). The proof can be adapted from
the one-dimensional case (see Lemma 4.2 and its proof in [BHL09a]).

Lemma 3.2 (Estimate of the r.h.s.). For sh ≤ K we have

‖g‖2L2(Q) ≤ Cλ,K

(
‖rf‖2L2(Q) + s2‖v‖2L2(Q) + (sh)2

∑
i∈J1,dK

‖Div‖2L2(Q)

)
. (3.7)

Most of the remaining of the proof will be dedicated to computing the inner-
product Re (Av,Bv)L2(Q). Developing this term, we set Iij = Re (Aiv,Bjv)L2(Q).

Lemma 3.3 (Estimate of I11). For sh ≤ K, the term I11 can be estimated from
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below in the following way

I11 ≥ −sλ2
(
‖ϕ 1

2 |∇ξψ|∂tv‖2L2(Q) + ‖ϕ 1
2 |∇ξψ|gξv‖2L2(Q)

)

+ sλ
∫∫
Ω

(
ϕ(∂tψ)|gξv|2

)
(T )− sλ

[ ∫∫
Ω

ϕ(∂tψ)|∂tv|2
]T

0

+ Y11 −X11 −W11 − J11,

with

Y11 =
∑

i∈J1,dK

∫∫
Qi

((
(ξ21,iξ

2
2,i +Oλ,K((sh)2)) rDiρ

i)
|ki=Ni+1

|Div|2|ki=Ni+
1
2

− (
(ξ21,iξ

2
2,i +Oλ,K((sh)2)) rDiρ

i)
|ki=0

|Div|2|ki=
1
2

)
dt,

and

X11 =
∫∫∫
Q

β11|∂tv|2 dt+
∑

i∈J1,dK

∫∫∫
Q

ν11,i|Div|2 dt+
∑

i∈J1,dK

∫∫∫
Q

ν11,i|Div
i|2 dt,

with β11, ν11,i, ν11,i of the form sλϕO(1) + sOλ,K(sh) and

W11 =
∫∫∫
Q

γ11,it|Di∂tv|2 dt+
∑

i,j∈J1,dK
i6=j

∫∫∫
Q

γ11,ij |DiDjv|2 dt+
∑

i∈J1,dK

∫∫∫
Q

γ11,ii|DiDiv|2 dt,

with γ11,it, γ11,ij, and γ11,ii of the form h2
(
sλϕO(1) + sOλ,K(sh)

)
and

J11 =
∑

i∈J1,dK

∫∫
Ω

δ11,i|Div|2(T )

+
∑

i∈J1,dK

∫∫
Qi

(
(δ(2)11,i)|ki=Ni+

1
2
|Div|2|ki=Ni+

1
2

+ (δ(2)11,i)|ki=
1
2
|Div|2|ki=

1
2

)
dt,

with δ11,i = sOλ,K(sh), and δ
(2)
11,i = shiλϕO(1) + shiOλ,K(sh). The proof can be

found in Appendix C.

The following lemma can be readily adapted from its counterpart in [BHL09a,
Lemma 4.4] (use also Lemma 4.8 in [BHL09a]).

Lemma 3.4 (Estimate of I12). For sh ≤ K, the term I12 is of the following form

I12 ≥ 2sλ2
(
‖ϕ 1

2 |∇ξψ|∂tv‖2L2(Q) + ‖ϕ 1
2 |∇ξψ|gξv‖2L2(Q)

)
−X12 − J12,

with

X12 =
∫∫∫
Q

β12|∂tv|2 dt+
∑

i∈J1,dK

∫∫∫
Q

ν12,i|Div|2 dt+
∫∫∫
Q

µ12|v|2 dt,

J12 =
∫∫
Ω

η12|v|2(T ) +
∫∫
Ω

O(1)|∂tv|2(T ),

where

β12 = sλϕO(1), µ12 = s2Oλ,K(1), η12 = s2Oλ,K(1),
ν12,i = sλϕO(1) + sOλ,K(sh).
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Lemma 3.5 (Estimate of I21). For sh ≤ K, the term I21 can be estimated from
below in the following way

I21 ≥ 3s3λ4‖ϕ 3
2 |∇ξψ|2v‖2L2(Q) − (sλ)3

∫∫
Ω

(ϕ3(∂tψ)|∇ξψ|2)(T ) |v|2(T )

+ Y21 −W21 −X21 − J21,

with

W21 =
∑

i∈J1,dK

∫∫∫
Q

γ21,it|Di∂tv|2 dt+
∑

i,j∈J1,dK
i 6=j

∫∫∫
Q

γ21,ij |DiDjv|2 dt,

Y21 =
∑

i∈J1,dK

∫∫
Qi

Oλ,K((sh)2)(rDiρ
i

)0|Div|2| 12 dt

+
∑

i∈J1,dK

∫∫
Qi

Oλ,K((sh)2)(rDiρ
i

)Nx+1|Div|2|Nx+ 1
2
dt,

X21 =
∫∫∫
Q

µ21|v|2 dt+
∑

i∈J1,dK

∫∫∫
Q

ν21,i|Div|2 dt

J21 =
∫∫
Ω

η21|v|2(T ) +
∑

i∈J1,dK

∫∫
Ω

δ21,i|Div|2(T ),

where

γ21,it = hO(sh), γ21,ij = hOλ,K((sh)2),

µ21 = (sλϕ)3O(1) + s2Oλ,K(1) + s3Oλ,K(sh), ν21,i = sOλ,K((sh)2),

η21 = s3Oλ,K((sh)2) + s2Oλ,K(1), and δ21,i = sOλ,K((sh)2).

The proof can be found in Appendix C.

The following lemma can be readily adapted from its counterpart in [BHL09a,
Lemma 4.6].

Lemma 3.6 (Estimate of I22). For sh ≤ K, the term I22 is of the following form

I22 = −2s3λ4‖ϕ 3
2 |∇ξψ|2v‖2L2(Q) −X22,

with

X22 =
∫∫∫
Q

µ22|v|2 dt+
∑

i∈J1,dK

∫∫∫
Q

ν22,i|Div|2 dt

where µ22 = (sλϕ)3O(1) + s2Oλ,K(1) + s3Oλ,K(sh), and ν22,i = sOλ,K(sh).

Continuation of the proof of Theorem 3.1. Collecting the terms we have obtained
in the previous lemmata, from (3.6) we obtain, for sh ≤ K,

2s3λ4‖ϕ 3
2 |∇ξψ|2v‖2L2(Q) + 2sλ2

(
‖ϕ 1

2 |∇ξψ|∂tv‖2L2(Q) + ‖ϕ 1
2 |∇ξψ|gξv‖2L2(Q)

)

+ 2sλ
( ∑
i∈J1,dK

∫∫
Ω

ξ1,iξ2,i(ϕ∂tψ)(T ) |Div|2(T )−
[ ∫∫

Ω

ϕ(∂tψ) |∂tv|2
]T
0

)

− 2(sλ)3
∫∫
Ω

(ϕ3(∂tψ)|∇ξψ|2)(T ) |v|2(T ) + 2Y ≤ Cλ,K‖rf‖2L2(Q) + 2X + 2W + 2J,

(3.8)
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where Y = Y11+Y21,X = X11+X12+X21+X22+Cλ,K
(
s2‖v‖2L2(Q)+(sh)2

∑
i∈J1,dK ‖Div‖2L2(Q)

)
,

W = W11 +W21, and J = J11 + J12 + J21.
With the following lemma, we may in fact ignore the term Y .

Lemma 3.7. Let sh ≤ K. For all λ there exists ε1(λ) > 0 such that for 0 < sh ≤
ε1(λ), we have Y ≥ 0.

Lemma 3.8. We have

sλ2
(
‖ϕ 1

2 |∇ξψ|∂tv‖2L2(Q) + ‖ϕ 1
2 |∇ξψ|gξv‖2L2(Q)

)
≥ CH − X̃ − W̃,

where

H = sλ2 ∑
i∈J1,dK

∫∫∫
Q

ξ1,iξ2,iϕ|∇ξψ|2
∣∣Div

i∣∣2 dt+ sλ2h2
( ∑
i∈J1,dK

∫∫∫
Q

ϕ|∇ξψ|2|Di∂tv|2 dt

+
∑

i,j∈J1,dK
i 6=j

∫∫∫
Q

ξ1,iξ2,iϕ|∇ξψ|2|DiDjv|2 dt+
∑

i∈J1,dK

∫∫∫
Q

ξ1,iξ2,iϕ|∇ξψ|2|DiDiv|2 dt
)
,

X̃ = sh
( ∫∫∫

Q

Oλ,K(1)
∣∣∂tv

∣∣2 dt+
∑

i∈J1,dK

∫∫∫
Q

Oλ,K(1)|Div|2 dt

+
∑

i∈J1,dK

∫∫∫
Q

Oλ,K(1)
∣∣Div

i∣∣2 dt
)
,

and

W̃ = sh3
( ∑
i∈J1,dK

∫∫∫
Q

Oλ,K(1)|∂tDiv|2 dt

+
∑

i,j∈J1,dK
i 6=j

∫∫∫
Q

Oλ,K(1)|DiDjv|2 dt+
∑

i∈J1,dK

∫∫∫
Q

Oλ,K(1)|DiDiv|2 dt
)
.

