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DISCRETE CARLEMAN ESTIMATES FOR ELLIPTIC OPERATORS
IN ARBITRARY DIMENSION AND APPLICATIONS*

FRANCK BOYER'$, FLORENCE HUBERT!!, AND JEROME LE ROUSSEAUY

Abstract. In arbitrary dimension, we consider the semi-discrete elliptic operator —9? + A™,
where A™ is a finite difference approximation of the operator —V(I'(z)V;). For this operator
we derive a global Carleman estimate, in which the usual large parameter is connected to the dis-
cretization step-size. We address discretizations on some families of smoothly varying meshes. We
present consequences of this estimate such as a partial spectral inequality of the form of that proven
by G. Lebeau and L. Robbiano for A™ and a null controllability result for the parabolic operator
Ot + AP for the lower part of the spectrum of A™. With the control function that we construct
(whose norm is uniformly bounded) we prove that the L2-norm of the final state converges to zero
exponentially, as the step-size of the discretization goes to zero. A relaxed observability estimate is
then deduced.

Key words. Elliptic operator — discrete and semi-discrete Carleman estimates — spectral in-
equality — control — parabolic equations.

AMS subject classifications. 35K05 - 65M06 - 93B05 - 93B07 - 93B40

1. Introduction and settings. Let d > 2, Lq,..., Ly be positive real numbers,
and Q = [ [0,L;]. Weset ¢ = (21,...,24) € Q. With w € Q we consider the
1<i<d

following parabolic problem in (0,7) x Q, with 7' > 0,
0ty — Vg - (IVey) = 1,vin (0,T) x Q,  yjpo =0, and yp—o = yo, (1.1)

where the diagonal diffusion tensor I'(x) = Diag(vi(x),...,vi(x)) with ~;(z) > 0
satisfies

"ol [Vari(@)]) < +oo. (1.2)

reg(T) def Sug (’yi(:c)Jr
S

The null-controllability problem consists in finding v € L?((0,7) x Q) such that
y(T) = 0. This problem was solved in the 90’s by G. Lebeau and L. Robbiano [LR95]
and A. Fursikov and O. Yu. Imanuvilov [FI96].

Let us consider the elliptic operator on {2 given by

A= —vm . (Fvac) = - E 8% (71811)

1<i<d

with homogeneous Dirichlet boundary conditions on 0€2. We shall introduce a finite-
difference approximation of the operator A. For a mesh 91 that we shall describe
below, associated with a discretization step h, the discrete operator will be denoted
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by A™. It will act on a finite dimensional space C™, of dimension |9t|, and will be
selfadjoint for a suitable inner product in C*. Our main result is a Carleman-type
estimate for the “extended” semi-discrete elliptic operator, —9? + A™. Here, the
additional variable ¢ is not directly connected to the time variable in the parabolic
problem above. In the discrete setting, such a result was obtained in [BHL09a] in
the one-dimensional case. Here, we extend this result to any space dimension. Note
that we also prove a Carleman estimate for A™ itself. For Carleman estimates in the
continuous case we refer to [Hor63, Zui83, Hor85, LR95, F196, LR97, LL09]. Note that
an earlier attempt at deriving discrete Carleman estimates can be found in [KS91].
The result presented in [KS91] cannot be used here as the condition imposed by
these authors on the discretization step size, in connection to the large Carleman
parameter, is too strong for the applications we have in mind to the problem of
uniform controllability properties for semi-discrete parabolic problems.

We now describe an important consequence of the Carleman estimate we prove,
which was the main motivation of this work. We denote by ¢™ a set of discrete
orthonormal eigenfunctions, ¢; € C™, 1 < j < |9, of the operator A™, and by
p™ = {p;,1 < j < |9} the set of the associated eigenvalues sorted in a non-
decreasing sequence. The following (partial) spectral inequality is then a corollary of
the semi-discrete Carleman estimate we prove:

2 2
Y ol =[] T et <CVI[| L arse|, Vehigiz € C
penM Q' ppen™m w ' opepM
np<p < M <k

(1.3)

for uh? < Cg with Cg and h sufficiently small (integrals of discrete functions are
introduced below). This type of spectral inequality goes back to the work of G. Lebeau
and L. Robbiano [LR95] (see also [LZ98a, J199]). As opposed to the continuous case
this inequality is not valid for the whole spectrum. The condition ph? < Cg with Cg
small, states that it is only valid for a constant lower portion of the spectrum. This
condition cannot be relaxed. The optimal value of C's is not known at this point and
certainly depends, at least, on the geometry of w.

The spectral inequality (1.3) then implies the null-controllability of system (1.1)
for the lower part of the spectrum u < Cg/h?, i.e., for any initial condition yo € C*,
there exists a control v in L?((0,T) x ) (the semi-discrete functional spaces we
shall use will be made precise below) with |[v[/z2(0,1)x0) < Clyolr2(n) such that
(y(T), ¢r) = 0 if pph®> < Cs. Moreover, the remainder satisfies |y(T)|r20) <

e=C/h’ |Y0|L2(q). We thus obtain an exponential convergence as h goes to 0. Accurate

statements of the results we have just described are given in Section 1.2.

The form of the relaxed observability estimate that follows from this controllabil-
ity result has been the inspiration for the study of Carleman estimates for semi-discrete
parabolic operators [BHL10]. The spectral inequality (1.3) is also at the heart of the
work carried out by the authors on the numerical analysis of the fully-discretized
parabolic control problem in [BHL09Db].

In two dimensions, for finite differences, there is a counterexample to the null and
approximate controllabilities for uniform grids on a square domain for distributed or
boundary controls due to O. Kavian (see [Zua06]). It exploits an explicit eigenfunction
of A™ in two dimensions that is solely localized on the diagonal of the square domain.
This eigenfunction is associated with an eigenvalue in the higher part of the spectrum.
Our result may thus seem rather optimal in dimension greater that two.
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In dimension one, there is a null controllability result due to A. Lopez and
E. Zuazua [LZ98b] for the entire spectrum in the case of a constant diffusion co-
efficient and for a constant step size finite-difference discretization. In dimension one,
our method based on the proof of discrete Lebeau-Robbiano spectral inequality can-
not achieve such a result. In fact, one can notice that (1.3) cannot hold for the full
spectrum. In dimension one, the generalization of the result of [LZ98b] to a non
constant coefficient and non uniform meshes remains an open problem.

We now present the precise settings we shall work with.

For1<i<d,ieN,weset Q; = [] [0,L;]. For T > 0 we introduce

1<j<d
%

Q:(O,T)XQ, Q2:(077)XQ“ ].élgd
We also set boundaries as (see Figure 1)

or= T [0.L)x {0} x T] 0.L). ofQ= I [0.L;]x{L}x I [0.L].

1<5<i i<j<d 1<5<i i<j<d

Q=0 QUo Q, 0= U 9.
1<i<d

05 Q)
Ly
o7 Q) o Q)
Q
0 950 Ly
0

Fic. 1. Notation for the boundaries

1.1. Discrete settings. Here, we precisely define the type of mesh and dis-
cretization we shall use. The notation we introduce is technical, and yet will allow us
to use a formalism as close as possible to the continuous case, in particular for norms
and integrations. Then most of the computations we carry out can be read in a very
intuitive manner, which will ease the reading of the article. Most of the discrete for-
malism will then be hidden in the subsequent sections. The notation below is however
necessary for a complete and precise reading of the proofs.

We shall use the notation [a,b] = [a,b] N N.

1.1.1. Primal mesh. For i € [1,d] and N; € N*| let

0= Tio < Ti1 < - < TN, <TiN;+1 = L;.
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Fic. 2. Discretization in the ith direction.

We introduce the following set of indices,
RIGE {k = (kla . .,kd); k; € Hleiﬂv = [[17(]]]}

For k = (k1,...,kq) € M we set T = (T1,4y5.--,Tdky) € Q. We refer to this
discretization as to the primal mesh

M= {xp; k€N, with M= [[ N.

i€[1,d]
For i € [1,d] and I € [0, V;] we set
higgr =T —@ig,  Tipr = (@41 +@i0)/2,
and
h; = le%?ﬁi]] hijps, i€ [1,d], h= igﬁ);]] h;.

For ¢ € [1,d] and I € [1, N;], we set
hig=a;pps — a1 = (hp +hi1)/2.

See Figure 2, where the introduced notation is illustrated.

1.1.2. Boundary of the primal mesh. To introduce boundary conditions in
the ith direction and related trace operators (see Section 1.1.5) we set ;0 = 9, N U
O;"M with

Oy N ={k=(ki,...,ka); kj € [1,N;], j € [1,d], j #1i, ki =0},
0 M= {k = (ki ka) kj € [LN;], 5 € [Ld], j#d, ks = Nit1],

and

M= U O M= {aw keoM}, M= {aw ke oM.
el

Notice that 8?931 is nothing but the set of points of the primal mesh which are located
on the boundary 5‘?9.

1.1.3. Dual meshes. We will need to operate discrete derivatives on functions
defined on the primal mesh (see Section 1.1.6). It is easily seen that these derivatives
are naturally associated to another set of meshes, called dual meshes. In fact there
will be two kinds of such meshes: the ones associated to first order discrete derivation
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and the ones associated to second order discrete derivation. Let us define precisely
these new meshes.
For i € [1,d], we introduce a second type of sets of indices

N i= Lo = (kavo ka)s by € [LNG] G € [Ldl, G #
and k; = |+ = le[[ON]]}
For j € [1,d], j # i, we also set ajﬁ:a;ﬁuajﬁ with
aﬂ_ﬁlz{k:(kjh?k) k‘IE[[l N’]] i/E[[l,d]], i/#iv i/#jv
kl_l+ , 1€ [0,N;], and k; _0}
0fﬁi={k=<k1,-~-,k>- ki € [LNg], 4" € [L.d], ' #4, @ #J,
kz—z+ , 1€ [0,N;], and k; = N; +1}

and N = Ujen.al @ﬁi. We moreover introduce 814‘51' = 6{‘31 U 8i+ﬁi with
i

— 1
8{‘It:{k:(k:17...,k)ke[[1 ﬂ;e[[1d]];;ézk_§}
_, 1
oM :{k:(kl,...,kd); k; € [LN,], jeL.d], j#4, ki:Ni+§}.

Remark that 9;% C M whereas aﬁi ¢ N for Jj #i.
For i,j € [1,d], i # j, we introduce a third type of sets of indices

ﬁ”::{k:(kl,...,k)- ki € [1,No], @ € [1.d], & #14, z”7éj
and k; _11+f I € [0,Ni], _12+ lge[[ON]]}
For I € [1,d], 1 # 4, l # j, we also set o’ :a;m U[“)ZJ“T( with
oy = {k: (kl,...,kd); ki€ [L,No], @ € [1,d], i #i, @ #j, i #1,
k2_11+ L1y € [0,Ni], _12+ 1y € [0, ], andkzl—O}
8l+ﬁ”={k;=(k1,...,k ) ki € [1,Ny], e[[l d, i #i, @' #j, i £1,
kl_l1+ , 1 € [0,N]. k_12+ . 1y € [0,N;], and k = Nl+1},
and ON" :U;;[i[ll,ﬂ 81‘3'(' . Moreover we set 81-‘31" :8{‘)’(' U@;”ﬁ’ with
oM = {k:(kl,...,k )~ ki € [L Ny, @ € [L.d], i #4, i' #j,
ki_f k=4 > le[[ON]]}
aﬁ”:{kz(kl,..., )- k-/e[[l Nol, @ € [L,d], i #4, i # ],

kﬁN+ k=4 le[[()N]]}
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Fic. 3. Primal mesh and dual meshes in the two-dimensional case. The mesh points are marked
by black discs. Awailable boundary mesh points are marked with white discs. (a) 9 and O9M; (b)
M and oM ; (c) D and ONT ; (d) M.

