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Abstract

Nowadays, near infrared (NIR)technology is being transferred from the
laboratory to the industrial world for on-line and portable applications.
As a result, new issues are arising, such as the need for increased robust-
ness, or the ability to compensate for non-linearities in the calibration or
instrument. Semi-parametric modeling has been suggested as a means for
adapting to these complications. In this article, Least-Squared Support
Vector Machine (LS-SVM) regression, a semi-parametric modeling tech-
nique, is used to predict the acidity of three different grape varieties using
NIR spectra. The performance and robustness of LS-SVM regression are
compared to Partial Least Square Regression (PLSR) and Multivariate
Linear Regression (MLR). LS-SVM regression produces more accurate
prediction. However SNV pretreatment is required to improve the model
robustness.

NIR Spectroscopy Robust calibration LS-SVM PLSR MLR Grapes tartaric
and malic acidity.

1 Introduction

Near Infrared (NIR) spectroscopy provides non-destructive measurement of many
chemical compounds in heterogeneous products [1] and has proved its efficiency
for laboratory applications. To go further, many current studies are focused on
NIR sensor design for on line [2] or portable operation [3]. However many con-
strains are placed upon the design of an efficient portable NIR sensor : the sensor
must have a small size, be low cost, and deliver robust performance. Different
approaches have been followed. Micro-spectrometers sometimes suffer from poor
performance compared to conventional spectrometers but are perfectly suited
for use with fiber optics[4]. Therefore some recent studies have illustrated the
use of micro-spectrometers for portable NIR applications [5] [6]. Yet, these de-
vices have been built only with the size-constraint in mind. Rather than relying
on miniature holographic gratings, or bandpass filters another possibility is to
use monochromatic light sources, e.g. LED or Laser diodes, selected for the
measurement of specific chemical components, coupled with a silicon photodi-
ode detector [7]. As far as portable spectrometer are concerned, this alternative
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is ideal because of its combination of small size, low cost and good robustness.
Beyond sensor design, a growing amount of research is being focused on meth-
ods of developing robust calibration models which are less disturbed by the
challenges of portable applications. Partial Least Square Regression (PLSR)
is the most commonly used method for prediction using numerous correlated
variables (such as NIR spectra). However, when a small number of wavelengths
is used for the NIR analysis (monochromatic light source for instance) Multiple
Linear Regression (MLR) is adequate. Factors such as experimental conditions
(e.g. temperature, external light), instrument variations (lamp aging, sensor
sensitivity) and analyte characteristics (matrix change) induce non-linearities
in the spectra. In these cases non-linear methods may provide a more optimal
solution than classical PLSR and MLR [8]. Support Vector Machines (SVM) is
one of these new and attractive methodology [9]. SVM have already been used
in various fields such as diagnosis ovarian tumor malignancy prediction [10], im-
age classification [11] [12] and spam categorization [13]. Only recently has SVM
technology been applied to chemometric issues as a non-linear discrimination
[14] [15] and quantitative predictions [16]. An alternate formulation of SVM
strategy for regression problems is the Least-Square Support-Vector Machine
(LS-SVM)[17].
This paper aims at studying the capabilities of LS-SVM to derive accurate and
robust calibration models for the prediction of total acidity of fresh grapes from
NIR data gathered using a portable sensor. The performance of LS-SVM re-
gression will be compared to PLSR and MLR in terms of accuracy of prediction,
and model robustness.

2 Theory

2.1 Notation

Bold, upper-case characters will be used for matrices, e.g X ; bold lower-case
characters for column vectors, e.g xi will denote the ith column of X ; row
vectors will be denoted by the transpose notation, e.g xT

j will denote the jth

row of X ; non bold characters will be used for scalars, e.g matrix elements xij

or indices i. X will represent a [n×p] matrix containing the p spectral responses
of the n samples.

2.2 Regression methods

Since MLR [18] and PLSR [19] are both well known methods for multivariate
linear regression, the theory of these methods will not be presented explicitly
herein. Linear least squares models attempt to correlate the spectrum xT

i , and
reference value yi, of all the samples in X. The predictions ŷ are computed by
the following equation :

ŷ = X β̂ + b̂0 (1)

Where β̂ is a [p× 1] vector of regression coefficients ; and b̂0 is the model offset.
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2.3 SVM Regression

The roots of SVM date back to the discrimination work of Vapnik and Lener
[20]. However the general non-linear version of SVM is quite recent [21]. In 1998
Vapnik extended the theory to non-linear regression using the SVM framework
[9].
SVM regression is based on a kernel substitution, where X [n × p] is replaced

by a [n × n] kernel matrix K and β̂ [p × 1] is replaced by b̂ [n × 1] vector. In
order to model non-linear processes, the Gaussian radial basis function (RBF)
kernel has been chosen. K is then defined as :

K =







k1,1 ... k1,n

...
. . .