End of the proof of Theorem 3.1. Recalling the properties satisfied by ψ listed in
Assumption 1.3, if we choose λ1 ≥ 1 sufficiently large, then for λ = λ1 (fixed for the
rest of the proof) and sh ≤ ε1(λ1), from (3.8) and Lemmata 3.7 and 3.8, we obtain

s3‖v‖2L2(Q) + s‖∂tv‖2L2(Q) + s
∑

i∈J1,dK
‖Div‖2L2(Q) +H

+ s|∂tv(0, .)|2L2(Ω) + s|∂tv(T , .)|2L2(Ω) + s3|v(T , .)|2L2(Ω)

≤ Cλ1,K

(
‖rf‖2L2(Q) + s

∑
i∈J1,dK

|Div(T , .)|2L2(Ω) + s|∂tv(0, .)|2L2(ω)

)

+X +W + J, (3.9)

where

H = s
∑

i∈J1,dK
‖Div

i‖2L2(Q) + sh2
( ∑
i∈J1,dK

‖Di∂tv‖2L2(Q) +
∑

i,j∈J1,dK
i 6=j

‖DiDjv‖2L2(Q)

+
∑

i∈J1,dK
‖DiDiv‖2L2(Q)

)
,
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X =
∫∫∫
Q

µ1|v|2 dt+
∑

i∈J1,dK

∫∫∫
Q

ν1,i|Div|2 dt+
∑

i∈J1,dK

∫∫∫
Q

ν1,i|Div
i|2 dt+

∫∫∫
Q

β1|∂tv|2 dt,

with µ1 = s2Oλ1,K(1)+ s3Oλ1,K(sh) and ν1,i, ν1,i, β1, all of the form sOλ1,K(sh), and
where

W =
∑

i∈J1,dK

∫∫∫
Q

γ1,it|Di∂tv|2 dt+
∑

i,j∈J1,dK
i6=j

∫∫∫
Q

γ1,ij |DiDjv|2 dt+
∑

i∈J1,dK

∫∫∫
Q

γ1,ii|DiDiv|2 dt,

where γ1,it, γ1,ij and γ1,ii are of the form sh2Oλ1,K(sh), and where

J =
∫∫
Ω

η1|v|2(T ) +
∑

i∈J1,dK

∫∫
Ω

δ1,i|Div|2(T )

+
∑

i∈J1,dK

∫∫
Qi

(
(δ(2)1,i )Ni+

1
2
|Div|2Ni+

1
2

+ (δ(2)1,i ) 1
2
|Div|21

2

)
dt,

with η1 = s3Oλ1,K(sh) + s2Oλ1,K(1) and δ1,i = sOλ1,K(sh), δ(2)1,i = shiOλ,K(sh). The
last term in J was obtained by “absorbing” the following term in J11

sλ
∑

i∈J1,dK

∫∫
Qi

hi

(
(ϕ)Ni+

1
2
O(1)|Div|2Ni+

1
2

+ (ϕ) 1
2
O(1)|Div|21

2

)
dt,

by the volume term

sλ2 ∑
i∈J1,dK

∫∫∫
Q

ξ1,iξ2,iϕ|∇ξψ|2|Div|2 dt,

for λ large.

We can now choose ε0 and h0 sufficiently small, with 0 < ε0 ≤ ε1(λ1), and s0 ≥ 1
sufficiently large, such that for s ≥ s0, 0 < h ≤ h0, and sh ≤ ε0, we obtain

s3‖v‖2L2(Q) + s‖∂tv‖2L2(Q) + s
∑

i∈J1,dK
‖Div‖2L2(Q) +H

+ s|∂tv(0, .)|2L2(Ω) + s|∂tv(T , .)|2L2(Ω) + s3|v(T , .)|2L2(Ω)

≤ Cλ1,K,ε0,s0

(
‖rf‖2L2(Q) + s

∑
i∈J1,dK

|Div(T , .)|2L2(Ω) + s|∂tv(0, .)|2L2(ω)

)
. (3.10)

To finish the proof, we need to express all the terms in the estimate above in terms of
the original function u. We can proceed exactly as in the end of proof of Theorem 4.1
in [BHL09a].

4. Carleman estimates for non uniform meshes. We consider here the
notation introduced in section 1.1.8.

We define, for i ∈ J1, dK, ζi ∈ CMi and ζ̄i ∈ CM as follows

ζi,k =
hi,ki

h?i
, k ∈ N

i

, ζ̄i,k =
hi,ki

h?i
, k ∈ N.

Even though these two formulae look similar they are in fact different as the indices
k are taken in different sets.

Lemma 4.1. We have the following properties

reg(ϑ)−1 ≤ ζi,k ≤ reg(ϑ), i ∈ J1, dK,k ∈ N
i

,
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reg(ϑ)−1 ≤ ζ̄i,k ≤ reg(ϑ), i ∈ J1, dK,k ∈ N,

|Diζi|L∞(Ω) ≤ reg(ϑ)2, and |Diζ̄i|L∞(Ω) ≤ reg(ϑ)2.

For u ∈ CM∪∂M, we define QM0
M u ∈ CM0∪∂M0 to be the discrete function corre-

sponding to the reference uniform mesh M0 which takes the same values as u for each
index k ∈ N. Similarly, for i ∈ J1, dK and u ∈ CMi , we denote by QM0

i

Mi u ∈ CM0
i

the discrete function defined on M0
i
which takes the same values as u for each index

k ∈ N
i

. We denote by QM
M0

and QM0
i

Mi the inverse of the operators QM0
M and QMi

M0
i

respectively.
Lemma 4.2.
• For any i ∈ J1, dK, any u ∈ CM∪∂M and any v ∈ CMi , we have

Di(QM0
M u) = QM0

i

Mi (ζiDiu), Di(QM0
i

Mi v) = QM0
M (ζ̄iDiv).

• For any u ∈ CM∪∂M and any i ∈ J1, dK, we have

Di(γiDiu) = (ζ̄i)−1QM

M0

(
Di

((
QM0

i

Mi

γi
ζi

)
Di(QM0

M u)
))

.

Lemma 4.3. For any u ∈ CM, and any v ∈ CMi , i ∈ J1, dK, we have

reg(ϑ)−1|u|2L2(Ω) ≤ |QM0
M u|2L2(Ω?) ≤ reg(ϑ)|u|2L2(Ω),

reg(ϑ)−1|v|2L2(Ω) ≤ |QM0
i

Mi v|2L2(Ω?) ≤ reg(ϑ)|v|2L2(Ω).

We can now prove the Carleman estimate of Theorem 1.4 for the semi-discrete
elliptic operator

PM = −∂2
t −

∑
i∈J1,dK

Di(γiDi·).

We only give a sketch of the proof, since it is very similar to the one which is detailed
in [BHL09a] for the one-dimensional case.

Proof of Theorem 1.4. The key idea is to perform a change of variables that
transforms PM defined on a non-uniform mesh into an semi-discrete elliptic operator
defined on a uniform mesh. All the geometric information concerning the initial mesh
is then contained in the coefficients of this new operator.

More precisely, we consider the discrete function w = QM0
M u which is defined on

the uniform mesh M0. By using Lemma 4.2 we observe that

QM0
M (PMu) = −∂2

tw −
∑

i∈J1,dK

(
QM0

M (ζ̄i)−1

)(
Di

((
QM0

i

Mi

γi
ζi

)
Diw

))
.

We introduce the operator PM0 = −∂2
t −

∑
i∈J1,dK ξ1,i

(
Di (ξ2,iDiw)

)
with

ξ1,i = QM0
M (ζ̄i)−1, ξ2,i = QM0

i

Mi

γi
ζi
,
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so that we may now apply the Carleman estimate of Theorem 3.1 to w and PM0 on the
uniform mesh M0 and with the weight function x ∈ [0, 1]d 7→ ψ ◦ (ϑ1(x1) . . . ϑd(xd)).

We note that reg(ξ) is bounded by some constant depending only on reg(ϑ) and
reg(Γ) and independent of the size of the mesh. We can thus find reg0 sufficiently
large for which Theorem 3.1 leads to a Carleman inequality for the function w, and
the weight function defined above.

Using Lemmata 4.2 and 4.3 we then deduce result. Note that the values of h0,
ε0, may change, depending only on the values of reg(ϑ) and reg(Γ) and not on the
mesh size.

Appendix A. Construction of a weight function.
A weight function that satisfies the conditions listed in Assumption 1.3 can be

constructed as follows.
We first start with a function φ1 ∈ C∞([0, T ]) such that ∂tφ1(0) ≥ C > 0,

∂tφ1(T ) ≤ −C < 0, and φ1(0) = φ1(T ) = 0, and φ1(t) > 0 if t ∈ (0, T ). We choose
φ1 with a single critical point.

Let also φ2 ∈ C∞(Ω̃) be such that φ2 ≥ C > 0 and ∂nx
φ2 ≤ −C ′ < 0 and

∂2
i φ2 ≥ C ′′ > 0 in V∂Ω.

This can be achieved with φ2(x) = eζφ̃2(x) + C − 1, with φ̃2 = 0 on ∂Ω,

φ̃2 > 0, in Ω, φ̃2 = 0 and ∂nx φ̃2 ≤ −C̃ < 0, on ∂Ω

and ζ > 0 sufficiently large and by taking the neighborhood V∂Ω sufficiently small.
The function φ2 can be chosen with a finite number of critical points by means of
Morse theorem [AE84].