Fork = (k1,...,kq) € N or ON (resp. N7 or 8&”) we alsoset g = (1,45 -+ > Td oy )
which gives the following dual meshes

M = {ap; keN}, M = {xp; kM), OFM = {a; k€N },
(resp. m = {wk; k€ ﬁ“}, om”’ = {:Bk; k€ aﬁij},
8?%” = {a:k; ke 8#%?)

The geometry of the different meshes we have introduced is illustrated in Figure 2 in
the two dimensional case.

In the present article, we shall only consider some families of regular non uniform
meshes, that will be precisely defined in Section 1.1.8. Note that the extension of our
results to more general mesh families does not seem to be straightforward.

1.1.4. Discrete functions. We denote by C™ (resp. C™ or C™”) the sets of
discrete functions defined on 9 (resp. M or ﬁ7) respectively. If u € C™ (resp. C™
or C™), we denote by uy, its value corresponding to xy, for k € 9N (resp. k € N’ or
ke MN’). For u € C™ we define

u™ = 3 Ly, up € L7(Q), withbe= [ [zip,_1,%4,41], k€N (1.4)
ke ie1,d]
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Since no confusion is possible, by abuse of notation we shall often write u in place of
u™. For u € C™ we define

ffu *ffu”” )dx = Z |bk| u, where |b| = T[] hix, k€N
i€[1,d]

For some u € C™, we shall need to associate boundary values
— {uk; ke 8‘31},

i.e., the values of u at the point &g € 09. The set of such extended discrete functions
is denoted by C™“9”_ Homogeneous Dirichlet boundary conditions then consist in
the choice uy, = 0 for k € ON, in short u?™ = 0 or even ujpn = 0 by abuse of notation
(see also Section 1.1.5 below). -

Similarly, for u € C™ (resp. C™"”) we shall associate the following boundary
values

wI™ = {ur; k € aﬁl} (resp. ud™ = {ur; k € aﬁ”}).

The set of such extended discrete functions is denoted by C™ V9" (resp. C™ Uo7 ),
For u € C™ (resp. C™") we define

U; Z 1- 1 Uk € LOO(Q) Wlth B;c = H [$l7kl_%’mlykl+%}7 k (S ﬁi,
ket le[1,d]
(reSP-“m =Y piuk € L2(Q) - with by = 11 [T 8- Tt ) K€ ﬁj)
kem"] le[[l,d]]

As above, for u € C™ (resp. C™"), we define

[fu:=[[uv™ (x)de= 3 |5;’uk, where }Bk‘ = [0 hg ke,
o) o) ket 1e[1,d]

(resp ffu = ffu 7 () da = |bk‘uk, where |bk‘ I hik, ke ﬁj)
ken le[1,d]

REMARK 1.1. Above, the definitions of by, 5;, and Bkj look similar. They are
however different as each time the multi-index k = (k1,...,kq) is chosen in a different
set: M, M and N respectively.

With u( ) in C™ (resp. C™" or C™") for all t € (0,7), we shall write Jf gudt=
I f T, u(t) dt. In particular we define the following L? inner product on C™ (resp.
C™ or (C‘”‘ 7y

(u,v)p2(0) = ffuv = ffu”” v (x))" de, (1.5)
(resp. (u,v)2(0) = ff uv* = ff u™ () (v™ (x))* de,
or (u,v)r2() = ff uv* = ff W™ () (0™ () dw).

The associated norms will be denoted by |u|2(q). For semi-discrete function wu(t),
t € (0,7), as above we shall also use the following L? norm:

[Ju(t ||L2Q) fff|“ t)|?dt.
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1.1.5. Traces. Let i € [1,d]. For u € C™Y9™ (resp. C™ Y™ | j oL 4), its trace
on 9;Q, corresponds to k € 9N (resp. 9 N'), i.e., ki = N; + 1 in our discretiza-
tion and will be denoted by w;,—n,+1 or simply uy, 1. Similarly its trace on 0; €2,
corresponds to k € 0; 9 (resp. 8{%1), i.e., k; = 0 and will be denoted by u,—o or
simply ug. The latter notation will be used if no confusion is possible, if the context
indicates that the trace is taken on 9, €.

By abuse of notation, we shall also use 9;Q, ¢ € [1,d], to denote the boundaries
of  in the discrete setting. For homogeneous Dirichlet boundary condition we shall
write

Vg, =0 & V=0 =Vk,=n+1 =0.

For v € C™U9™ (resp. C™/VO™Y 5 £ ) its trace on 9; (), corresponds to
k€ 00N (resp. 97 N”), i.e., k; = N; + % in our discretization and will be denoted
by vy, —n, +3 Or simply vN 41 Similarly its trace on 9; €, corresponds to k € 9; N’
(resp. 9; M), d.e., by = L 1 and will be denoted by Ujp,—1 or simply vi. The latter
notation will be used if no confus1on is possible, if the context indicates that the trace
is taken on 0; Q.

For such functions u € C™Y9*" (resp. C™ 9™ j -L ;) we can then define surface
integrals of the type

f Ut = f Ulk;=N;+1 = > |3¢bk| Uk,
RN ¢ Q; keaj o
' (resp. keolwi)
where [0;bx| = I hiw, k€ 0 (resp. EARTO)

1e[1,d]
I#i

and for v € C™'YO™" (resp. C™/VIMY 4 £ j)

f v|6i+Q = f ’U‘k}L:NrF% = Z )
afa Q; ke ot
(resp. kea M)
where |325k| = [I hw, k€ 8jﬁ (resp. 8;&“).

1e[1,d]
14

Observe that if k € ajm (resp. B;Fﬁj) and k' € 8z+ﬁ (resp. 8?&”) with k; = k] for
l # i then \81»1),(,] = ‘81»5;, . We thus have

S Yora = J Ylk;=N;+4 = ST =N = [ (Ti_U)\an
orQ 2 2 o

where 7,7 v € C™Y% ™ (resp. C™Y% ™) with the translation operator 7, defined in
Section 1.1.6. It is then natural to define the following integrals

S UN;+1UN;+1 = J Ulk;=N;+1V|k;=N;+1 = J Wt v) =N = [ U(T¢7U)|a;fs2~
Qi Qi Q; RN

Such trace integrals will appear when applying discrete integrations by parts in the
following sections.
Similar definitions and considerations can be made for integrals over 9, (2.



DISCRETE CARLEMAN ESTIMATES IN ARBITRARY DIMENSION 9

For u € C™Y9™ (resp. C™Y9™ | j oL i) we can then introduce the following L2
norm for the trace on 9;{:

2 2
ulZ20,0) = lwaializ.0) :S{ |k, = N1 +g{ |k, =o] -

i i

For v € C™ Y9 (resp. C™7Y9™ | j —£ ) we can then introduce the following L?
norm for the trace on 9;{:
2 2 2 2
|U|L2(87¢Q) = |v|3¢Q‘L2(3iQ) :g{ |u“€i:Ni+%’ +§{‘ ’u|k1:%|

i

1.1.6. Difference operators. Let i,j € [1,d], j # i. We define the following
translations for indices:

M (resp. M) — NUIEN (resp. W UGN,
k— Tiik:,

with

it .
(k) = ki 1 ?l;«éz.,
k5 ifl=i.

Translations operators mapping C™Y9™ — C™" and C™Y9™ _, C™" are then given
by
(tEu), = Uty k€ N (resp. N7).
A difference operator D; and an averaging operator A; are then given by
(Diw)ie = (hige) " (7w = (1, w)), k€T (resp. M),
1 B — i
(Aju)g = i, = 5((7‘:’&)].3 + (77 u)k), k€M (resp. N).

Both map C2Udm _, O 4 O UOT _,
We also define the following translations for indices:

7E O (resp. N) =N (resp. N7,
k— Tiik,

with

(k) = ki 1 %fl#z_,
kit5 ifl=i.

Translations operators mapping C™ — C™ and C™” — C™ are then given by
(rEv), = Urtry k€9 (resp. ).
A difference operator D; and an averaging operator A; are then given by
(Div)ie = (hig) " (7 0)k — (77 0)k), Kk € 9N (resp. N,
(Al =T = 5 (o) + (7 0l), b € (resp. ).

Both map C™ — C” and C™’ — C™ .
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~1.1.7. Sampling of continuous functions. A continuous function f defined
on ) can be sampled on the primal mesh f™ = {f(xg); k € DN}, which we identify to

fi’ﬂ: Z ]-bkfkv fk::f(wk)u kema
kEN
with bg as defined in (1.4). We also set
[ = {f(we); k€ oMy, [N = {[f(wk); k€ NUONY.

- The function f can also be sampled on the dual meshes, e.g. ﬁi, ™ = {f(xp); k €
N'} which we identify to

= Y i fe, fe=flme), ke

ken’

i

with similar definitions for f™', f™Y9™" and sampling on the meshes 9, M~ U
oMm"”.

In the sequel, we shall use the symbol f for both the continuous function and its
sampling on the primal or dual meshes. In fact, from the context, one will be able to
deduce the appropriate sampling. For example, with u defined on the primal mesh,
9, in the following expression, D;(yD;u), it is clear that the function ~ is sampled

on the dual mesh M as D;u is defined on this mesh and the operator D; acts on
functions defined on this mesh.

To evaluate the action of multiple iterations of discrete operators, e.g. D;, D;, A;, A;
on a continuous function we may require the function to be defined in a neighborhood
of Q. This will be the case here of the diffusion coefficients in the elliptic operator
and the Carleman weight function we shall introduce. For a function f defined on a
neighborhood of Q we set

h;

E f(x) :=f<m:t?ei), e; = (0i1,...,0a),

|
Dif i= (ha) (7} =77)f, Aif=Ff = s +Tf
For a function f continuously defined in a neighborhood of €2, the discrete function

D, f is in fact D, f sampled on the dual mesh, ﬁi, and D, f is D;f sampled on the
primal mesh, 9. We shall use similar meanings for averaging symbols, f, f, and

for more general combinations: for instance, if i # 7, 13;}1, D;D; f L, D;D; fi will be
respectively the functions ISJ\f sampled on ﬁij, m sampled on 9, and Im
sampled on 97’
1.1.8. Regular families of non-uniform meshes. In this paper, we address
non uniform meshes that are obtained as the smooth image of an uniform grid.
More precisely, let * = (0,1) and let ¢; : R — R, ¢ € [1,d] be increasing maps
such that

9 € €%, 9;(Q%) =[0,L;], infd; > 0. (1.6)
Q*

Let hy = ﬁ and M be the following uniform primal mesh on [0, 1]¢

Mo = {xp = (a8 4, 2qy,) = (k1hi, ... kah}), keN},
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and mi, i € [1,d] the associated dual meshes.
We define a non uniform mesh on 2

M= {2k, k €N,
with
LT = (191(1'(1),161)3 cee 719d(3327kd)) (17)

We set h* = sup;cpy,q) hi- Once the functions 9;, i € [1,d], are fixed we assume
that for some C' > 0 we have

Ch* <h} <h*, ie][ld].
For the mesh 91, this in turn implies, for some C’ > 0, for all 7 € [1,d],
C'h<h;y <h, l€][1,N], C'h < higpr < h, 1€ [0,N;].
In particular,
C'h<h;<h, ie][l,d]. (1.8)

We define the following quantities in order to measure the regularity of the meshes
under study

reg(v¥;) = max (sup 9, sup (95) 1, sup |19;’|> ,
Qr Qr Qr

res(0) = 1] reg().

Note that reg(d;) > 1 for any i € [1,d].
We shall call uniform meshes, the regular meshes that are obtained with the
following linear choice: ¥;(x) = L;x.

1.1.9. Additional notation. We shall denote by 2z* the complex conjugate of
z € C. In the sequel, C' will denote a generic constant independent of h, whose value
may change from line to line. As usual, we shall denote by O(1) a bounded function.
We shall denote by O, (1) a function that depends on a parameter p and is bounded
once p is fixed. The notation C,, will denote a constant whose value depends on the
parameter .

We say that « is a multi-index if & = (a1,...,a,) € N*. For a € N” and £ € R"
we write

|a|:a1_~_...+am 8a=5§11"'33:, ga: f‘l...fgn.

1.2. Statement of the main results. With the notation we have introduced,
a consistent finite-difference approximation of Au with homogeneous boundary con-
ditions is

1€[1,d]
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for u € C™Y9™ gatisfying Ujpo = u9™ = 0. Recall that, in each term, 7; is the

sampling of the given continuous diffusion coeflicient v; on the dual mesh M, so that
for any u € C™Y9” we have

H2u) —u ur—((r7)%u
N (%k)% ., (wk)#

ik + A ik —

= . , ke

[N

(AMu)p =~ >

i€[1,d] hiJﬂ

Note however that other consistent choices of discretization of v; on the dual meshes
are possible, such as the averaging on the dual mesh 9 of the sampling of 4; on the
primal mesh. Our results also holds for such discrete operators.

REMARK 1.2. Finite differences are not well adapted to address anisotropic el-
liptic operators. Here, we only treat the case of a diagonal anisotropic operator, i.e.
an anisotropy associated with the principal axes. Note however that the treatment we
make of non uniform meshes naturally leads to such diagonal anisotropic operators
by a change of variables, even starting from an isotropic diffusion coefficient.

We choose a function ¢ that satisfies the following properties.

ASSUMPTION 1.3. Let Q be a smooth open and connected bounded neighborhood
of Q in RY and set Q = (0,7) x Q. The function v is in ‘51’(@, R), with p sufficiently
large, and satisfies, for some ¢ > 0,

|V¢|annd¢>0in@,

O, () <0in (0,T) x Voo, 074(t, @) >0 in (0,7) x Va,a,
Op > con {0} x (Q\w), ©=Cstand O < —con{T} xQ,

where Va,q is a sufficiently small neighborhood of 0;X2 in Q, in which the outward unit
normal n; to § is extended from 0;€2. The construction of such a weight function is
described in Section A. We then set ¢ = e¥.

To state the Carleman estimate for the semi-discrete operator —92 + A™, we
introduce the following discrete gradient operator Y = (D1, ..., Dg)’.

THEOREM 1.4. Let9;, i € [1,d] satisfy (1.6) and ¢ be a weight function satisfying
(1.3) for the observation domain w. For the parameter A > 1 sufficiently large, there
exist C, so > 1, hg >0, g9 > 0, depending on w, T, (¥;)icq1,q) and reg(I'), such that
for any mesh M obtained from (9;);cp1,ay by (1.7), we have

83”85(‘9“”%2(@) + 8“€s¢8tu“%2(Q) + SH@SLPYUH%Q(Q) + $‘€S¢(O")atu(0, )‘%Q(Q)
+ SGQSW(T) |6{U,(T, )|%2(Q) + 5362S¢(T) |U(T, )|i2(Q)
< C(Jle*? (=02 + Az g + 5e* DY u(T, )z
+ 5[99 9,u(0, .)|2Lg(w)), (1.9)
for all s > 59, 0 < h < hg and sh < ey, and u € €>([0,T],C™Y9™), satisfying
ugoyxa = 0, uj0,7yx00 = 0.

Denoting by ¢™ a set of discrete L? orthonormal eigenfunctions, ¢; € C™, 1 <
j < |9m|, of the operator A™ with homogeneous Dirichlet boundary conditions, and
by p™ the set of the associated eigenvalues sorted in a non-decreasing sequence, fi;,
1 < j < |9 we have the following result.
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THEOREM 1.5 (Partial discrete Lebeau-Robbiano inequality). Let ¥ satisfying
(1.6). There exist C > 0, €1 > 0 and hgy such that, for any mesh 9 obtained from ¥
by (1.7) such that h < hg, for all 0 < u < &1/h?, we have

2 2
S ol =[] T et <OVIf| L arge| . Viawighgm C C
s Q o

pp€n pp€n w ' ppep™M
<k g <p M <

The proof is given in [BHL09a, Section 6] following the approach introduced in
[Le 07].

We introduce the following finite dimensional spaces
Ej = Span{¢y; 1< pup <2%} CC™, jeEN,

and denote by Ilg; the L?-orthogonal projection onto E;. The controllability result
we can deduce from the above results is the following.

THEOREM 1.6. Let T > 0 and ¥ satisfying (1.6). There exist hg > 0, Cp > 0
and Cy, Ca, C5 > 0 such that for all meshes M defined by (1.7), with 0 < h < hyg,
and all initial data yo € C™, there exists a semi-discrete control function v such that
the solution to

dy— > Di(viDiy) =1ov, y*™ =0, ylimo = yo. (1.10)
i€[1,d]
satisfies HEjmy(T) =0, for 7™ = max{j; 2%/ < C,/h*}, with lvllz2@) < Crlyolr2(o)
and furthermore |y(T)|r2(q) < 026703/h2‘y0|L2(Q),
For a proof see [BHL09a, Section 7].

Finally, in the spirit of the work of [LTO06] the controllability result we have
obtained yields the following relaxed observability estimate

COROLLARY 1.7. There exist Cr > 0 and C' > 0 depending on Q, w, T, and ¥,
such that the semi-discrete solution q in €*°([0,T],C™) to

-0+ A"q=0 in (0,T) x Q,
q=0 on (0,T) x 09,
q(T) = qr € C™,

in the case h < hg, satisfies
z 2 H C/h?
1q(0)[z2(0) < CT(ff|Q(t)| dt) + Ce” " qr| 12 (-
0w

As mentioned above, these results can also be used for the analysis of the space/time
discretized parabolic control problem [BHL0O9D].

1.3. Outline. In Section 2 we have gathered preliminary discrete calculus re-
sults. Many of the proofs of these results can be found in [BHL09a|. Additional
proofs have been placed in Appendix B to ease the reading. Section 3 is devoted to
the proof of the semi-discrete elliptic Carleman estimate for uniform meshes. Again,
to ease the reading, a large number of proofs of intermediate estimates have been
placed in Appendix C. This result is then extended to non-uniform meshes in Sec-
tion 4. For completeness, in Appendix D we give the counterpart of the Carleman
estimate of Theorem 1.4 in the case of a fully-discrete elliptic operator. This result
will be used in [BHL10] for the treatment of semi-discrete parabolic operators.
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2. Some preliminary discrete calculus results. Here, to prepare for Sec-
tion 3, we only consider uniform meshes, i.e., constant-step discretizations in each
direction, i.e., h; ;1 = h; = g, J € [0, Vil i € [1,d].

This section aims to provide calculus rules for discrete operators such as D;, D;
and also to provide estimates for the successive applications of such operators on the
weight functions.

2.1. Discrete calculus formulae. We present calculus results for the finite-
difference operators that were defined in the introductory section. Proofs are similar
to that given in the one-dimension case in [BHL09a].

LEMMA 2.1. Let the functions f1 and fa be continuously defined in a neighborhood
of Q. Fori € [1,d], we have

Di(f1f2) = Di(f1) fa + f1 Di(f).

Note that the immediate translation of the proposition to discrete functions f1, fo €
C™ (resp. C™, j # 1), and g1,g2 € C™ (resp. C™", j #1) is

Di(f1f2) = Di(f1) fz + J?; D;i(f2), D;(g9192) = Di(g1) g5 + 71 Di(g2).

_ LEMMA 2.2. Let the functions fi and f2 be continuously defined in a neighborhood
of Q. For i € [1,d], we have

— ~ Ad 2
fifa = fifa+ %Di(fl)Di(f2)-

Note that the immediate translation of the proposition to discrete functions fi, f2 €
C™ (resp. C™, j #1i), and g1,g2 € C™ (resp. C™", j # i)

i ~i o~ h2 . L h2 — —
fifo = fifa+ ZZDi(fl)Di(fQ)a 192" = G195 + ZZDi(gl)Di(g2)-

Some of the following properties can be extended in such a manner to discrete
functions. We shall not always write it explicitly.

Averaging a function twice gives the following formula.

LEMMA 2.3. Let the function f be continuously defined in a neighborhood of Q.
Fori € [1,d] we have

e F B
Azf:f :f-i-ZDlDZf

The following proposition covers discrete integrations by parts and related for-
mulae. _
PROPOSITION 2.4. Let f € C™VU9™ qnd g € C™ . Fori € [1,d] we have

I £(Dig) = = [[(Dif)g + [ (fni+19n,43 — fogy),
Q Q Q;

Ifa=[fg- Es{.(fMHgN”% + fogy)-

Q Q
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LEMMA 2.5. Let i € [1,d] and v € C™Y9™ (resp. C™Y™ for j £ i) be such
that vjg,0 = 0. Then [[qv= [[,’

LEMMA 2.6. Let f be a smooth function defined in a neighborhood of Q. For
1 € [1,d] we have

hi 1 1
T f=fx 5 [Oif(Eohi/2)do, Af=[f+Cohi [(1—|o]) O} (. + lohi) do,
0 —1
1
Dif =l f +Coh? [ (1 — o)) o2 f(. +leohi)do, £=1,2, [ = % Iy =1,

-1

Fori,j € [1,d], i # j, we have

il
vy -1
" h;rj|4 ’ _ 3 r(4) — /9y -
+C hih f(l ‘O-D f (x+ah1]/2”r' yeees 1] )dU,
vy —1

with hfj = h;e; £ hje; and n* = ﬁ(hi)
ij
|hi5 |

Note that 74— = O(h?) by (1.8), for 4,5 € [1,d], j # 1.

Proof. This series of results follow from Taylor formulae,

n—

1
fl®+n) = Z f(’)(w UIRER +{

J*O

1—0

nil) f(")(-’rJrUn n,...,m)do,

atordern=1,n=2,n=3orn=4.0

2.2. Calculus results related to the weight functions. We now present
some technical lemmata related to discrete operations performed on the Carleman
weight function that is of the form e%? with ¢ = e, 1) € €P, with p sufficiently large.
For concision, we set 7 = ¥ and p = r~!. The positive parameters s and h will be
large and small respectively and we are particularly interested in the dependence on
s, h and X in the following basic estimates.

We assume s > 1 and A > 1. We shall use multi-indices of the form a = (a4, a,)
with a; € N and a, € N°.

LEMMA 2.7. Let o and B be multi-indices. We have

9% (ro®p) =|a|l?l (—sp) I \eH8l (7yp)ats (2.1)
+ la] 8] () * NFE110(1) + 611 a (o] — 1)OA(L) = Oa(sl)).

Let o € [-1,1] and i € [1,d]. We have
P (r(x)(8%p) ( + ohy)) = Ox(s!°1(1 + (sh)IPl)) O (R, (2.2)

Provided sh < & we have 8°(r(x)(0%p)(z+ch;)) = Ox z(s!*!). The same expressions
hold with r and p interchanged and with s changed into —s.
For a proof see [BHL09a, proof of Lemma 3.7].
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With Leibniz formula we have the following estimate.
COROLLARY 2.8. Let o, 8 and 6 be multi-indices. We have

°(r2(9%p)dP p) =|a + B|1%1(—sp)laFTBINlatB+3l (g yatfito
+ |8]|ex + B(s) @ FBINleFB+I=1 (1)
+ 5T (ol (Jaf = 1) 4+ 181(18] = 1) OA(1) = Ox(sl*H7]).

The proofs of the following properties can be found in Appendix B.
PROPOSITION 2.9. Let a be a multi-index. Let i,j € [1,d], provided sh < &, we
have

rrEd%p = rd%p + 51910y a(sh) = s1410, 4 (1),
rAk 9% p = ro*p + sla‘O,\ﬁ((sh)Q) = sla‘O,\ﬁ(l), k=1,2,
rAFD;p = r0.p + 505 a((sh)?) = sOx a(1), k=0,1,
s i i gkj
rDD7 p =100, p+ s* Ox a((sh)?) = s°Oxa(1), ki +k; < 2.
The same estimates hold with p and r interchanged.

LEMMA 2.10. Let o and B be multi-indices and k € N. Let i,j € [1,d], provided
sh < R, we have

DD} (9°(ra° p)) = 9507 9° (ro®p) + h2Ora(s!), ki +k; <2,
AFO° (r0%p) = 0P (r® p) + O a(s!).