We next set φ(t,x) = φ1(t)φ2(x). This function satisfies the desired properties
listed in Assumption 1.3 on the boundaries (0, T ) × ∂Ω (and in its neighborhood
(0, T )× V∂Ω), {0} × (Ω \ ω) and {T } ×Ω. It is also characterized by a finite number
of critical points.

We choose y0 in {0}×ω. We enlarge Q in a small neighborhood of y0 which leaves
∂Q unchanged outside of {0} × ω. We call Q this extension of Q and we extend the
function φ to Q in a C k manner. The critical points of φ can be pulled back to the
interior of Q\Q by composing φ with a finite number of diffeomorphisms (see [FI96]
for the construction of these diffeomorphisms). The resulting function is the weight
function ψ and it satisfies all the properties listed in Assumption 1.3.

Appendix B. Proofs of some technical results in Section 2.

B.1. Proof of Proposition 2.9. We recall that rρ = 1. By Lemma 2.6 we have
τ+
i ∂

αρ(x) = ∂αρ(x) + Chiρ(x)
∫ 1

0
r(x)∂i∂αρ(x + σhi/2) dσ, which by Lemma 2.7

yields rτ+
i ∂

αρ = r∂αρ + s|α|Oλ(sh)eOλ(sh) = s|α|Oλ,K(1). The proof is the same

for rτ−i ∂
αρ. For rDiρ, rAi∂αρ = r∂̂αρ

i

, rA2
i ∂
αρ = r

̂̂
∂αρ

i
i

, and rDki
i D

kj

j ρ we pro-
ceed similarly, exploiting the formula in Lemma 2.6 and then applying the result of
Lemma 2.7, e.g.,

Diρ(x) = ∂iρ(x) + Ch2
i ρ(x)

1∫
−1

(1− |σ|)2r(x)(∂3
i ρ)(x + σhi/2) dσ

= ∂iρ(x) + sρ(x)Oλ,K((sh)2) = sr(x)Oλ,K(1).

Noting that AiDiρ(x) = D̂iρ
i

(x) = (2hi)−1(ρ(x + hi)− ρ(x− hi)) we proceed as we
did for Dir.
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B.2. Proof of Lemma 2.10. By Lemma 2.6, we write

Di(∂β(r∂αρ))(x) = ∂i∂
β(r∂αρ)(x) + Ch2

i

1∫
−1

(1− |σ|)2∂3
i ∂

β(r∂αρ)(x + σhi/2) dσ.

By Lemma 2.7 we have ∂3
i ∂

β(r∂αρ) = Oλ(s|α|), which yields the first result in the
case ki + kj = 1. For the case ki + kj = 2, we proceed similarly, making use of the
other formulae listed in Lemma 2.6. For the averaging cases, we make use of the
second formula in Lemma 2.6.

Following the proof of Lemma 2.7 in [BHL09a] we set ν(x, σhi) := r(x)ρ(x+σhi).
We have

Di∂
β′ν(x, σhi) =

1
2

1∫
−1

(∂i∂β
′
ν)(x + σ′hi/2, σhi) dσ′ = Oλ,K(1), for |β′| ≤ |β|,

(B.1)
for sh ≤ K by Lemma 2.7. Next, with µα = r∂αρ, we write r(x)∂αρ(x + σhi) =
ν(x, σhi)µα(x + σhi), which gives Di∂

β(r(x)∂αρ(x + σhi)) as a linear combination
of terms of the form

Ai(∂β
′
ν(., σhi)) Di(∂β

′′
µα(.+σhi))+Di(∂β

′
ν(., σhi))Ai(∂β

′′
µα(.+σhi)), β′+β′′ = β,

by the continuous and discrete Leibniz rules (Lemma 2.1). By the first part and
Lemma 2.7 we have Di(∂β

′′
µα(x+σhi)) = Oλ,K(s|α|). By Lemma 2.7, ∂β

′
ν(x, σhi) =

Oλ,K(1) and ∂β
′′
µα(x + σhi) = Oλ,K(s|α|). The last result hence follows from (B.1).

We proceed in a similar way for the case ki + kj = 2.

B.3. Proof of Lemma 2.11. For the first two results, we proceed as in Lemma 2.10
and use Corollary 2.8.

For the last results we use the continuous and discrete Leibniz rules (Lemma 2.1)
and Lemma 2.10.

B.4. Proof of Proposition 2.12. Taylor formulae yield

D̂iρ
i

(x) =
ρ(x + hi)− ρ(x− hi)

2hi
= ∂iρ(x)+Ch2

i

1∫
−1

(1−|σ|)2∂3
i ρ(x+σhi) dσ, (B.2)

which in turn gives

Dki
i D

kj

j Aki ∂
α(rD̂iρ

i

))(x) = Dki
i D

kj

j Aki ∂
α(r∂iρ)(x)

+ Ch2
i

1∫
−1

(1− |σ|)2Dki
i D

kj

j Aki ∂
α(r(x)∂3

i ρ(x + σhi)) dσ,

and the first result follows by Lemma 2.10 (and Lemma 2.7 for the second equality).
Next, from Lemma 2.6, we write

Dki
i D

kj

j (rD2
i ρ)(x) = Dki

i D
kj

j (r∂2
i ρ)(x)

+ Ch2
i

1∫
−1

(1− |σ|)3 Dki
i D

kj

j (r(x)∂4
i ρ(x + σhi)) dσ,

and the third result follows as above. For Dki
i D

kj

j (rA2ρ) we use the formula for A2ρ
given in Lemma 2.6 and proceed as above.



DISCRETE CARLEMAN ESTIMATES IN ARBITRARY DIMENSION 27

B.5. Proof of Proposition 2.13. From (B.2) we write

A
k′i
i A

k′j
j Dki

i D
kj

j ∂
β

(
r2(∂αρ)D̂iρ

i
)

= A
k′i
i A

k′j
j Dki

i D
kj

j ∂
β

(
r2(∂αρ)∂iρ

)

+ Ch2
i

1∫
−1

(1− |σ|)2Ak′ii A
k′j
j Dki

i D
kj

j ∂
β

(
r2(∂αρ)∂3

i ρ(.+ σhi)
)
dσ,

and we conclude with Lemma 2.11. For the next two results we use the formulae
listed in Lemma 2.6 and proceed as above.

From Lemma 2.6, equation (B.2), and by Lemma 2.11 we have

A
k′i
i A

k′j
j Dki

i D
kj

j ∂
α(r2D̂iρ

i

D2
jρ) = A

k′i
i A

k′j
j Dki

i D
kj

j ∂
α(r2(∂iρ)∂2

j ρ)

+ Ch2
i

1∫
−1

(1− |σ|)2Ak′ii A
k′j
j Dki

i D
kj

j ∂
α(r2∂3

i ρ(.+ σhi)∂2
j ρ) dσ

+ Ch2
j

1∫
−1

(1− |σ|)3 A
k′i
i A

k′j
j Dki

i D
kj

j ∂
α(r2(∂iρ)∂4

j ρ(.+ σhj) dσ

+ Ch2
ih

2
j

∫∫
[−1,1]2

(1− |σ|)2(1− |σ′|)3

× A
k′i
i A

k′j
j Dki

i D
kj

j ∂
α(r2∂3

i ρ(.+ σhi)∂4
j ρ(.+ σ′hj)) dσ dσ′

= ∂ki
i ∂

kj

j ∂
α(r2(∂iρ)∂2

j ρ) + s3Oλ,K((sh)2).

The last result follows similarly.

Appendix C. Proofs of intermediate results in Section 3.

C.1. Proof of Lemma 3.3. From the forms of A1v and B1v we have I11 =∑
k,l∈{t,1,...,d}Qkl with

Qtt = 2Re
∫∫∫
Q

r(∂tρ) (∂2
t v)∂tv

∗ dt,

Qti = 2 Re
∫∫∫
Q

ξ1,iξ2,irDiρ
i

(∂2
t v)Div∗

i

dt, i ∈ J1, dK,

Qit = 2 Re
∫∫∫
Q

ξ1,ir
2(∂tρ)ρ̃i

i

Di(ξ2,iDiv)∂tv∗ dt, i ∈ J1, dK,

Qii = 2 Re
∫∫
Q

ξ21,iξ2,ir
2ρ̃i

i

Diρ
i

Di(ξ2,iDiv)Div∗
i

dt, i ∈ J1, dK,

Qij = 2 Re
∫∫∫
Q

ξ1,iξ1,jξ2,jr
2ρ̃i

i

Djρ
j

Di(ξ2,iDiv)Djv∗
j

dt, i, j ∈ J1, dK, i 6= j.

We start by computing each term.

Computation of Qtt. We set qtt = −∂t
(
r(∂tρ)

)
. An integration by parts w.r.t.

t yields

Qtt =
∫∫∫
Q

qtt |∂tv|2 dt− sλ

[∫∫
Ω

ϕ(∂tψ) |∂tv|2
]T

0

.

Lemma C.1. We have

qtt = sλ2ϕ(∂tψ)2 + sλϕO(1).

The estimation of follows from Lemma 2.7.
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Computation of Qti. Setting pti = −ξ1,iξ2,irDiρ
i

and qti = ∂tpti we have, by
integration by parts w.r.t. t since v|t=0 = 0,

Qti = 2 Re
∫∫∫
Q

(∂tv)∂t
(
ptiDiv∗

i)
dt− 2Re

∫∫
Ω

(
pti(∂tv)Div∗

i)
(T )

= 2 Re
∫∫∫
Q

qti(∂tv)Div∗
i

dt+ 2Re
∫∫∫
Q

pti(∂tv)∂tDiv∗
i

dt

︸ ︷︷ ︸
Qa

ti

,

using that pti(T ) = 0 for ψ|t=T = Cst. As v|∂Ω = 0 with Proposition 2.4, Lemma 2.2,
and a discrete integration by parts w.r.t. xi, we then write

Qa
ti = 2Re

∫∫∫
Q

˜pti(∂tv)
i

∂tDiv
∗ dt = 2 Re

∫∫∫
Q

p̃ti
i
∂̃tv

i

∂tDiv
∗ dt+

h2
i

2
∫∫∫
Q

(Dipti)|∂tDiv|2 dt

= − ∫∫∫
Q

(Dip̃ti
i)|∂tv|2 dt+

h2
i

2
∫∫∫
Q

(Dipti)|∂tDiv|2 dt.

We thus have

Qti = − ∫∫∫
Q

(Dip̃ti
i)|∂tv|2 dt+ 2 Re

∫∫∫
Q

qti(∂tv)Div∗
i

dt+
h2
i

2
∫∫∫
Q

(Dipti)|∂tDiv|2 dt.
(C.1)

Lemma C.2. We have

Dipti = sλ2ξ1,iξ2,iϕ(∂iψ)2 + sλϕO(1) + sOλ,K(sh),
Dip̃ti

i = sλ2ξ1,iξ2,iϕ(∂iψ)2 + sλϕO(1) + sOλ,K(sh),
qti = sλ2ξ1,iξ2,iϕ(∂tψ)(∂iψ) + sλϕO(1) + sOλ,K((sh)2).

Proof. We set α = −ξ1,iξ2,i. Then Dipti = (Diα)r̃Diρ
i
i

+ α̃iDi

(
rDiρ

i)
. With

Proposition 2.12 we find

Dipti = (Diα)r∂iρ+ α̃i(∂i(r∂iρ)) + sOλ,K((sh)2). (C.2)

Then with Lemma 2.7 we obtain the estimate of Dipti as Diα = O(1). Averaging
(C.2) we obtain

Dipti
i

= Diα
i

r∂iρ
i

+ α̃i
i

∂i(r∂iρ)
i

+
h2

4
(DiDiα)(Di(r∂iρ))

+
h2

4
(Diα̃

i)Di(∂i(r∂iρ)) + sOλ,K((sh)2).

By Lemma 2.10 we have

Diα
i

r∂iρ
i

= sλϕO(1) + h2Oλ,K(s). (C.3)

asDiα
i

= O(1). Note also that α̃i
i

= α+hO(1). Then by Lemma 2.10 and Lemma 2.7
we have

α̃i
i

∂i(r∂iρ)
i

= −αsλ2ϕ(∂iψ)2 + sλϕO(1) +Oλ,K(sh). (C.4)
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Since hDiDiα = O(1), by Lemma 2.10 we obtain

h2

4
(DiDiα)(Di(r∂iρ)) = Oλ,K(sh). (C.5)

Similarly we have

h2

4
(Diα̃

i)Di(∂i(r∂iρ)) = hOλ,K(sh), (C.6)

as α̃i
i

= Diα
i

= O(1). Collecting estimates (C.3)–(C.6), we obtain the second result.
Finally we write qti = α∂t(rDiρ

i

); Proposition 2.12 and Lemma 2.7 yield the
estimates for qti.

Computation of Qit. We set pit = −ξ1,ir2(∂tρ)ρ̃i
i

and qit = ξ2,iDipit. Since
v|∂Ω = 0, with a discrete integration by parts w.r.t. xi (Proposition 2.4) we then write

Qit = 2Re
∫∫∫
Q

Di(pit∂tv∗) ξ2,iDiv dt = 2 Re
∫∫∫
Q

(
qit ∂̃tv∗

i

+ ξ2,ip̃it
i (∂tDiv

∗)
)
Div dt

= 2Re
∫∫∫
Q

qitDiv
i

∂tv
∗ dt− ∫∫∫

Q

ξ2,i(∂tp̃it
i)|Div|2 dt+

∫∫
Ω

ξ2,i
(
p̃it

i|Div|2
)
(T ),

after an integration by parts w.r.t. t, to yield

Qit = 2 Re
∫∫∫
Q

qit
i Div

i

∂tv
∗ dt+

h2
i

2
Re

∫∫∫
Q

Di(qit)(DiDiv)∂tv∗ dt

− ∫∫∫
Q

ξ2,i(∂tp̃it
i)|Div|2 dt+

∫∫
Ω

ξ2,i
(
p̃it

i|Div|2
)
(T ).

Lemma C.3. We have

ξ2,ip̃it
i = sλξ1,iξ2,iϕ(∂tψ) + sOλ,K(sh),

ξ2,i∂tp̃it
i = sλ2ξ1,iξ2,iϕ(∂tψ)2 + sλϕO(1) + sOλ,K(sh),

qit
i = sλ2ξ1,iξ2,iϕ(∂iψ)(∂tψ) + sλξ1,iξ2,iϕO(1) + sOλ,K(sh),

hDi(qit) = sλϕO(1) +Oλ,K(sh).

Proof. The first three estimates follow from Proposition 2.13 and Corollary 2.8
following the method of the proof of Lemma C.2 (see also the proof of similar technical
lemmata in [BHL09a, Appendix B]).

For the fourth estimate we first write

hiDiqit = hiDi(ξ2,iDipit) = hi(Diξ2,i)Dipit
i

+ hiξ2,i
i

DiDipit

= Oλ,K(sh) + hiO(1)DiDipit,

following the method of the proof of Lemma C.2. We then write

Dipit = −(Diξ1,i)r2(∂tρ)ρ̃i
i
i

− ξ̃1,i
i

Di(r2(∂tρ)ρ̃i
i

).



30 F. BOYER, F. HUBERT, AND J. LE ROUSSEAU

and obtain

hiDiDipit = −hi(DiDiξ1,i)r2(∂tρ)ρ̃i
i
i
i

− 2hiDiξ1,i
i

Di(r2(∂tρ)ρ̃i
i

)
i

− hiξ̃1,i
i
i

DiDi(r2(∂tρ)ρ̃i
i

)
= sλϕO(1) +Oλ,K(sh),

arguing as in the proof of Lemma C.2, as Diξ1,i = O(1). The result follows.

Computation of Qii. We set pii = −ξ21,iξ2,ir2ρ̃i
i

Diρ
i

and qii = Di(ξ2,i
i

pii).
By Lemmata 2.1 and 2.4, we have

Qii =
∫∫∫
Q

qii |Div|2 dt−
∫∫
Qi

((
ξ2,i

i

pii
)
Ni+1

|Div|2Ni+
1
2
− (

ξ2,i
i

pii
)
0
|Div|21

2

)
dt

− 2
∫∫∫
Q

piiDi(ξ2,i)
∣∣Div

i∣∣2 dt.

For the first term we write
∫∫∫
Q

qii |Div|2 dt = − ∫∫∫
Q

qii |Div|2 dt+ 2
∫∫∫
Q

qii |Div|2
i

dt

︸ ︷︷ ︸
=Qa

ii

+ hi
∫∫
Qi

(
(qii) 1

2
|Div|21

2
+ (qii)Ni+

1
2
|Div|2Ni+

1
2

)

by Proposition 2.4 and with Lemma 2.2 we further have

Qa
ii = 2

∫∫∫
Q

qii
i |Div|2

i

dt+
h2
i

2
∫∫∫
Q

(Diqii)Di|Div|2 dt.

A further use of Lemma 2.2 and a discrete integration by parts w.r.t. xi (Proposi-
tion 2.4) yield,

Qa
ii = 2

∫∫∫
Q

qii
i
∣∣Div

i∣∣2 dt+
h2
i

2
∫∫∫
Q

qii
i|DiDiv|2 dt− h2

i

2
∫∫∫
Q

(DiDiqii)|Div|2 dt

+
h2
i

2
∫∫
Qi

(
(Diqii)Ni+1|Div|2Ni+

1
2
− (Diqii)0|Div|21

2

)
dt.

We thus have

Qii = − ∫∫∫
Q

qii |Div|2 dt+ 2
∫∫∫
Q

qii
i
∣∣Div

i∣∣2 dt− 2
∫∫∫
Q

piiDi(ξ2,i)
∣∣Div

i∣∣2 dt

− ∫∫
Qi

((
ξ2,i

i

pii
)
Ni+1

|Div|2Nx+ 1
2
− (

ξ2,i
i

pii
)
0
|Div|21

2

)
dt

+ hi
∫∫
Qi

(
(qiii)Ni+1|Div|2Nx+ 1

2
+ (qiii)0|Div|21

2

)
dt

+
h2
i

2
∫∫∫
Q

qii
i|DiDiv|2 dt− h2

i

2
∫∫∫
Q

(DiDiqii)|Div|2 dt.
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Lemma C.4. We have

ξ2,i
i

pii = −(
ξ21,iξ

2
2,i +Oλ,K(sh)

)
rDiρ

i

,

piiDi(ξ2,i) = sλϕO(1) + sOλ,K(sh),
qii = sλ2ξ21,iξ

2
2,iϕ(∂iψ)2 + sλϕO(1) + sOλ,K(sh),

qii
i = sλ2ξ21,iξ

2
2,iϕ(∂iψ)2 + sλϕO(1) + sOλ,K(sh),

h2
iDiDiqii = sλϕO(1) + sOλ,K(sh).