Let o € [-1,1], we have Df D?jaﬁ(r(x)aap(m +oh;)) = (’)Aﬁ(s'a‘), for ki +k; <2.
The same estimates hold with r and p interchanged.

LEMMA 2.11. Let o, 8 and & be multi-indices and k € N. Let i,j € [1,d],
provided sh < R, we have

AL (12(0° p)0° ) = 0 (12(0° p)0Pp) + W05 a(s°1417) = Oy a(s1°1 171,
D} D} 0° (r2(9°p)0°p) = 010 (8° (r*(9°p)3° p)) + h2 Oy a(s/*IH17)
= O\ a(slH8h 1k <2,
Let 0,0’ € [-1,1]. We have
AFd° (r(a:)z(aap(a: + oh;))0P p(x + o'h;)) = Oy a(s!T1AD),
DFDY & (r(2)2(0%p(m + 0hi))07p(x + 0'hy)) = Oxa(sH1P), Ky +k; < 2.
The same estimates hold with v and p interchanged.

PROPOSITION 2.12. Let a be a multi-index and k € N. Let i,j € [1,d], provided
sh < R, we have

DY D ARG (rDyp') = 90 0% (1D, p) + sOx s ((sh)?) = sOx5 (1),
DD (rD2p) = 00} (rd2p) + 52O al((sh)?) = 5205z (1),
Dk D;” (rAZp) = Oz a((sh)?).
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The same estimates hold with r and p interchanged.

PROPOSITION 2.13. Let a, 3 be multi-indices, i,j € [1,d] and ki, ki, k;, k; € N.
For k; + k; <2, provided sh < & we have

AYAT DD 0% (20 p)Dip') = D0} 07 (1297 p)0sp) + 711 O s ((5h)?)
= slo+10, 4 (1),

AP AT DD 07 (1 (0% p) A2p) = 00 07 (r(0° ) + 512105 s ((sh)?)
=505 x(1),

A AT DEDY 072 (0%)D20) = D0} 0% (2 (0% )2 ) + 517120 s ((51)°)

= slol+20, (1),
and we have

A ATTDE DY 9% (r2D,p D2p) = 04017 0% (r2(9,0)02p) + 5°Ox.a((h)?) = 5°Ox s (1),

k

J

k ) )

A¥ASTDR DR 9% (r2D,p  A2p) = 90 0% (rdip) + 5O ((sh)?) = sOx s (1).

3. A semi-discrete elliptic Carleman estimate for uniform meshes. Here
we consider constant-step discretizations in each direction. The case of regular non-
uniform meshes is treated in Section 4.

In preparation to this section, we shall prove here the Carleman estimate on
uniform meshes, for a slightly more general semi-discrete elliptic operator that we
define now. For all ¢ € [1,d], let & ; € R™ and &, € R™ be two positive discrete
functions. We denote by reg(¢) the following quantity

reg(§) = e reg(&1,i,2.i), (3.1)

with

1 1
reg(&1,4,&2,:) = max <SHP (fl,i + 7), sup (fz,i + )7
om 15/ o &2

maX sup | D; sup |D;&5;|, max sup|Diés;l ).
[[1d]] p| 51 z| Smp| z€2,z|7 JﬁEﬁH ﬁ}?l ]f?,z)

(3.2)

Hence, reg(¢) measures the boundedness of & ; and &3 ; and of their discrete derivatives
as well as the distance to zero of & ; and &3, 7 € [1,d].
By abuse of notation, the letters &; ;, & will also refer to a Q!-interpolation of

these values on 9 and M respectively. Note that the resulting interpolated functions
are Lipschitz continuous with

[€1illwroe < Creg(€),  [[€2,llw.oe < Creg(§).

We introduce the following notation related to the coefficients &; ; and &> ;, for
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any function f
Di¢f = \/€1i62.:Dif, i € [1,d]
Yef = (lef,...,def)t = (D1ef,.... Dacf),

Vel = (0 VEiGai0n . Vi) = (3.

Acf =07+ 2 51,i£2,i8£if~

i€[1,d]

We let w € ) be a nonempty open subset. We set the operator P™* to be

P” =0} = Y &Di(&Dy),
i€[1,d]
continuous in the variable ¢ € (0,7), with 7 > 0, and discrete in the variable € €.

The Carleman weight function is of the form r = e*? with ¢ = e*¥, where 1
satisfies Assumption 1.3.

The enlarged neighborhood € of Q introduced in Assumption 1.3 allows us to
apply multiple discrete operators such as D; and A; on the weight functions. In
particular, this then yields on 0;{2

(rDip )jk,=0 <0, (rDip )jg,=n,41 =0, i€ [1,d]. (3.3)
We are now in position to state and prove the following semi-discrete Carleman

estimate.
THEOREM 3.1. Let reg® > 0 be given. For the parameter X > 1 sufficiently large,
there exist C, sg > 1, hg > 0, g9 > 0, depending on w, T, reg®, such that for any & 4,

&4, 1 € [1,d], with reg(€) < reg® we have
SBHBSSDuHi?(Q) + SHeswatuH%Q(Q) +s ) IIX: ]] ||€S¢DZUH%2(Q) + S|€SLP(O")875U(O, )|%2(Q)

e(l,
+ se2#(T) |0:u(T, ~)|i2(9) + se?oe () lu(T, -)|2L2(Q)
<C (||€S¢Pmu||2L2(Q) +s > e D|Du(T, Moz + se*? () 9pul(0, -)|2L2(w)) ;
1€[[1,d]
(3.4)
ho and sh < &g, and u € €>([0,T],C™V9™)  satisfying

for all s > sp, 0 < h <

ufoyxe = 0, uj0,7)yx00 = 0.
Proof. We set f := —P™u. At first, we shall work with the function v = ru, i.e.,

u = pv, that satisfies
(3.5)

r(@f(pv)—k > &,iDi(&,iDi(pv))

i€[1,d]

>:rf.

We have 92 (pv) = (02p)v + 2(0yp)dyv + pO?v and by Lemma 2.1
Di(&2,:Ds(pv)) = (Di(€2,:Dip)) & + E2:Dip' Div' + (Dip') &2, D0+ Di(€2,:Dv)
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By Lemma 2.2 we have, for i € [1,d],

D‘

&2, D v—fgz Zv—i— (szl)( D’U—T Djv),

.4;

h? -
§21 zp —€2z zp + — (D 52 z)(Dlep)a

Di(&2.:Dip) = (Di&2,)Dip’ + Ea' 'DiD;p.

.4;

Using that pr = 1 and the above equalities, Equation (3.5) thus reads Av+ Byv = ¢’
with Av = Ajv + Ayv where

Ajw =0+ Y &urp Di(&,Dw),

i€[1,d]
Ao =r(07p)v+ X &i&ar(DiDip) ",
1€[1,d]
3111 = 27’(8”))8{0 + 2 Z fl7i§27i7’D1‘pi D,”Ui,
i€[1,d]
g =rf- > 4 51 zTsz (D &2, z)( DiU - Ti_DiU)
i€[1,d]
h? = —i i i
— Z 4151 1(D 52 z) (DiDip)DIL'U — hi Z O(l)T‘Dlp Di’U
ie[1,d] i€[1,d]
— ¥ & (rDi&)Dip' + O (DiDip)) 7,

i€[1,d]

since (€2 — &a4fle0 < Chi.
Following [FI96] we now set

Bv = By —2s(Acp)v, 9=9 —25(A¢2p)v.
————

=Bz?}

An explanation for the introduction of this additional term Baw is provided in [LLO09].
Equation (3.5) now reads Av + Bv = g and we write

[Av[|72(gy + 1Bvl|72(q) + 2 Re (Av, Bv) 2 (o) = l19ll72(q)- (3.6)

We shall need the following estimation of ||g|[z2(g). The proof can be adapted from
the one-dimensional case (see Lemma 4.2 and its proof in [BHLO09al).

LEMMA 3.2 (Estimate of the r.h.s.). For sh < K we have
l9llZ2q) < Cax <||7‘f||L2 + 52 vll72q) + (sh)? E%:dﬂ Div||2L2(Q)> - (37
? )

Most of the remaining of the proof will be dedicated to computing the inner-
product Re (Av, Bv) 2 (). Developing this term, we set I;; = Re (4;v, BjU)LQ(Q).

LEMMA 3.3 (Estimate of I11). For sh < R, the term I1; can be estimated from
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below in the following way
1 1
Iy > —s)\2(||902 \V£¢|5tv||%2(cg) + [l |V§¢|VEU||%2(Q))

T
4] (pOTol)(T) = sA| [ plout)ianeP
Q 0
+ Y1 — X — Wi — Ju,

with

Yu= 2l (€8, + Oxs((5W)) Dip )y, 1| Ditl i
€1, i

— (8.8, + Orsl(sh)) rDip ), _y | Divf3, _ ) dt,
and

X = fff511|3tv|2dt+ > fff vivi| Div)?dt + 3 fffy1“|Dw 12 dt,

i€[l,d] Q i€[l,d] Q
with B11, V114, V11,i of the form sApO(1) + sOx a(sh) and

Wi = [[f vl Dol dt + X [[f vl DiDjo?dt + 30 [[f vl DiDivl? dt,
Q i,jfi;,d] Q i€[1,d] Q

with Y11,it, V11,45, and Y11, of the form h? (s)\gp(’)(l) + SO)\’R(Sh/)> and

Jii= D> ff511,i|DiU|2(T)

i€[1,d] Q

2
ff( 111 |ki=N; +1|Div\|2ki:zvi+% + (551?i)\ki:%|Div||2ki:%> dt,
ZE[[I d] Q;

with 011, = sOx x(sh), and (5521)1 = shiApO(1) + sh;Ox s(sh). The proof can be
found in Appendix C.

The following lemma can be readily adapted from its counterpart in [BHL09a,
Lemma 4.4] (use also Lemma 4.8 in [BHL09a]).
LEMMA 3.4 (Estimate of I12). For sh < 8, the term I is of the following form

Tz 2 2532 (|0} [VewlOrollfa g, + 103 [Verl Vevllfag) ) — Xaz = Jiz,
with
X12 = fffﬂ12|8ﬂ)|2 dt+ Z fffl/lg Z|D ’U|2 dt"’fffﬂlQ‘v‘Q dt

i€[l,d] Q

Ji2 = ffmz\vl )+ ffo )[00*(T),
where

Bra = sApO(1),  piz = s°Oxs(1), m2 = s*Or (1),
V12, = sApO(1) + sOx a(sh).
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LEMMA 3.5 (Estimate of I1). For sh < &, the term I3 can be estimated from
below in the following way

Iy = 3802 | Verl vl 72 ) — (sN) ff 200V )(T) [vl*(T)

+ Yo — Way — Xo1 — Jou,

with
ng = Z fff ’}/21’“|Dia{(}|2dt + Z fff ’}/2171']‘|DiDj'U|2 dt,
i€1,d] Q i,jf?lg,d]] Q
Yoo= 3 [[Oxs((sh)*)(rDip )o| Dyvl}, dt
i€[1,d] Q; 2
+ 3 [ Oxs((sh)*)(rDip )n,+1|DivlEy, 1 dt,
i€1,d] Qs
Xgl—fffugl|’l)|2dt+ Z fffV211|D ’U|2dt
i€1,d] Q
I = ff nalol2(T)+ X [f] 21,41 Div*(T),
Q ie{[l,d]] Q
where

Yo1,it = hO(sh), 7a1,ij = hOx a((sh)?),
p21 = (sAp)2O(1) + 520y 1(1) + 8O a(sh),  va1; = sOx a((sh)?),
n21 = 520z a((sh)?) + 520x.a(1), and 21 = sOyx a((sh)?).

The proof can be found in Appendix C.