Moreover for hi sufficiently small we have

(qiii)Ni+1 ≥ sλ(ϕ)Ni+
1
2
O(1) + sOλ,K(sh), (C.7)

(qiii)0 ≥ sλ(ϕ) 1
2
O(1) + sOλ,K(sh).

Proof. The first estimate follows from Proposition 2.9. The next three estimates
all follow from Proposition 2.13 and Corollary 2.8, following the method of the proof
of Lemma C.2.

To estimate h2
iDiDiqii, introducing α = −ξ21,iξ2,iξ2,i

i

and β = r2ρ̃i
i

Diρ
i

we first
write

DiDiqii = (DiDiDiα)˜̃γi
i
i

+ 3D̃iDiα
i

D̃iγ
i
i

+ 3D̃iα
i
i

D̃iDiγ
i

+ ˜̃
αi

i
i

(DiDiDiγ).

We note that we have

h2DiDiDiα = O(1), hD̃iDiα
i

= O(1), D̃iα
i
i

= O(1), ˜̃
αi

i
i

= O(1),

and, with Proposition 2.13,

˜̃
γi

i
i

= sλϕO(1) + sOλ,K((sh)2), D̃iγ
i
i

= sOλ,K(1), D̃iDiγ
i

= sOλ,K(1),
hDiDiDiγ = sOλ,K(1).

The estimate for h2
iDiDiqii then follows.

For the second part of the proof we only address the first inequality in (C.7). The
second inequality follows similarly. We have

qii
i = −Di

(
ξ21,iξ2,iξ2,i

i)
r2ρ̃i

i

Diρ
i

i
i

︸ ︷︷ ︸
=sλϕO(1)+sOλ,K(sh)

+ξ21,iξ2,iξ2,i
i
i

︸ ︷︷ ︸
≥0

bii

i

where the estimation of the first term follows as in the proof of Lemma C.2 and with
bii = Di(−r2ρ̃i

i

Diρ
i

).
It remains thus to prove that (bii)ki ≥ 0, ki = Ni + 1

2 , Ni + 3
2 , for hi suffi-

ciently small. Observing that ∂2
i ϕ(x) = λ2(∂iψ)2ϕ + λ(∂2

i ψ)ϕ, with the assump-
tion made on ψ in the neighborhood of the boundary ∂iΩ, we see that the function
xi 7→ ϕ(t, x1, . . . , xd) is convex in a neighborhood of {xi = Li}. It thus follows that

ϕki+1 + ϕki−1 − 2ϕki ≥ 0,
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for kihi close to Li = (Ni + 1)hi. As ρ = e−sϕ it follows that

ρki+1

ρki

≤ ρki

ρki−1
, for kihi close to (Ni + 1)hi. (C.8)

We now write

(−r2ρ̃i
i

Diρ
i

)ki
=

1
8hi

((
1 +

ρki−1

ρki

)2 − (
1 +

ρki+1

ρki

)2
)
,

which gives

hi(bii)ki+
1
2

=
1

8hi

( (
1 +

ρki

ρki+1

)2 − (
1 +

ρki−1

ρki

)2

︸ ︷︷ ︸
≥0

+
(
1 +

ρki+1

ρki

)2 − (
1 +

ρki+2

ρki+1

)2

︸ ︷︷ ︸
≥0

)
,

by (C.8) if kihi close to Li = (Ni + 1)hi. Inequality (C.7) thus follows for hi small,
noting that (ϕ)ki+1 = (ϕ)ki+

1
2

+ h2Oλ(1).

Computation of Qij, i 6= j. We set pij = −ξ1,iξ1,jξ2,jr2ρ̃i
i

Djρ
j

and qij =
ξ2,iDipij . As v|∂Ω = 0, a discrete integration by parts w.r.t. xi (see Lemma 2.4)
yields

Qij =2Re
∫∫∫
Q

ξ2,iDi

(
pij Djv∗

j)
Div dt,

which can be written as Qij = Qa
ij + Qb

ij with

Qa
ij = 2Re

∫∫∫
Q

qij D̃jv∗
j

i

Div dt, Qb
ij = 2Re

∫∫∫
Q

ξ2,ip̃ij
i
DjDiv∗

j

Div dt.

By Proposition 2.4 we write

Qa
ij = 2Re

∫∫∫
Q

qij Div
i

Djv∗
j

dt

= 2Re
∫∫∫
Q

qij
i Div

i

Djv∗
j

dt+
h2
i

2
Re

∫∫∫
Q

(Diqij) (DiDiv)Djv∗
j

dt.

We also have

Qb
ij = 2 Re

∫∫∫
Q

ξ2,ip̃ij
i
Div

j

DjDiv
∗ dt

= 2 Re
∫∫∫
Q

ξ̃2,ip̃ij
i
j

D̃iv
j

DjDiv
∗ dt+

h2
j

2
∫∫∫
Q

Dj(ξ2,ip̃ij
i) |DjDiv|2 dt

= − ∫∫∫
Q

Dj(ξ2,ip̃ij
i)

j |Div|2 dt+
h2
j

2
∫∫∫
Q

Dj(ξ2,ip̃ij
i) |DjDiv|2 dt.

We thus have

Qij = − ∫∫∫
Q

Dj(ξ2,ip̃ij
i)

j |Div|2 dt+ 2Re
∫∫∫
Q

qij
i Div

i

Djv∗
j

dt (C.9)

+
h2
i

2
Re

∫∫∫
Q

(Diqij) (DiDiv)Djv∗
j

dt+
h2
j

2
∫∫∫
Q

Dj(ξ2,ip̃ij
i) |DjDiv|2 dt
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Lemma C.5. We have

Dj(ξ2,ip̃ij
i)

j

= sλ2ξ1,iξ2,iξ1,jξ2,jϕ(∂jψ)2 + sλϕO(1) + sOλ,K(sh),
qij

i = sλ2ξ1,iξ2,iξ1,jξ2,jϕ(∂iψ)(∂jψ) + sλϕO(1) + sOλ,K(sh),
Dj(ξ2,ip̃ij

i) = sλ2ξ1,iξ2,iξ1,jξ2,jϕ(∂jψ)2 + sλϕO(1) + sOλ,K(sh),
hDiqij = sλϕO(1) +Oλ,K(sh).

The estimates all follow from Proposition 2.13 and Corollary 2.8, arguing as in the
proof of Lemma C.2.

Estimate of I11. We now collect the different terms that we have just computed
and use Lemmata C.1 to C.5 to write

I11 = I ′11 + Y11 + I ′′11 + I ′′′11 − (J11 + Z11 + Z ′11 + Z ′′11),

where

I ′11 = −sλ2
∫∫∫
Q

ϕ|∇ξψ|2|∂tv|2 dt− sλ2 ∑
i∈J1,dK

∫∫∫
Q

ϕξ1,iξ2,i|∇ξψ|2|Div|2 dt

+ sλ
∑

i∈J1,dK

∫∫
Ω

(
ϕξ1,iξ2,i(∂tψ)|Div|2

)
(T )− sλ

[ ∫∫
Ω

ϕ(∂tψ)|∂tv|2
]T

0

and

Y11 =
∑

i∈J1,dK

∫∫
Qi

((
(ξ21,iξ

2
2,i +Oλ,K(sh)) rDiρ

i)
Ni+1

|Div|2Ni+
1
2

− (
(ξ21,iξ

2
2,i +Oλ,K(sh)) rDiρ

i)
0
|Div|21

2

)
dt,

and

I ′′11 = 2sλ2
∫∫∫
Q

ϕ
(
(∂tψ)2|∂tv|2 +

∑
i∈J1,dK

ξ21,iξ
2
2,i(∂iψ)2

∣∣Div
i∣∣2

)
dt

+ 2sλ2 Re
∫∫∫
Q

ϕ
(
2(∂tψ)∂tv

∑
i∈J1,dK

ξ1,iξ2,i(∂iψ)Div∗
i

+
∑

i,j∈J1,dK
i 6=j

ξ1,iξ2,iξ1,jξ2,j(∂iψ)(∂jψ)Div
i

Djv∗
j
)
dt,

= 2sλ2
∫∫∫
Q

ϕ
∣∣∣(∂tψ)∂tv +

∑
i∈J1,dK

ξ1,iξ2,i(∂iψ)Div
i
∣∣∣
2

dt

≥ 0,

and

I ′′′11 =
∑

i∈J1,dK

sλ2h2
i

2
∫∫∫
Q

ϕξ1,iξ2,i(∂iψ)2|Di∂tv|2 dt

+
∑

i,j∈J1,dK
i 6=j

sλ2h2
j

2
∫∫∫
Q

ϕξ1,iξ2,iξ1,jξ2,j(∂jψ)2|DiDjv|2 dt

+
∑

i∈J1,dK

sλ2h2
i

2
∫∫∫
Q

ϕξ21,iξ
2
2,i(∂iψ)2|DiDiv|2 dt

≥ 0,
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and

J11 =
∑

i∈J1,dK

∫∫
Ω

δ11,i|Div|2(T )

+
∑

i∈J1,dK

∫∫
Qi

(
(δ(2)11,i)Nx+ 1

2
|Div|2Nx+ 1

2
+ (δ(2)11,i) 1

2
|Div|21

2

)
dt

with δ11,i = sOλ,K(sh), and δ(2)11,i = h(sλϕO(1) + sOλ,K(sh)), and

Z11 =
∫∫∫
Q

β′11|∂tv|2 dt+
∑

i∈J1,dK

∫∫∫
Q

ν′11,i|Div|2 dt+
∑

i∈J1,dK

∫∫∫
Q

ν′11,i
∣∣Div

i∣∣2 dt

and

Z ′11 = Re
∑

i,j∈J1,dK
i6=j

∫∫∫
Q

α11,ij Div
i

Djv∗
j

dt+ Re
∑

i∈J1,dK

∫∫∫
Q

α11,tiDiv
i

∂tv
∗ dt

where β′11, ν
′
11,i, ν

′
11,i, α11,ij , and α11,ti are of the form sλϕO(1) + sOλ,K(sh), and

Z ′′11 =
∑

i∈J1,dK

∫∫∫
Q

γ′′11,ti|Di∂tv|2 dt+
∑

i,j∈J1,dK
i6=j

∫∫∫
Q

γ′′11,ij |DiDjv|2 dt+
∑

i∈J1,dK

∫∫∫
Q

γ′′11,ii|DiDiv|2 dt

+ Re
∑

i∈J1,dK

∫∫∫
Q

γ′′11,iit(DiDiv)∂tv∗ dt+ Re
∑

i,j∈J1,dK
i 6=j

∫∫∫
Q

γ′′11,iij(DiDiv)Djv∗
j

dt,

where γ′′11,ti, γ
′′
11,ij , and γ′′11,ii are of the form h2

(
sλϕO(1) + sOλ,K(sh)

)
, and γ′′11,iit,

γ′′11,iij are of the form h
(
sλϕO(1) +Oλ,K(sh)

)
.

We conclude with Cauchy-Schwarz inequalities that yields

|Z ′11| ≤
∑

i∈J1,dK

∫∫∫
Q

α11,i

∣∣Div
i∣∣2 dt+

∫∫∫
Q

α11,t

∣∣∂tv
∣∣2 dt,

with α11,i and α11,t of the form sλϕO(1) + sOλ,K(sh), and

|Z ′′11| ≤
∑

i∈J1,dK

∫∫∫
Q

γ′′′11,ti|Di∂tv|2 dt+
∑

i,j∈J1,dK
i 6=j

∫∫∫
Q

γ′′′11,ij |DiDjv|2 dt+
∑

i∈J1,dK

∫∫∫
Q

γ′′′11,ii|DiDiv|2 dt

+
∫∫∫
Q

γ′′′11,t|∂tv|2 dt+
∑

i∈J1,dK

∫∫∫
Q

γ′′′11,i|Div
i|2 dt,

with γ′′′11,ti, γ
′′′
11,ij , and γ′′′11,ii are of the form h2

(
sλϕO(1) + sOλ,K(sh)

)
and γ′′′11,t and

γ′′′11,i are of the form sλϕO(1) +Oλ,K(sh).

C.2. Proof of Lemma 3.5. As compared to the computation of the counterpart
of I21 in the proof of the semi-discrete Carleman estimate in [BHL09a] (also denoted
I21 there) we need to compute the following additional terms,

Qij = −2Re
∫∫∫
Q

pij ṽ
j

j

Div∗
i

dt,

for i 6= j, where pij = −ξ1,iξ2,iξ1,jξ2,jr2(DjDjρ)Diρ
i

.
With Proposition 2.4, we have

Qij = −2Re
∫∫∫
Q

pijDiv∗
i
j

ṽj dt

= −2Re
∫∫∫
Q

p̃ij
j
D̃iv∗

i
j

ṽj dt

︸ ︷︷ ︸
Qa

ij

−h
2

2
Re

∫∫∫
Q

(Djpij)(DjDiv∗
i

)ṽj dt.
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We now write

Qa
ij = −2 Re

∫∫∫
Q

p̃ij
j
ṽj

i

D̃iv∗
j

dt

= −2 Re
∫∫∫
Q

˜̃pij j
i ˜̃vj

i

D̃iv∗
j

dt

︸ ︷︷ ︸
Qb

ij

−h
2

2
∫∫∫
Q

(Dip̃ij
j) |Diṽ

j|2 dt,

and with a discrete integration by parts in xi (Proposition 2.4) and Lemma 2.2 we
have, as ṽj = 0 on ∂iQ,

Qb
ij = − ∫∫∫

Q

˜̃pij j
i

Di|ṽj|2 dt =
∫∫∫
Q

(
Di

˜̃pij j
i)
|ṽj|2 dt

=
∫∫∫
Q

(
Di

˜̃pij j
i)
|̃v|2j

dt− h2

4
∫∫∫
Q

(
Di

˜̃pij j
i)
|Djv|2 dt

=
∫∫∫
Q

Di
˜̃pij j

i
j

|v|2 dt− h2

4
∫∫∫
Q

(
Di

˜̃pij j
i)
|Djv|2 dt

We thus have

Qij =
∫∫∫
Q

Di
˜̃pij j

i
j

|v|2 dt− h2

2
∫∫∫
Q

(Dip̃ij
j) |Diṽ

j|2 dt

− h2

4
∫∫∫
Q

(
Di

˜̃pij j
i)
|Djv|2 dt− h2

2
Re

∫∫∫
Q

(Djpij)(DjDiv∗
i

) ṽj dt,

Lemma C.6. We have

Di
˜̃pij j

i
j

= 3s3λ4ξ1,iξ2,iξ1,jξ2,jϕ
3(∂iψ)2(∂jψ)2

+ (sλϕ)3O(1) + s2Oλ,K(1) + s3Oλ,K((sh)2),

Dip̃ij
j = s3Oλ,K(1), Di

˜̃pij j
i

= s3Oλ,K(1), Djpij = s3Oλ,K(1).

The estimations follow from Proposition 2.13 and Corollary 2.8 arguing as in the
proof of Lemmata C.2. By Young’s inequality we now note that

h2

2

∣∣∣ Re
∫∫∫
Q

(Dipij)(DiDjv∗
j

) ṽi dt
∣∣∣

≤ s3(sh)
∫∫∫
Q

Oλ,K(1)|ṽi|2 dt+ sh2(sh)
∫∫∫
Q

Oλ,K(1)|DiDjv
j|2 dt

≤ s3(sh)
∫∫∫
Q

Oλ,K(1)|̃v|2i

dt+ sh2(sh)
∫∫∫
Q

Oλ,K(1)|DiDjv|2
j

dt

= s3(sh)
∫∫∫
Q

Oλ,K(1)|v|2 dt+ sh2(sh)
∫∫∫
Q

Oλ,K(1)|DiDjv|2 dt,

since |ṽi|2 ≤ |̃v|2i

and using Proposition 2.4. Proceeding similarly for the term in
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|Diṽ
j|2 =

∣∣D̃iv
j∣∣2 we then obtain

Qij ≥ 3s3λ4
∫∫∫
Q

ξ1,iξ2,iξ1,jξ2,jϕ
3(∂iψ)2(∂jψ)2 |v|2 dt+

∫∫∫
Q

µ |v|2 dt+
∫∫∫
Q

νi |Div|2 dt

(C.10)

+
∫∫∫
Q

νj |Djv|2 dt+
∫∫∫
Q

γ|DiDjv|2 dt,

with

µ = (sλϕ)3O(1) + s2Oλ,K(1) + s3Oλ,K(sh),

νi = sOλ,K((sh)2), νj = sOλ,K((sh)2), γ = sh2Oλ,K(sh).

With the computation performed in [BHL09a] (See Lemma 4.5 and its proof in
Section B.4 in [BHL09a]) we then obtain the sought estimate from below for I21.

C.3. Proof of Lemma 3.7. We see that

Y =
∑

i∈J1,dK

∫∫
Qi

(
(qi)Nx+1|Div|2Ni+

1
2
− (qi)0|Div|21

2

)
dt

with qi = (1+Oλ,K((sh)2)) rDiρ
i

. By (3.3) we have Y ≥ 0 for sh sufficiently small.

C.4. Proof of Lemma 3.8. We choose i ∈ J1, dK. With Lemmata 2.5 and 2.2
and Proposition 2.4, we have

∫∫∫
Q

ϕ|∇ξψ|2|∂tv|2 dt =
∫∫∫
Q

ϕ|∇ξψ|2|∂tv|2
i

dt

=
∫∫∫
Q

˜ϕ|∇ξψ|2
i

|̃∂tv|2
i

dt+
h2
i

4
∫∫∫
Q

Di(ϕ|∇ξψ|2)Di|∂tv|2 dt

=
∫∫∫
Q

˜ϕ|∇ξψ|2
i ∣∣∂̃tv

i∣∣2 dt

+
h2
i

4

( ∫∫∫
Q

˜ϕ|∇ξψ|2
i

|Di∂tv|2 dt−
∫∫∫
Q

DiDi(ϕ|∇ξψ|2)|∂tv|2 dt
)
.

We thus have

∫∫∫
Q

ϕ|∇ξψ|2|∂tv|2 dt ≥ h2
i

4
∫∫∫
Q

˜ϕ|∇ξψ|2
i

|Di∂tv|2 dt (C.11)

− hi
4

∫∫∫
Q

(
(τ+
i − τ−i )Di(ϕ|∇ξψ|2)

)
|∂tv|2 dt.