The following lemma can be readily adapted from its counterpart in [BHL09a,
Lemma 4.6].
LEMMA 3.6 (Estimate of Iy3). For sh < R, the term Isg is of the following form

Iy = =28 M|02 [Veyp2v][3 ) — Xoz,
with
X22 = fffﬂ22|’l}|2 dt+ E fffVle‘D U|2 dt

i€[1,d]

where o = (sAp)30(1) + 520, a(1) + 30, a(sh), and vas; = sOy a(sh).

Continuation of the proof of Theorem 3.1. Collecting the terms we have obtained
in the previous lemmata, from (3.6) we obtain, for sh < g,

258Nl [VewPoll3aq) + 2932 (Ilo? [Vewlduol e ) + 1 \vgwmnm@)

+2s)\< > [ &ibi(0dn)(T) DX (T {ff@ (00 [Orv] } )

ie[[l d] @
2(sA) ff SOV P)T) [0*(T) +2Y < Crallrfllieg) +2X +2W +2J,

(3.8)
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where Y = V11+Ya1, X = X114 X190+ X1+ X00+Cx 5 (SZIIUH%z(Q)HShV 2ieldl HDiUHQL?(Q))v

W =Wy + Way, and J = Jy1 + J12 + Jo1.
With the following lemma, we may in fact ignore the term Y.

LEMMA 3.7. Let sh < K. For all A there exists e1(A) > 0 such that for 0 < sh <
e1(N), we have Y > 0.

As |Veyp| > C > 0 in Q and recall the properties of the coefficients & ; and &2,
we then have

257\ 0¥ ol22q) + 2% (It 0ol3a g + 0} ToliZacqy )

+2$/\< > &ibe.i(@0n)(T) D (T [g%ﬁ (00 [Orv] ] )

ie[1,d] Q
2(sA) ﬂ" YO Ve ) (T) [0 (T)+ < Cxsllrflliecg) +2X +2W +2J, (3.9)

LEMMA 3.8. We have
1 1 -
sA? (H(pz 8tv||%2(Q) + |2 VUHQLQ(Q)) >v(h,\)+CH — X — W,
where v(h,\) >0 for 0 < h < hi(X) for some hi(X\) sufficiently small and

H=s02 5 [If o| D[ at + 5320 ZtMMD@Wﬁ

i€[1,d] Q i€[1,d] Q
+ Y [ elDiDPdt+ S [l ¢lDiDof* dt).
i’jf?ﬂ;‘dﬂ Q i€l,d] Q

X:sWQ@OA|&Mdb%g%HHOA )| D[ dt
[l Ox()[Div' [ at),

i€[ld] Q

and

W=sh'( ¥ ﬂﬁx (1|0, Dyv|? dt
ie[l,d] Q

+ X MUAIDDMMH— MUA\DDMMO

i,j€[1,d] cll,d
i#j €ltd) @

End of the proof of Theorem 3.1. Recalling the properties satisfied by 1 listed in
Assumption 1.3, if we choose A; > 1 sufficiently large, then for A = \; (fixed for the
rest of the proof) and sh < e1(A1) and 0 < h < hy(A1), from (3.8) and Lemmata 3.7
and 3.8, we obtain

53||U||2L2(Q) + SHatUH2L2(Q) +s Zd]] ||DiUH2L2(Q) +H

€1,

+ S\@tv(07 )|%2(Q) + S|(9tU(T, )|%2(Q) + S3|’U(T, )‘%Q(Q)

< Cra (I 132y + s 2 DT )l + 510w M)

)

+X+W+J, (3.10)
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where

H=s ) ||Div1||2L2(Q)+Sh2( > ||Dz‘3tv||2L2(Q)+ > ||DiDjU||2L2(Q)
i€L,d] i€[L,d] €Ll

+ 3 IDiDwlag));
i€[1,d]

fffm\v\QdH > fffVu\DvF |Oyv]* dt,

i€[1,d] i€[l,d] Q

with g1 = s20,, &(1) + 53Oy, a(sh) and vy 4, 714, (1, all of the form sO,, g(sh), and
where

W= [[[nalDidwl*dt+ > [[f vl DiDjol>dt + 3 [[f y,ulDiDsvl* dt,

i€[l,d] @ Biclhal Q i€[l,d] Q

where 71 3¢, 71,55 and 71,4 are of the form ShQO)\l’ﬁ(Sh), and where

i:gm\vl2(7)+ > [ 61ilDv*(T)

i€[1,d] ©

+ 5 (O 1Dl s + 621D ) dt,
i€[1,d] Qi

with 71 = $%0y, «(sh) + 5205, (1) and 61; = 5Oy, a(sh), 0\ = sh;Oy x(sh). The
last term in J was obtained by “absorbing” the following term in Ji;

I 7 (@3 OWIDavl, s+ (9),00) Dol ) dt
i€[1,d] Q: 2 2

by the volume term

[IJ €1,6&2,i0| Ve || Div]? dt,

i€l,d] Q
for A large.

We can now choose g and hg sufficiently small, with 0 < g9 < e1(A1), 0 < hg <
hi(A1), and sg > 1 sufficiently large, such that for s > sg, 0 < h < hg, and sh < &,
we obtain

$*[|vl|Z2(q) + sllOwllFa(q) + s [[Zd]] IDivl720) + H
ic[1,

+5[010(0, )| 720 + 810:0(T, L2y + 5° (T )12 (0

< O, Rc0,50 (Hrf||L2 +s [Izl:d]] |Div(T, ')|%2(Q) + 50w (0, ')|2L2(w)>' (3.11)
€[ 1,

To finish the proof, we need to express all the terms in the estimate above in terms of
the original function u. We can proceed exactly as in the end of proof of Theorem 4.1
in [BHL09a]. O
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4. Carleman estimates for non uniform meshes. We consider here the

notation introduced in section 1.1.8. -
We define, for i € [1,d], (; € C™ and (; € C™ as follows

hi k. —i - hz k.
i — shva , k m , i — shva , k m
Gike = =, € Gik ne €

(3

Even though these two formulae look similar they are in fact different as the indices
k are taken in different sets.

LEMMA 4.1. We have the following properties

reg(¥) ™! < (i <reg(9), i€ [1,d], ke,
reg(ﬂ)*1 < C_lk <reg(¥), ie[l,d],keMn,
|DiGil L) < reg(9)?, and |D;(i|pe (o) < reg(V)>.

For u € C™Y9™  we define Qmu € C™0Y9%0 to be the discrete function corre-
sponding to the reference uniform mesh 9, which takes the same values as u for each
index k € M. Similarly, for ¢ € [1,d] and u € C™, we denote by g?,lu c C™o'
the discrete function defined on MMy which takes the same values as u for each index
k € 9. We denote by Qg;’;o and Q;? the inverse of the operators Qn° and Qﬁo
respectively.

LEMMA 4.2. _
e For anyi € [1,d], any u € C™Y9™ and any v € C™', we have

Di(Qn°u) = Q?i(@Diu), Di( ?U) = Qn°(GiDiv).

e For any u € C™Y9™ and any i € [1,d], we have
Di(viDiu) = (G) ™' O, <Di (<Q§i?i?>Di(Q§°U)>> .

LEMMA 4.3. For any u € C™, and any v € C™', i € [1,d], we have

reg (V) HulZ2 ) < |Qmoulla (g < reg(d)|ul?zq),
reg(9) "Mul7a(q) < 1Qn v[72(ary < Teg(d)[vf72(q)-

We can now prove the Carleman estimate of Theorem 1.4 for the semi-discrete

elliptic operator

Pm = —83 - Z Dz('YzDz)
€[1,d]

We only give a sketch of the proof, since it is very similar to the one which is detailed
in [BHL09a] for the one-dimensional case.
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Proof of Theorem 1.4. The key idea is to perform a change of variables that
transforms P™ defined on a non-uniform mesh into an semi-discrete elliptic operator
defined on a uniform mesh. All the geometric information concerning the initial mesh
is then contained in the coefficients of this new operator.

More precisely, we consider the discrete function w = Qn°u which is defined on
the uniform mesh 9y. By using Lemma 4.2 we observe that

oz(pmi) = ~otw- ¥ (@) (0 (03 2 )ow)).
ic[L,d] Gi
We introduce the operator P™ = —92 — Zie[[l,d]] &1 (Di ({gzDzw)) with

Ci=0m(G)", L= Qg?l%,

so that we may now apply the Carleman estimate of Theorem 3.1 to w and P™° on the
uniform mesh 9% and with the weight function @ € [0,1]% + 1 o (¥1(z1) ... Va(wq)).

We note that reg(§) is bounded by some constant depending only on reg(«}) and
reg(I") and independent of the size of the mesh. We can thus find reg” sufficiently
large for which Theorem 3.1 leads to a Carleman inequality for the function w, and
the weight function defined above.

Using Lemmata 4.2 and 4.3 we then deduce result. Note that the values of hg,
€0, may change, depending only on the values of reg() and reg(I") and not on the
mesh size.

0

Appendix A. Construction of a weight function.

A weight function that satisfies the conditions listed in Assumption 1.3 can be
constructed as follows.

We first start with a function ¢; € €°°([0,7]) such that 9;¢1(0) > C > 0,
0:01(T) < —C < 0, and ¢1(0) = ¢1(7) = 0, and ¢1(¢t) > 0if t € (0,7). We choose
¢1 with a single critical point.

Let also ¢y € €>(Q) be such that ¢ > C > 0 and On, 2 < —C" < 0 and
812(,252 > C"” >01in Vaq.

This can be achieved with ¢o(z) = e$#2(®) 4 C — 1, with ¢o = 0 on 9,
q~52 > 0, in £, ggg =0 and (’9%452 <-C< 0, on 99

and ¢ > 0 sufficiently large and by taking the neighborhood Vjq sufficiently small.
The function ¢o can be chosen with a finite number of critical points by means of
Morse theorem [AE84].

We next set ¢(t, ) = ¢1(t)p2(x). This function satisfies the desired properties
listed in Assumption 1.3 on the boundaries (0,7) x 09 (and in its neighborhood
(0,7) x Vag), {0} x (2\w) and {7} x Q. It is also characterized by a finite number
of critical points.

We choose g in {0} xw. We enlarge @ in a small neighborhood of yo which leaves
0@ unchanged outside of {0} x w. We call Q this extension of @ and we extend the
function ¢ to Q in a €* manner. The critical points of ¢ can be pulled back to the
interior of Q\ @ by composing ¢ with a finite number of diffeomorphisms (see [FI96]
for the construction of these diffeomorphisms). The resulting function is the weight
function v and it satisfies all the properties listed in Assumption 1.3.

Appendix B. Proofs of some technical results in Section 2.
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B.1. Proof of Prop051t10n 2.9. We recall that rp = 1. By Lemma 2.6 we have
0%p(x) = 0%(x) + Chip(z fo 2)0;0%p(x + oh;/2) do, which by Lemma 2.7
yields r7;70% = r0%p + sl*lO0y(sh)e OA(Sh) = 5110, 4(1). The proof is the same

for rr;70%p. For rD;p, rA;0% = rg-o‘joi, rA29%p = r(g‘;\pi , and TDfi ijp we pro-
ceed similarly, exploiting the formula in Lemma 2.6 and then applying the result of
Lemma 2.7, e.g.,

D.p(e) = ip(z) + Cltp(a) [ (1 [ol)r(a)(02p) o+ ohi/2) dor
= 0ip(x) + sp(x)Ox a((sh)?) = sr(x) Oy 4(1).

Noting that A;D;p(x) = 617)(33) = (2h;) Y (p(x + h;) — p(x — h;)) we proceed as we
did for D;r. O

B.2. Proof of Lemma 2.10. By Lemma 2.6, we write

D:(9%(r0%p))(z) = 8;0° (r0°p)(z) + Ch2 } (1 — |0))2838° (r°p) (z + oh;/2) do

-1

By Lemma 2.7 we have 9707 (r0%p) = O,(s®l), which yields the first result in the
case k; + k; = 1. For the case k; + k; = 2, we proceed similarly, making use of the
other formulae listed in Lemma 2.6. For the averaging cases, we make use of the
second formula in Lemma 2.6.