Similarly, for i, j ∈ J1, dK with i 6= j, we obtain

∫∫∫
Q

ϕξ1,iξ2,i|∇ξψ|2 |Div|2 dt ≥
h2
j

4
∫∫∫
Q

ξ1,iξ2,iϕ|∇ξψ|2
j

|DjDiv|2 dt (C.12)

− hj
4

∫∫∫
Q

(
(τ+
j − τ−j )Dj(ξ1,iξ2,iϕ|∇ξψ|2)

)
|Div|2 dt.
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For i ∈ J1, dK, we also write

∫∫∫
Q

ξ1,iξ2,iϕ|∇ξψ|2 |Div|2 dt =
hi
2

∫∫
Qi

(
(ξ1,iξ2,iϕ|∇ξψ|2 |Div|2) 1

2
+ (ξ1,iξ2,iϕ|∇ξψ|2 |Div|2)Ni+

1
2

)
dt

+
∫∫∫
Q

ξ1,iξ2,iϕ|∇ξψ|2 |Div|2
i

dt

︸ ︷︷ ︸
=Qi

,

by Proposition 2.4, and Lemma 2.2 yields

Qi =
∫∫∫
Q

ξ1,iξ2,iϕ|∇ξψ|2
i |Div|2

i

dt+
h2
i

4
∫∫∫
Q

Di(ξ1,iξ2,iϕ|∇ξψ|2)Di|Div|2 dt

=
∫∫∫
Q

ξ1,iξ2,iϕ|∇ξψ|2
i ∣∣Div

i∣∣2 dt+
h2
i

4
∫∫∫
Q

ξ1,iξ2,iϕ|∇ξψ|2
i ∣∣DiDiv

∣∣2 dt

− hi
4

∫∫∫
Q

(
(τ+
i − τ−i )Di(ξ1,iξ2,iϕ|∇ξψ|2)

)
|Div|2 dt

+
h2
i

4
∫∫
Qi

(
Di(ξ1,iξ2,iϕ|∇ξψ|2)Ni+1|Div|2Ni+

1
2
−Di(ξ1,iξ2,iϕ|∇ξψ|2)0|Div|21

2

)
dt.

Observing that |∇ξψ| ≥ C > 0 we find that

hi
2

∫∫
Qi

(
(ξ1,iξ2,iϕ|∇ξψ|2 |Div|2) 1

2
+ (ξ1,iξ2,iϕ|∇ξψ|2 |Div|2)Ni+

1
2

)
dt

+
h2
i

4
∫∫
Qi

(
Di(ξ1,iξ2,iϕ|∇ξψ|2)Ni+1|Div|2Ni+

1
2
−Di(ξ1,iξ2,iϕ|∇ξψ|2)0|Div|21

2

)
dt ≥ 0,

for h sufficiently small, as Di(ξ1,iξ2,iϕ|∇ξψ|2) = Oλ(1).
It follows that

∫∫∫
Q

ξ1,iξ2,iϕ|∇ξψ|2 |Div|2 dt ≥
∫∫∫
Q

ξ1,iξ2,iϕ|∇ξψ|2
i ∣∣Div

i∣∣2 dt+
h2
i

4
∫∫∫
Q

ξ1,iξ2,iϕ|∇ξψ|2
i ∣∣DiDiv

∣∣2 dt
(C.13)

− hi
4

∫∫∫
Q

(
(τ+
i − τ−i )Di(ξ1,iξ2,iϕ|∇ξψ|2)

)
|Div|2 dt,

We have

˜ϕ|∇ξψ|2
i

= ϕ|∇ξψ|2 + hOλ,K(1), ξ1,iξ2,iϕ|∇ξψ|2
i

= ξ1,iξ2,iϕ|∇ξψ|2 + hOλ,K(1),

ξ1,iξ2,iϕ|∇ξψ|2
i

= ξ1,iξ2,iϕ|∇ξψ|2 + hOλ,K(1),
(τ+
j − τ−j )Di(ξ1,iξ2,iϕ|∇ξψ|2) = Oλ,K(1), i, j ∈ J1, dK.

The result follows.

Appendix D. A fully-discrete elliptic Carleman estimate for uniform
meshes.

In Section 3 we have derived a Carleman estimate for a semi-discrete elliptic op-
erator having in mind applications to the controllability of semi-discrete and discrete
parabolic equations. For completeness, in the present section we treat the case of
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fully discrete elliptic operator. Here we thus only consider variables in Ω ⊂ Rd. The
operator we consider is AM = −∑

i∈J1,dK ξ1,iDiξ2,iDi. The case of a non uniform
mesh can be treated as in Section 4.

We choose here to treat the case of an inner-observation in ω b Ω. The weight
function we choose is different from that introduced in Section 3. It is of the form
r = esϕ with ϕ = eλψ, with ψ fulfilling the following assumption. Construction of
such a weight function is classical (see e.g. [FI96]).

Assumption D.1. Let ω0 b ω be an open set. Let Ω̃ be a smooth open and con-
nected neighborhood of Ω in Rd. The function ψ = ψ(x) is in C p(Ω̃,R), p sufficiently
large, and satisfies, for some c > 0,

ψ > 0 in Ω̃, |∇ψ| ≥ c in Ω̃ \ ω0, ∂ni
ψ(t, x) ≤ −c < 0 in (0, T )× V∂iΩ,

∂2
i ψ(x) ≥ 0 in V∂iΩ.

where V∂iΩ is a sufficiently small neighborhood of ∂iΩ in Ω̃, in which the outward unit
normal ni to Ω is extended from ∂iΩ. We also set ρ = r−1.

The following notation is adapted to the fully-discrete setting of the present sec-
tion

∇ξf =
(√

ξ1,1ξ2,1∂x1f, . . . ,
√
ξ1,dξ2,d∂xd

f
)t
, ∆ξf =

∑
i∈J1,dK

ξ1,iξ2,i∂
2
xi
f.

As in Section 3 we use reg(ξ) to measure the boundedness of ξ1,i and ξ2,i and
of their discrete derivatives as well as the distance to zero of ξ1,i and ξ2,i, i ∈ J1, dK
(see (3.1)-(3.2)). Here, by abuse of notation, the letters ξ1,i, ξ2,i will also refer to
a Q1-interpolation on M and M

i

respectively. Note that the resulting interpolated
functions are Lipschitz continuous with

‖ξ1,i‖W 1,∞ ≤ Creg(ξ), ‖ξ2,i‖W 1,∞ ≤ Creg(ξ).

The enlarged neighborhood Ω̃ of Ω introduced in Assumption 1.3 allows us to
apply multiple discrete operators such as Di and Ai on the weight functions. In
particular, this then yields on ∂iΩ

(rDiρ
i

)|ki=0 ≤ 0, (rDiρ
i

)|ki=Ni+1 ≥ 0, i ∈ J1, dK.

Theorem D.2. Let reg0 > 0 be given. For the parameter λ ≥ 1 sufficiently large,
there exist C, s0 ≥ 1, h0 > 0, ε0 > 0, depending on ω and reg0, such that for any
ξ1,i, ξ2,i, i ∈ J1, dK, with reg(ξ) ≤ reg0 we have

s3‖esϕu‖2L2(Ω) + s
∑

i∈J1,dK
‖esϕDiu‖2L2(Ω) + s

∑
i∈J1,dK

|esϕDiu|2L2(∂iΩ)

≤ Cλ1,K,ε0,s0

(
‖esϕAMu‖2L2(Ω) + s3‖esϕu‖2L2(ω)

)
.

for all s ≥ s0, 0 < h ≤ h0 and sh ≤ ε0, and u ∈ CM∪∂M, satisfying u|∂Ω = 0.

Proof. We set f := −AMu and v = ru that satisfies

r
∑

i∈J1,dK
ξ1,iDiξ2,iDi(ρv) = rf.
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Arguing as in the proof of Theorem 3.1 we then write Av+Bv = g with A = A1 +A2

and B = B1 +B2 and

A1v =
∑

i∈J1,dK
ξ1,irρ̃

i
i

Di(ξ2,iDiv), A2v =
∑

i∈J1,dK
ξ1,iξ2,ir(DiDiρ) ṽi

i

,

B1v = 2
∑

i∈J1,dK
ξ1,iξ2,irDiρ

i

Div
i

, B2v = −2s(∆ξϕ)v

g = rf − ∑
i∈J1,dK

hi
4
ξ1,irDiρ

i

(Diξ2,i)(τ+
i Div − τ−i Div)

− ∑
i∈J1,dK

h2
i

4
ξ1,i(Diξ2,i)r(DiDiρ)Div

i − hi
∑

i∈J1,dK
O(1)rDiρ

i

Div
i

− ∑
i∈J1,dK

ξ1,i

(
r(Diξ2,i)Diρ

i

+ hiO(1)r(DiDiρ)
)
ṽi

i − 2s(∆t,xϕ)v.