Following the proof of Lemma 2.7 in [BHL09a] we set v(x, oh;) := r(x)p(x+oh;).
We have

1
[ (2:0°v)(x + 0'hi/2,0h;) do’ = Ox x(1), for || <|B],
-1

Diaﬁ (SC O'h

l\D\»—~

(B.1)
for sh < & by Lemma 2.7. Next, with u, = r0%p, we write r(x)0%p(x + ch;) =
v(x, oh;) e (x + oh;), which gives D;0% (r(x)0%p(x + oh;)) as a linear combination
of terms of the form

Ai(aﬂ/u(.,ahi)) Di(aﬂﬂua(.-l—ahi))—i—Di(aﬂ/y(.,Uh,i)) Ai(aﬂ/lua(.—l—ahi)), B+3" =3,

by the continuous and discrete Leibniz rules (Lemma 2.1). By the first part and
Lemma 2.7 we have D; (8% 1o (x+0h;)) = Ox 1(s!*!). By Lemma 2.7, 8 v(x, oh;) =
Or2(1) and 8% g (x + oh;) = Oy 1(s!?). The last result hence follows from (B.1).
We proceed in a similar way for the case k; + k; = 2. 00

B.3. Proof of Lemma 2.11. For the first two results, we proceed as in Lemma 2.10
and use Corollary 2.8.

For the last results we use the continuous and discrete Leibniz rules (Lemma 2.1)
and Lemma 2.10. O

B.4. Proof of Proposition 2.12. Taylor formulae yield

5.7 ) = LR PE D) g a) 42 [ (1-lol0bpla-+oh) do. (B:2)
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which in turn gives

DFDY A¥O* (1Dip ) () = DEDY AL (r0ip) ()

1
+Ch? [ (1 |o|)?DF DY ARO° (r(2)02 p( + ohy)) do,
-1

and the first result follows by Lemma 2.10 (and Lemma 2.7 for the second equality).

Next, from Lemma 2.6, we write
D}*D}’ (rD3p)(x) = Df* D} (rdfp) (x)

1
+Ch? [ (1~ |o])® DI*DY (r(x)d}p(z + ohy)) do,

-1

and the third result follows as above. For D¥: ij (rA2p) we use the formula for A%p
given in Lemma 2.6 and proceed as above. O

B.5. Proof of Proposition 2.13. From (B.2) we write

AN TN TN a NN Ak ARG Nk E o
A'AYDED} 9 (12(0°p)Dip’) = AL'AY DD} 07 (12(0° p)ip)

1 , /
+Ch2 [ (1—|o])* AN A DFD 07 (12(0% )32 p(. + ohy)) do,

-1

and we conclude with Lemma 2.11. For the next two results we use the formulae
listed in Lemma 2.6 and proceed as above.

From Lemma 2.6, equation (B.2), and by Lemma 2.11 we have

NN N 25702 0y AR AR Nk 205, 42
AF AT DEDY 0%(12Dip D2p) = AF A DF DY 0°(12(9,0)92 p)

1 , ’
+Ch? [ (1 —|o])2A¥ AT DR DR 9% (1203 p(. + 0 hy)92p) do

1 ’
k; kj inki ga
+Chj [ (1=|o])* A" A} DD 0% (r(9ip)0; p(. + o) do

-1

+ Ch?h?[ ff](l —lop*(@ —1o’])?
,1’1 2

N T TR
x AP AT DD 9% (1202 p(. + ohy)02p(. + o'hy)) do do’
= 0F 0} 0°(r2(9ip)92p) + 5°Ox a((5h)?).

The last result follows similarly. O

Appendix C. Proofs of intermediate results in Section 3.
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C.1. Proof of Lemma 3.3. From the forms of A;v and Bjv we have Ij; =
Zk,le{t,l d} 2 with

2y = 2Re [[[ r(9ip) (97 v)0pv” dt,
Q

.....

Qti = QRQ fff fl,zfgvi’l”Diipi (3§U)D,’U*L dt, 7 S [[1, d]],

D = 2Refff§1 2 (0ip)p Dil€aDiv)dv* dt, i € [1,d],

Qii = 2Re ff 5171627,-7" pt ipi Di(fgﬂ‘Dﬂ})Dﬂ}*i dt, xS Hl,dﬂ,
Q

Qij =2Re fff 517i§17j§2,jr2ﬁi Djpj Di(§2,iDiv)DjU*j dt7 Zv.] € [[L dﬂ7 ? 7é J
Q

We start by computing each term.

Computation of 2. We set ¢y = —0; (r(@tp)). An integration by parts w.r.t.
t yields

T

Dy = [[[ qet |0ev|? dt — sA [ff (1) aﬂﬂ
Q Q

0

LEMMA C.1. We have
G = sN>(90)* + sApO(1).

The estimation of follows from Lemma 2.7.

Computation of 2;;. Setting p;; = 75171-52,2-7”Dipi and ¢y = Oypy; we have, by
integration by parts w.r.t. ¢ since vj;—g = 0,

2ii =2Re fg(atv)at (puiDiv™') dt — 2Re g (pei(9pv) D™ )(T)

=2Re [[[ Qti(atU)Div*i dt +2Re fffpti(atv)atDiv*i dt,
Q Q

a
Qti

using that py;(7) = 0 for ¢;—7 = Cst. As vjpq = 0 with Proposition 2.4, Lemma 2.2,
and a discrete integration by parts w.r.t. x;, we then write

Q?i =2Re fffpm)l 8tDiv* dt = 2 Re fff}fftzlé;l}l 8tDiv* dt + fff iDti |(9tD U|2 dt
Q

de+ 1% fff ipii)| 0y Dyvl? dt.

== fff ipii')

We thus have

= —fff iDti') |8tv\2dt+2Refff(Jm Oww)D;v* dt + ffff (D;psi)|0:Div|? dt.
(C.1)
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LEMMA C.2. We have
Dipyi = sA*€1,:€2,:0(010)* + sApO(1) 4 sO a(sh),
Dipri' = s\%&1 i€0,ip(0inh)* + sApO(1) + 5Oy a(sh),
Qri = SAN?E1i2.:0(00) (D)) + sApO(1) + 5Oy a((sh)?).

Proof. We set av = —&;,3§2,;. Then D;py; = (Dia)rDiipi + a'D; (rDilp?) With
Proposition 2.12 we find

D;pyi = (Di)roip + &' (0;(rdip)) + SOA,ﬁ((sh)Q). (C.2)

Then with Lemma 2.7 we obtain the estimate of D;p;; as D;a = O(1). Averaging
(C.2) we obtain

; i i —i i 2 =
+ Z(Didi)Di(ai(raip)) + 50,.((sh)?).

By Lemma 2.10 we have

D 10ip = shpO(1) + h20Oy a(s). (C.3)

as D;o' = O(1). Note also that & = a+hO(1). Then by Lemma 2.10 and Lemma 2.7
we have

& m = —asA?p(9:1) + sApO(1) + Oy a(sh). (C.4)

Since hD; D;ac = O(1), by Lemma 2.10 we obtain

h?  _ -

Z(DiDia)(Di(r@p)) = O)\’.Q(Sh). (05)
Similarly we have

h? - . -

1

as D;a&' = D;a' = O(1). Collecting estimates (C.3)-(C.6), we obtain the second
result. '

Finally we write q; = ad;(rD;p’); Proposition 2.12 and Lemma 2.7 yield the
estimates for ¢;;. O

Computation of 2;;. We set p;; = —fl7i7"2(8tp)ﬁi and ¢ = &2,;D;py. Since
vjpq = 0, with a discrete integration by parts w.r.t. z; (Proposition 2.4) we then write

Qit = 2Re fff Di(pitat’l}*) ﬁgviDﬂ} dt = 2Re fff (Qit 8;?‘1 + Eg,i]/?\i;i (atDﬂ)*)) Dﬂ} dt
Q Q

= 2Re fff qit Dﬂ}iatv* dt — fff 52,1(&@?) Dﬂ/|2 dt + ff fg,i (Z’)ﬁl Dﬂ}|2)(T),
Q Q Q



30 F. BOYER, F. HUBERT, AND J. LE ROUSSEAU

after an integration by parts w.r.t. ¢, to yield
J— h2 _ _
21 =2Re [[[ Gir' Div 0pv* dt + ?l Re [[[ Di(git)(D; Div)0yv* dt
Q Q

- fg &,(0epi' )| Dyv|? dt + fgfm (pit' | Div[?) (T).

LEMMA C.3. We have

o.iDit’ = SAE1,ila,i0(0p) + 5O a(sh),
&0,i0pin = sA*&1,:€2,10(010)* + sApO(1) 4 O, x(sh),
Tit' = sA61,i2,i0(0i00) (011)) + sAE1,i2,i00O(1) + sOx a(sh),
hD;(qit) = sApO(1) + Oy g(sh).

Proof. The first three estimates follow from Proposition 2.13 and Corollary 2.8
following the method of the proof of Lemma C.2 (see also the proof of similar technical
lemmata in [BHL09a, Appendix B]).

For the fourth estimate we first write
hiDigis = hiDi(&2,:Dipir) = hi(Difo)) Dipir' + hia; DiDipi
= Oz x(sh) + h;O(1)D; Dipy,
following the method of the proof of Lemma C.2. We then write

—_— %

Dipin = —(Di&,)r*(0p)p — &xi Di(r*(0up)p)-
and obtain

B —— )
—_—

hiDiDipit = —hi(Dz‘Difl,i)ﬂ(atp)ﬁi - 2hiDi§1,iiDi(r2(atp>Ei)

- hszz Dz‘Di(TQ(atP)Ei)
= s pO(1) + Oy g(sh),
arguing as in the proof of Lemma C.2, as D;&;,; = O(1). The result follows. O

Computation of 2;;. We set p; = —f%iég,irzﬁl Dipi and ¢;; = Dl(alp”)
By Lemmata 2.1 and 2.4, we have

Qi = fcf)f gii | Dyv| dt — Cf?f ((Epii)NiHIleim - (57@119&)&171‘“@) dt
=2 [l piiDi(&2,4) |D7ﬂ)z |2 dt.
Q
For the first term we write

M @i |Div? dt = = [[f qii |Dsvl* dt + 2 [[] qis Dol dt
Q Q Q

—_—————
=25

+h; [[ ((qii)%wiv@ + (qz‘i)Ni+%|Dwﬁvi+%)
Qi
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by Proposition 2.4 and with Lemma 2.2 we further have

2% =2 [[[ g \Div|2idt+ fff iqii) Di| Div)? dt.
Q

A further use of Lemma 2.2 and a discrete integration by parts w.r.t. z; (Proposi-
tion 2.4) yield,

=2 fff T

2
fff ii'| DiDy|* dt — hs fff(Dz‘Dz'qz‘i)|Div|2dt
Q

2
71 f( e N1+1‘D U|N+1 _( zsz) |D U| )
Qi

We thus have

2ii = — [I[ qii |Div|2dt+ 2 [ @' Dv
Q Q

_ ff ((aipii)Ni+1‘Div|?vm+% _ (f?,iipii)0|DiU|2%> dt

-2 fg piz’Di (&2,4) ’m‘Q dt

+h ff( q” N+1|D U|N +1 +(q”) |D1U| )

2
Q Q

LEMMA C.4. We have

apu = _(fiifii + Oxa(sh)) rDip,
piiDi(€a,) = sApO(1) + 5Oy a(sh),
qi; = 5>\2ff,i§§,i¢(aﬂm2 + s ApO(1) + sOx a(sh),
Tt = sN°61,63 10(0:0) + sApO(1) + sOx a(sh),
h2D;D;qi; = sApO(1) + sOy a(sh).

Moreover for h; sufficiently small we have

@ )wi1 = SN, 1O(1) + 505 s (sh), (C.7)
@) = M) 3 O(1) + 5O a(sh).

Proof. The first estimate follows from Proposition 2.9. The next three estimates
all follow from Proposition 2.13 and Corollary 2.8, following the method of the proof
of Lemma C.2. ‘ o _

To estimate h?D;D;q;;, introducing o = —&€2 ;& and v = 125" Dip’ we first
write

—~ i 7/-\_/1 /-\_/1 — /\{i

D;Diqii = (D;D;D;0)5" +3D;D;a Diy' + 3D DiDyy + &' (D;D;Dyry).

We note that we have
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and, with Proposition 2.13,

7= sApO(1) +SO)\7R((Sh)2), Dmi =350y 4a(1), D;Dyy =30y a(1),
hDZDlD,L’y = SO)\7R(1).
The estimate for h%DiDiqii then follows.

For the second part of the proof we only address the first inequality in (C.7). The
second inequality follows similarly. We have

Ti = —D; (ff,ifz,ig,iz)rzﬁz Dip' +£ii§2,i§7¢'l bi;
=sApO(1)+sOx, a(sh) >0

where the estimation of the first term follows as in the proof of Lemma C.2 and with
bii = Di(—r?p" Dip).

It remains thus to prove that (b;)g, > 0, k; = N; + %,Ni + %, for h; suffi-
ciently small. Observing that 02¢p(x) = A%(9;9)%¢ + A(921)p, with the assump-
tion made on v in the neighborhood of the boundary 9;{2, we see that the function
x; — p(t,x1,...,xq) is convex in a neighborhood of {x; = L;}. It thus follows that

P41 + Pr,—1 — 201, > 0,

for k;h; close to L; = (N; + 1)h;. As p = e 5% it follows that

Phitl &, for k;h; close to (N; + 1)h;. (C.8)
Pk, Phi—1

We now write

—i i 1 o v
(=% Dip = o (L4 2222)% — (14 22E)?),
Pi Pk

which gives

1 Pki \2 Plki—112 Phi+12 Phi+22
hi(bii) o1 = (1 N e 117—1%7),
Oy = g (257 = (1 Py (1 P12 (4 O

>0 >0

by (C.8) if k;h; close to L; = (N; + 1)h;. Inequality (C.7) thus follows for h; small,
noting that (¢)k,+1 = (@)1 + h20,(1). O

Computation of 2;;, i # j. We set p;; = —517151,]452,341"2?'5 Djpj and ¢;; =
£2.iDipij. As vjpq = 0, a discrete integration by parts w.r.t. x; (see Lemma 2.4)
yields

2;; =2Re [[[ &2.:D; (pij Dj'U*j) D;v dt,
Q
which can be written as 2;; = 2§, + Qﬁ?j with

i

o@,?j = 2Re fff qij Dj’U*j Di’l} dt, 0@:7] = 2Re fff 527i%i DjDirU*j DZ‘U dt.
Q Q
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By Proposition 2.4 we write
ng =2Re fff qij Dﬂ/ Dj’l)*jdt
Q

) 2 -
= 2Re fff %’ Di’l}le w7 72 fﬂ‘ Zq” D;‘Div) Dj’l)*'jdt.
Q

We also have
Q?j =2Re fff 521137; D;v D;D;v* dt

=2Re fff 52 Dy Dﬂ/J D;Div* dt + gj fff Dj(&2,ipi5")

ﬂ}|2 dt

= —fffD ) |Dzv|2dt+ J fffD (é2.ip3;') | Dy Divl* dt.

We thus have

fffD (Ea.ipr;) | Dyl dt + 2Refff @i;' Div Dyjv* dt (C.9)

h2
+4Refff i) (D D;v) Djv* dtJr—]fffD (é2.i7i;")

LEMMA C.5. We have

Dj(E2ipi;) = sNE1,i€2,i61 562, 0(00)2 + sApO(1) + 5Oy a(sh),
Tij' = sN€162,i€1,j62,50(0:0) (09) + sApO(1) + sOx a(sh),
Dj(&2,ipi; ) = sA*€1,i€2,i61,562,590(0;0)* + sApO(1) + sOx a(sh),
hD;gi; = sApO(1) + Oy a(sh).

The estimates all follow from Proposition 2.13 and Corollary 2.8, arguing as in the
proof of Lemma C.2.

Estimate of I1;. We now collect the different terms that we have just computed
and use Lemmata C.1 to C.5 to write

In =TI +Yu+ I+ I — (Ju + Zu + 21, + Z7),

where
Iy = =N [[[ o[ Ve |0l dt — sA? Y. [[f 0€1,iéa,i| Ve[| Div]? dt
0 iclLd] 0
T
+sx X f (@51,if2,i(at¢)|DiU|2)(T) - SA{ff 80(5t¢)|5tv|2]
ie[Ld] Q 0
and

Y= > [f (((f%ifg,i + Ox,a(sh)) rDip )N +1|D U|N +1
i€[1,d] Q;

— ((& 6. + Oxa(sh)) TD*iPi)O|DiU|2%) dt
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and
1 = 263 [ (@0l + 3 6L:54(00)° D %) at
16 1
+%VRMH@(@W@UZ:&£MUWDU
i€[1,d]
+ X fl,i§2,i§1,j§27j(ai¢)(ajw)DiUiDjU*j) dt,
1,]§#ﬂ;,d]]
— 2
— 252 [[f @‘(atw)atv b Y 6.6.4(0) Do ‘ dt
Q 1€[1,d]
>0,
and
" s)\2h2 9
I = Z B fff @51 1621 MZJ) |D 8tv| dt
i€[1,d]
5)\2 2
+ ;{ : j fff‘ﬁfl &2, zfmf?u( ﬂm |D;D; U|2dt
i,7€[1,d
s)\2h2
> fff 8051 7521 ﬂ/f) |D D; U|2dt
i€[1,d]
>0,

and

Juu= Y [ 0114 Div*(T)
i€1,d] Q

S (O eg Dy + 605Dl ) b
z€|Il d] Q;

with d11,; = sOx s(sh), and 53?1- = h(sApO(1) + sOx q(sh)), and

Zn = fff511|3tv‘2dt+ > fff’/uzm o dt+ Y fff 74y | Div’ ?

1€[1,d] i€[1,d]

and

Zil = Re Z fff all,ij miDjv*j dt+ Re Z ff Ozll’tiDii’Ui c’)tv* dt
wg},dﬂ Q i€[1,d] Q

where By, V11 4, 7114, Q11,ij, and aqp,¢; are of the form sApO(1) + 5Oy a(sh), and

le - fff’yll u|Diat’U|2dt + Z fff711 ’Lj‘DiDjU|2 dt + fff711 u|DiDiU|2dt

1d i,je[1,d] ef[l,d
iellalQ 0 iellal"q

+Re > I 71/17i¢t(DiDiU)8tU* dt+Re > fff Y1 DiDi’U)Wj dt,
i€[1,d] Q 1716}!1(;{1]]

where 71} 4, V1145, and 41 ;; are of the form h?(sAeO(1) + sOx z(sh)), and 7} 44,
Vi1 415 are of the form h(shpO(1) + Oy &(sh)).
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We conclude with Cauchy-Schwarz inequalities that yields

1zl < X fffalll

1€[1,d]

with aq1,; and aq1, of the form sApO(1) + sO, q(sh), and

|Z11] < fff’Yﬂ alDidw)? dt + Y fff’YY{,ig“DiDa‘UP dt+ > fff%/{,MDiDiU\Zdt
i€[1,d] i,j;[[;_,d]] Q i€[1,d] Q
+ [[f v o> dt+ Y [ 17, Div' | dt,
Q i€[1,d] Q

1

with ¥{] i, 91.4j, and 27} ;; are of the form h?(sApO(1) + 5Oy a(sh)) and 1] , and
711,; are of the form 8)\<p(9(1) + Oxx(sh). O

C.2. Proof of Lemma 3.5. As compared to the computation of the counterpart
of I5; in the proof of the semi-discrete Carleman estimate in [BHL09a] (also denoted
I there) we need to compute the following additional terms,

9@1‘]‘ = —2Re fffpij 51 Dﬂ}*i dt,
Q

for i # j, where pij = —£1.i€2.4€1 ;62 j72(D;D;p) Dip'
With Proposition 2.4, we have

_J
Qij = —2Re fffpijwl ’Dj dt
Q

:—2Refff%'7Div dt——Refff pi;) (D Do ) dt.
Q

2

3

We now write

a

—2Refffp” v’ D o+ dt

—2Refffpi] D V¥ dt——fff iDi;’ ) | Dt |2 dt,
Q

b
2

and with a discrete integration by parts in z; (Proposition 2.4) and Lemma 2.2 we
have, as ?° = 0 on 9;Q,

~ W5 D= [If (D )t
:fff( oy o d - fff( 75 ) Dy dr
—ffszpu] ol —fff( i )1Dgol di
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We thus have

ffszpuJ Ivl2dt—*fff ipi’) | Div’ | dt

—*fff( 7y’ )ID; ol di - Refff ipi) (D D) o dt,

LEMMA C.6. We have

Dz];TJVJ = 353N\ 160,561 ;60,597 (0:0) 2 (9j20)?
+ (sAp)’O(1) + 5°0x (1) 4 5°Ox a((sh)?),

Dipij’ = s°0xq(1), Dipij/ =s°0xa(1), Djpi; =s°05x(1).

The estimations follow from Proposition 2.13 and Corollary 2.8 arguing as in the
proof of Lemmata C.2. By Young’s inequality we now note that

h? —_—
3’ Re fff(Dipij)(DiDjU* )" dt’
< s%(sh) fffom )97 [* dt + sh®(sh) fffom )| DDV’ [* dt

3(sh) fff Osa(D)[o]2 dt + sh?(sh) fff Ox.x(1)[D; D;v[? dt

3(sh) fff Ox.q(1)|v?> dt + sh*(sh fff Ox.2(1)|D; Djov|? dt,

since |7°|? < \v|2 and using Proposition 2.4. Proceeding similarly for the term in
|D;v7|? = |D v ‘ we then obtain

D5 > 3\ [[[ €1,i€0,i1,562,59° (0:0)%(9;9)? [o|* dt + [[f p|v? dt + [[f vi |Dsol* dt
Q Q Q
(C.10)
+ [If vsIDjvl? dt + [[f | DiD;ol* dt,
Q Q

with

1= (sAp)*O(1) + s*Ox 5(1) + s° O a(sh),
v, = SO)\’ﬁ((Sh)Q), v = SO)\”Q((Sh)QL v = ShZO)\’ﬁ(Sh).

With the computation performed in [BHL09a| (See Lemma 4.5 and its proof in
Section B.4 in [BHL09a]) we then obtain the sought estimate from below for I5;. O

C.3. Proof of Lemma 3.7. We see that

Y= 5 J[((@)v+1lDiwly, 41 = (a:)o|Div]3) dt
i€[1,d] Q;

with ¢; = (14 Ox.4((sh)?))rDip'. By (3.3) we have Y > 0 for sh sufficiently small. 0
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C.4. Proof of Lemma 3.8. We choose ¢ € [1,d]. With Lemmata 2.5 and 2.2
and Proposition 2.4, we have

g fffD )D;|0yv|? dt

fff<p|8tv|2dt = fff o|Opw|2 dt =
(fffga

dt — fffD Di(¢)|orl? dt).
We thus have
h? _
[ |0 dt > jfjf g |Di8tv|2dt— fffD Di(p)|0v|? dt. (C.11)
Q Q
Similarly, for 4, j € [1,d]] with i # j, we obtain
h2 . h2
NI e |Dwf?dt > = [I[ &' |D;Dyvl* dt — 4J [l D;Dj () | Div]* dt. (C.12)
Q Q Q

For ¢ € [1,d], we also write

2

fngw\th *ff( @ |Diw)y + (9 1Div)y, ) dt—|—f£fg0\Div|2idt,

~—_———
=9,

by Proposition 2.4, and Lemma 2.2 yields

g fff ©) Di| Divl? dt

2i = fgﬁ

iDip) | Div|* dt

n e
Q
h2 D 2 D 2

+ 5 [ (PohvaalDioli, . = (DigholDinl} ) e

We observe that

h;
géf( ¢ |Dyv|? g+(<P|D¢v|2)Ni+%>dt

B (BupmanlDov g — (Dol Dol? )
Qi

can be made non-negative for h sufficiently small once X is fixed as D;ip = O)(1).
We have

¢'=p+h*0\(1), P =¢+h*0x\(1),
DjDz(p:O/\(1>7 Zaj € [[Ld]]7]7é27 DzDz@:OA(l)a D'LDz@:OA(l)? Z[[l?d]]
The result follows. 0

Appendix D. A fully-discrete elliptic Carleman estimate for uniform
meshes.
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In Section 3 we have derived a Carleman estimate for a semi-discrete elliptic op-
erator having in mind applications to the controllability of semi-discrete and discrete
parabolic equations. For completeness, in the present section we treat the case of
fully discrete elliptic operator. Here we thus only consider variables in © ¢ R%. The
operator we consider is A™ = — Zie[[l,d]] {17iDi§27iD,-. The case of a non uniform
mesh can be treated as in Section 4.