The proof of Lemma 3.2 can be directly adapted and we have

‖g‖2L2(Ω) ≤ Cλ,K

(
‖rf‖2L2(Ω) + s2‖v‖2L2(Ω) + (sh)2

∑
i∈J1,dK

‖Div‖2L2(Ω)

)
. (D.1)

Developing the inner-product Re (Av,Bv)L2(Ω), we set Iij = Re (Aiv,Bjv)L2(Ω).
Lemma D.3 (Estimate of I11). For sh ≤ K, the term I11 can be estimated from

below in the following way

I11 ≥ −sλ2‖ϕ 1
2 |∇ξψ|gξv‖2L2(Ω) + Y11 −X11 −W11 − J11,

with

Y11 =
∑

i∈J1,dK

∫
Ωi

((
(ξ21,iξ

2
2,i +Oλ,K((sh)2)) rDiρ

i)
Ni+1

|Div|2Ni+
1
2

− (
(ξ21,iξ

2
2,i +Oλ,K((sh)2)) rDiρ

i)
0
|Div|21

2

)
,

and

X11 =
∑

i∈J1,dK

∫∫
Ω

ν11,i|Div|2 +
∑

i∈J1,dK

∫∫
Ω

ν11,i|Div
i|2,

with ν11,i and ν11,i of the form sλϕO(1) + sOλ,K(sh) and

W11 =
∑

i,j∈J1,dK
i 6=j

∫∫
Ω

γ11,ij |DiDjv|2 +
∑

i∈J1,dK

∫∫
Ω

γ11,ii|DiDiv|2,

with γ11,ij and γ11,ii of the form h2
(
sλϕO(1) + sOλ,K(sh)

)
and

J11 =
∑

i∈J1,dK

∫
Ωi

(
(δ(2)11,i)Ni+

1
2
|Div|2Ni+

1
2

+ (δ(2)11,i) 1
2
|Div|21

2

)
,

with δ(2)11,i = shiλϕO(1) + shiOλ,K(sh). For a proof, see the proof of Lemma 3.3 in
Appendix C and only consider the terms Qii and Qij .

Lemma D.4 (Estimate of I12). For sh ≤ K, the term I12 is of the following form

I12 ≥ 2sλ2‖ϕ 1
2 |∇ξψ|gξv‖2L2(Ω) −X12,
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with

X12 =
∑

i∈J1,dK

∫∫
Ω

ν12,i|Div|2 +
∫∫
Ω

µ12|v|2,

where µ12 = s2Oλ,K(1), and ν12,i = sλϕO(1) + sOλ,K(sh).

Lemma D.5 (Estimate of I21). For sh ≤ K, the term I21 can be estimated from
below in the following way

I21 ≥ 3s3λ4‖ϕ 3
2 |∇ξψ|2v‖2L2(Ω) + Y21 −W21 −X21,

with

Y21 =
∑

i∈J1,dK

∫
Ωi

Oλ,K((sh)2)(rDiρ
i

)0|Div
2
| 12

+
∑

i∈J1,dK

∫
Ωi

Oλ,K((sh)2)(rDiρ
i

)Nx+1|Div
2
|Nx+ 1

2
,

W21 =
∑

i,j∈J1,dK
i6=j

∫∫
Ω

γ21,ij |DiDjv|2, X21 =
∫∫
Ω

µ21|v|2 +
∑

i∈J1,dK

∫∫
Ω

ν21,i|Div|2,

where

γ21,ij = hOλ,K((sh)2), µ21 = (sλϕ)3O(1) + s2Oλ,K(1) + s3Oλ,K(sh),

ν21,i = sOλ,K((sh)2).

For a proof, adapt the proof of Lemma 3.5 in Appendix C as was done for Lemma D.3.
Lemma D.6 (Estimate of I22). For sh ≤ K, the term I22 is of the following form

I22 = −2s3λ4‖ϕ 3
2 |∇ξψ|2v‖2L2(Ω) −X22,

with

X22 =
∫∫∫
Ω

µ22|v|2 +
∑

i∈J1,dK

∫∫∫
Ω

ν22,i|Div|2

where µ22 = (sλϕ)3O(1) + s2Oλ,K(1) + s3Oλ,K(sh), and ν22,i = sOλ,K(sh).

With the previous lemmata, arguing as in the proof of Theorem 3.1, using that

(rDiρ
i

)Ni+1 ≥ c > 0 and − (rDiρ
i

)0 ≥ c > 0 onΩi, 1 ≤ i ≤ d

by Assumption D.1 since rDiρ
i

= −sλ(∂iψ)ϕ+ sOλ,K(sh), and recalling that |∇ψ| ≥
c > 0 in Ω \ ω0 we obtain that for some λ1 ≥ 1 sufficiently large, s1(λ1) > 1 and
eps1(λ1) > 0 then for λ = λ1 (fixed for the rest of the proof), s ≥ s1(λ1) and
sh ≤ ε1(λ1) we have

s3‖v‖2L2(Ω) + s
∑

i∈J1,dK
‖Div‖2L2(Ω) + s|Div|2L2(∂iΩ)

≤ Cλ1,K,ε0,s0

(
‖rf‖2L2(Ω) + s3‖v‖2L2(ω0)

+ s
∑

i∈J1,dK
‖Div‖2L2(ω0)

)
.
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we proceeding as in the end of proof of Theorem 4.1 in [BHL09a] we obtain

s3‖esϕu‖2L2(Ω) + s
∑

i∈J1,dK
‖esϕDiu‖2L2(Ω) + s

∑
i∈J1,dK

|esϕDiu|2L2(∂iΩ)

≤ C ′λ1,K,ε0,s0

(
‖esϕf‖2L2(Ω) + s3‖esϕu‖2L2(ω0)

+ s
∑

i∈J1,dK
‖esϕDiu‖2L2(ω0)

)
.

It thus remains to eliminate the last term in the r.h.s.. To that purpose we adapt
the procedure followed in the continuous case (see e.g. [FI96, FCG06, LL09]). We
multiply the equation satisfied by u, i.e. AMu = f , by sr2χu∗, where χ ∈ C∞

c (ω) is
such that χ ≥ 0 and χ = 1 in a neighborhood of ω0. We then integrate over Ω:

−Re s
∑

i∈J1,dK

∫∫
Ω

ξ1,ir
2χu∗Di(ξ2,iDiu) = Re s

∫∫
Ω

r2χu∗f. (D.2)

We first note that the r.h.s. can be estimated by
∣∣∣ Re s

∫∫
Ω

r2χu∗f
∣∣∣ ≤ C‖rf‖2L2(Ω) + s2C‖ru‖2L2(ω). (D.3)

In the l.h.s. of (D.2) we perform a discrete integration by parts to yield

− Re s
∑

i∈J1,dK

∫∫
Ω

ξ1,ir
2χu∗Di(ξ2,iDiu) = Re s

∑
i∈J1,dK

∫∫
Ω

Di(ξ1,ir2χu∗)ξ2,iDiu

= s
∑

i∈J1,dK

∫∫
Ω

ξ2,iξ̃1,ir2χ
i

|Diu|2 + Re s
∑

i∈J1,dK

∫∫
Ω

ξ2,iDi(ξ1,ir2χ)ũ∗
i

Diu (D.4)

In ω0, for h sufficiently small, we have

ξ̃1,ir2χ
i

≥ ξ̃1,ir2
i

= ξ̃1,i
i

r̃2
i

+
h2
i

4
(Diξ1,i)(Dir

2).

The results of the lemmata of Section 2.2 remain valid for r2 in place of r, i.e. for s
changed into 2s. As ξ̃1,i

i

= ξ1,i + hO(1) and Diξ1,i = O(1) we thus find

ξ̃1,ir2χ
i

≥ r2(ξ1,i + hO(1) +Oλ,K((sh)2).

For the first term in the r.h.s. of (D.4) it follows that, for h and sh sufficiently small,

s
∑

i∈J1,dK

∫∫
Ω

ξ2,iξ̃1,ir2χ
i

|Diu|2 ≥ Cs
∑

i∈J1,dK
‖rDiu‖2L2(ω0)

. (D.5)

For second term in the r.h.s. of (D.4) we write

Re s
∑

i∈J1,dK

∫∫
Ω

ξ2,iDi(ξ1,ir2χ) ũ∗
i

Diu

= Re s
∑

i∈J1,dK

∫∫
Ω

ξ2,ir̃2
i

Di(ξ1,iχ) ũ∗
i

Diu+
1
2
s

∑
i∈J1,dK

∫∫
Ω

ξ2,iDi(r2)ξ̃1,iχ
i

Di|u|2.
(D.6)

Arguing as above, the first term in the r.h.s. of (D.6) can be estimated by
∣∣∣ Re s

∫∫
Ω

ξ2,ir̃2
i

Di(ξ1,iχ) ũ∗
i

Diu
∣∣∣ ≤ C‖rDiu‖2L2(Ω) + Cs2‖ru‖2L2(ω), (D.7)
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for h and sh sufficiently small, as supp(χ) b ω. For the second term in the r.h.s. of
(D.6) a discrete integration by parts yields

1
2
s

∑
i∈J1,dK

∫∫
Ω

ξ2,iDi(r2)ξ̃1,iχ
i

Di|u|2 = −1
2
s

∑
i∈J1,dK

∫∫
Ω

Di(ξ2,iDi(r2)ξ̃1,iχ
i

)|u|2

With the results of Section 2.2, using that Diξ1,i = O(1) and Diξ2,i = O(1) we find
∣∣∣1
2
s

∑
i∈J1,dK

∫∫
Ω

ξ2,iDi(r2)ξ̃1,iχ
i

Di|u|2
∣∣∣ ≤ Cs3‖ru‖2L2(ω), (D.8)

for h and sh sufficiently small.
With (D.2)–(D.8) we conclude that

s
∑

i∈J1,dK
‖rDiu‖2L2(ω0)

≤ C
(
‖rf‖2L2(Ω) + s3‖ru‖2L2(ω) +

∑
i∈J1,dK

‖rDiu‖2L2(Ω)

)
.

For s sufficiently large we thus obtain the desired Carleman estimate.
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des recherches, Universités d’Aix-Marseille, Université de Provence, 2007,
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