We choose here to treat the case of an inner-observation in w € 2. The weight
function we choose is different from that introduced in Section 3. It is of the form
r = e with ¢ = e, with v fulfilling the following assumption. Construction of
such a weight function is classical (see e.g. [F196]).

ASSUMPTION D.1. Let wg € w be an open set. Let Q bea smooth open and con-
nected neighborhood of @ in R%. The function 1 = (x) is in (fp(fl, R), p sufficiently
large, and satisfies, for some ¢ > 0,

V>0 Q, |V >cinQ\wy, pb(t,x) < —c<0in(0,7)x Va,q,
0Zp(x) > 0 in Va,q.

where Va,q is a sufficiently small neighborhood of 0;X2 in Q, in which the outward unit
normal n; to Q is extended from 9;€2. We also set p = r~1.
The following notation is adapted to the fully-discrete setting of the present sec-
tion
t
; Acf= > &.i&.,05f

i€[1,d]

Vef = (VE1&10u fr- s VEra€adea] )

As in Section 3 we use reg(§) to measure the boundedness of & ; and &;; and
of their discrete derivatives as well as the distance to zero of & ; and &3, @ € [1,d]
(see (3.1)-(3.2)). Here, by abuse of notation, the letters & ;,&2; will also refer to

a Q!-interpolation on 9 and m respectively. Note that the resulting interpolated
functions are Lipschitz continuous with

[€1,illwree < Creg(§), [[&2.illwre < Creg(€).

The enlarged neighborhood € of © introduced in Assumption 1.3 allows us to
apply multiple discrete operators such as D; and A; on the weight functions. In
particular, this then yields on 0;{2

(rDip =0 <0, (rDip ) jpuenyi1 = 0, i € [1,d].
THEOREM D.2. Letreg® > 0 be given. For the parameter X\ > 1 sufficiently large,

there exist C, sg > 1, hg > 0, g9 > 0, depending on w and reg®, such that for any
€14, E24, 1 € [1,d], with reg(€) < reg® we have

53||€S¢UH2L2(Q)+S > HGWDWH%z(Q)‘*‘S > \6S¢Di“|2L2(aiQ)
i€[1,d] 1€[1,d]

< Crsmecasso (€72 A™ulF a0y + 8° e PulEag,, ).

for all s > 59, 0 < h < hg and sh < ¢¢, and u € C™Y9™  satisfying ujpn = 0.
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Proof. We set f:= —A™u and v = ru that satisfies

r Y. &.iDi&iDi(pv) =rf.

i€[1,d]

Arguing as in the proof of Theorem 3.1 we then write Av+ Bv = g with A = A; + Ay
and B = By + By and

Av = Z gl,iTEiDi('gQ,iDiU)a Agv = Z 51,i§2,i7’(DiDiP)$i,

i€[1,d] 1€[1,d]
Blv =2 Z fl7i§27iTDipi Di’Ui, BQ’U = —QS(Ag(p)U
i€[1,d]
he .
g=rf— > Zzﬁl,ﬂ“Dz‘P (Di&s,i)(7; Div — 7 Diw)
i€[1,d]
h? = — —i i i
- > j&,z‘(Di&,i)T(DiDip)Dw —h; Y, OM)rD;p Dy
ie[1,d] i€[1,d]
Y e (T(Digz,i)DTp’i+hi<9(1)r(DiDip))FfQS(AtW)v.
i€[1,d]

The proof of Lemma 3.2 can be directly adapted and we have
90172 (0) < Crs <||Tf||2L2(Q) +5°)|v]| 720 + (sh)? %ﬁdﬂ |Div||2L2(Q)> - (D)
i€[1,

Developing the inner-product Re (Av, Bv) 12, we set [;; = Re (A0, Bjv) 12
LEMMA D.3 (Estimate of I11). For sh < 8, the term I11 can be estimated from
below in the following way

Iy > —s\[|? [ Ve VevlF 2y + Yir — Xu1 — Win — Jua,

with

Yin= f(((5%,1'53,2-+OA,ﬁ((Sh)Q))T“Dimi)zvﬁlwi”ﬁv#%
1€[1,d] ;

— (624834 + Oal((sh)) rDip') [ Divl})
and

X=X [[viiDof+ X ffvll,i‘mi|27

i€1,d] © i€1,d] ©

with 111,; and U11,; of the form sApO(1) 4+ sOy g(sh) and

Wi= Y [[mig|DiDjof* + X [y DiDivl?,
ijelldl ‘O ic[L,d]

i

with y11,5; and Y11, of the form h?(sApO(1) + sOx a(sh)) and

2 2
Ji= X [ (O)n gDl + 601Dl
ie[1,d] Q; 2 2
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with 5521)1 = shi pO(1) + sh;Oy g(sh). For a proof, see the proof of Lemma 3.3 in
Appendix C and only consider the terms Q;; and Q.
LEMMA D.4 (Estimate of I12). For sh < R, the term I15 is of the following form
Ia > 25X2||9? Vet Tev[l3q) — X,
with

Xi2= ), ffV12,i|Div\2 +ff,u12|11|2,
i€[1,d] @ Q

where p1a = s°0x q(1), and v12; = sApO(1) 4+ 5O, a(sh).

LEMMA D.5 (Estimate of Iy). For sh < 8, the term Is; can be estimated from
below in the following way

I > 383)\4||(pg|V§’(/J|2’UH%2(Q) + Yo — Wap — Xog,

with
Yo=Y [ Oxal(sh)?)(rDip )o| Divy2|”
iell,d]
+ > [ Oxa((sW))(rDip ) v, 11| Divyy, 11,
i€[[1,d] €,
Wa = > [[7214;DiDjvl?, Xo1 = [[puaa|v)* + X [ ver,i|Divf?,
z‘,jg;,dﬂ Q Q i€1,d] ©
where

V21,5 = hO)\7R<(Sh)2), M1 = (S)\(,D)3O(1) + 820)\7)"((1) + SBOA)Q(Sh),
V21,i = SOA,R((Sh)2)~

For a proof, adapt the proof of Lemma 3.5 in Appendix C as was done for Lemma D.3.
LEMMA D.6 (Estimate of Isz). For sh < R, the term Isg is of the following form

Inp = —25° X[ 03 [Vt 2v]1 32 ) — Xz,
with
Di’l}|2

Xop = fg;f paalv> + Y [ff vazs

ie[t,d] @
where p1a2 = (sAp)30(1) + 520y a(1) + 52Oy a(sh), and vaz; = sOx g(sh).
With the previous lemmata, arguing as in the proof of Theorem 3.1, using that
(rDip)n,41 > c¢>0and — (rDip')o>c¢>00nQ;, 1<i<d

by Assumption D.1 since rD;p = —sA(8;1)¢ + sOx x(sh), we obtain that for some
A1 > 1 sufficiently large, s1(A\1) > 1, h1(A) > 0 and e1(A;) > 0 then for A = A\ (fixed
for the rest of the proof), s > s1(A1), 0 < h < hi(A1) and sh < e1(\1) we have

53||U||2L2(Q)+5 > ||Div||%2(ﬂ)+5 > |Div|2L2(87-,Q)
i€[1,d] i€[1,d]

< Onmcoin (Il + Pl +5 5 WD)
€1,
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Observe that the terms

83”11”%2(0_,0) + s 'e[[zl:d]] ||Div|‘%2(wo)
g ’

in the r.h.s. appear as we only have |Vi| > ¢ > 0 in Q\wy. Adding these two terms on
the both sides of the estimate allows us to then proceed as in Section 3. In particular
We can then use a result similar to that of Lemma 3.8.

Proceeding as in the end of proof of Theorem 4.1 in [BHL09a] we obtain

s’llefullia) +s 3 e Dyulliaq) +s X e Diuliaoq)
i€[1,d] i€[1,d]

< O (1S iy + 1l 5 5 Dinlac )
ie[l,

It thus remains to eliminate the last term in the r.h.s.. To that purpose we adapt
the procedure followed in the continuous case (see e.g. [F196, FCG06, LL09]). We
multiply the equation satisfied by u, i.e. A”u = f, by sr?yu*, where y € €>°(w) is
such that xy > 0 and xy = 1 in a neighborhood of wy. We then integrate over €:

—Res > [[&ir*xu*D;(&2,:Diu) = Res [[ r¥xu*f. (D.2)
ic[Ld] )

We first note that the r.h.s. can be estimated by

[Res [f rxutf] < Cllr s + 2 Cllrulag)- (D:3)
Q

In the Lh.s. of (D.2) we perform a discrete integration by parts to yield
— RGS Z ff fl,iTQXU*Di(é.Q,iDiu) = Res Z ff Di(§17ir2xu*)§g7iDiu

i€[1,d] Q i€[1,d]
=s > [[&i&ir?x |[Diu)> +Res S [ f2,iDi(§1,ﬂ"2X)E;iDiU (D.4)
i€[1,d] i€[1,d] Q

In wyg, for h sufficiently small, we have

) i 2

i

~ i~ h?
112 > & =&, 12 + j(Difl,i)(DiTZ)-

The results of the lemmata of Section 2.2 remain valid for r2 in place of r, i.e. for s
changed into 2s. As 51,; =&, +hO(1) and D;&; ; = O(1) we thus find

€12y > 12(€1 + hO(1) + Ox a((sh)?).
For the first term in the r.h.s. of (D.4) it follows that, for h and sh sufficiently small,

s Y [ &ui& i |Diul* > Cs Y ||7“Diu||%2(wO). (D.5)
ielLd] ie[Ld]

For second term in the r.h.s. of (D.4) we write

Res > ffo,iDi(gl,i""QX)a;iDiu

ie[Ld]
5 —~i 1 -1
=Res Y. [[&,ir? Di(&,ix)u* Diu+ 38 > ] &.,iDi(r?)é1ix Dilul’.
i€[1,d] Q i€[1,d]

(D.6)



42 F. BOYER, F. HUBERT, AND J. LE ROUSSEAU
Arguing as above, the first term in the r.h.s. of (D.6) can be estimated by
|Ress [[ &7 D1, w* Diu| < CllrDgul3aqy + Cs?rullfecy, (D7)
Q

for h and sh sufficiently small, as supp(x) € w. For the second term in the r.h.s. of

(D.6) a discrete integration by parts yields

55 2 J[@iDi(r")erix Dilul* = =55 3 [ Di(&:Di(r*)énix )|ul®

ie[1,d] ie[1,d]

With the results of Section 2.2, using that D;& ; = O(1) and D;&2; = O(1) we find
1 ——i
35 X [[&iDitrex Dilul| < Cs*rullfz ). (D-5)

ie[Ld]

for h and sh sufficiently small.
With (D.2)—(D.8) we conclude that

s 3 MrDulley < C (Il + Pllrulieey + 5 IrDwlfa))-
i€[1,d] i€[1,d]

For s sufficiently large we thus obtain the desired Carleman estimate. O
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