...
kn,1 ... kn,n






(2)

Where ki,j is defined by the RBF function :

ki,j = e
−‖xT

i
−xT

j ‖
2

σ
2 (3)

According to equation 3, more similar samples will produce RBF output near
1, while less similar sample provide output near 0. Hence ki,j is conceptually a
non-linear measure of similarities between two samples, thus K can be thought
of as a sort of sample-sample correlation matrix. The kernel width parameter,
σ, is related to the confidence in the data, or SNR ; adjustment of σ also influ-
ences the non-linear nature of the regression. As σ increases, the kernel becomes
wider, forcing the model toward a less complex (more linear) solution.
The calculation of the regression vector b̂, here a [n × 1] vector, follows a dif-
ferent objective than the classical PLSR or MLR models. Rather than trying
to minimize the prediction error only, the SVM objective function is augmented
with the root mean square (rms) magnitude of the regression vector b̂, which
represents the model complexity. The classical objective function for PLSR and
MLR is :

min(e) = min(

n
∑

i=1

(y − ŷ)2)

It is replaced by a so-called primal-dual form :

min(e) = min
(

∑n

i=1
ξi

2
+ Γ

∑

(b̂T b̂)

2

)

(4)

Where Γ is a regularization parameter, such that increasing Γ places a greater
significance on reducing the rms magnitude of the model coefficients. ξi is called
the e-insensitive error of generalization. It replaces the classical least square
criterion (yi − ŷi)

2 and is defined using the significance threshold ǫ :

ξi =

{

0, if |yi − ŷi| < ǫ

|yi − ŷi| − ǫ, otherwise
(5)
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Consequently, any single residual error of magnitude less than ǫ is set to zero.
This assumes that any error lower than ǫ is uncertain (insignificant), and to
fit below ǫ would likely produce an over-fitted solution. On the other hand,
when the residual is larger than ǫ, the absolute value of the error is summed
rather than the squared error ; this tends to limit the influence of outliers during
model training. The defined objective function modifies the approach of model
training. All calibration samples with residual error lower than ǫ are given a b̂i

coefficient equal to zero, which means that this sample is redundant, and can
be easily predicted by the other ones. Those samples whose b-coefficients are
nonzero are referred to as support vectors. This process is conceptually anal-
ogous to thresholding the coefficients of a PLSR model for automatic variable
selection. Also as a consequence of the inequality constraints imposed on the
model, the b̂ solution cannot be obtained directly by solving a linear system.
To do so, the model is optimized in the space of Lagrangian multipliers by using
quadratic programming. This optimization is slower than least square methods,
but it is still a convex, deterministic process, and is guaranteed to converge to
a single global minimum.

2.4 LS-SVM

LS-SVMs are an alternate formulation of SVM regression proposed by Suykens[17].
The objective function (equation no 4) is the same as for SVMs, but the e-
insensitive loss function is replaced by the classical squared loss function. The
benefits of automatic sparseness are lost (all bi coefficients will be non zero)
but the model can be trained much more efficiently after constructing the La-
grangian by solving the linear Karush-Kuhn-Tucker (KKT) system :

[

0 lT
n

ln K + I

γ

] [

b̂0

b̂

]

=

[

0
y

]

(6)

Where I refers to an [n × n] identity matrix, lnis a [n× 1] vector of ones, 1

γ

correspond to Γ and y is the vector of reference values. The solution of equation
6 can be found using most standard methods of solving sets of linear equations,
such as conjugate gradient descent. While SVM implementation requires the
tuning of three parameters (γ, σ, ǫ), the implementation of LS-SVM requires the
specification of only two parameters (γ, σ). A disadvantage of the both methods
is that training time increases with the square of the number of training samples
and linearly with the number of variables (dimension of spectra) which is the
opposite of classical least squares methods.

3 Material and methods

3.1 Material

During data collection for this study, NIR scans were collected for 371 grape
berries belonging to three different varieties : carignan(188), mourverdre(84)
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and ugniblanc(99). Each spectrum is the mean of 5 sub-scans, collected in
transmission trough the berry. The total acidity (TA = malic + tartaric acid
concentrations) was measured by the CTIFL1 via HPLC assay. The NIR spec-
trometer utilized was a Zeiss MMS1 polychromatic diode array spectrometer,
sensitive in the 300nm-1160nm range, with a 3.3nm sampling interval, which
provided 256-point spectra. The light source consisted of five, 14V, 50mA, 3
Lumens micro lamps powered by a 12VDC supply.

3.2 Methods

For all of the regression methods tested in this study, the spectral range was re-
stricted to the 680-1100nm short wave NIR window, which included the chloro-
phyll peak in the visible region (685nm). The 830-920nm spectral window,
corresponding to the sugar absorbance peaks [22], was removed to avoid the
concomitant influence of the major chemical constituent in grapes. For portable
application test, only a few wavelengths were selected.

3.2.1 PLSR calibration

In order to optimize the PLSR model, wavelength selection was performed based
on the BQ method (Backward Q2

cum) [23]. This method was observed to be the
most suitable feature selection procedure among 20 methods compared empiri-
cally [24]. The Q2

cum fitness criterion is defined as :

Q2

cum = 1 − Πk
j=1

PRESSj

RSSj−1

where k is the number of latent variable, calculated in leave-one-out cross-
validation, in the PLSR model and

PRESS = Σn
i=1

(yi − ŷ
−i)

2

RSS = Σn
i=1

(yi − ŷi)
2

ŷ
−i is defined as the prediction of yi when yi is removed from the data before

constructing the model. ŷi is defined as the prediction of yi when yi is included
in the calibration data. At each step, the variable with the smallest regression
coefficient (in terms of absolute value) is eliminated and the Q2

cum value is
calculated. The variable subset selection showing the highest Q2

cum is retained.
The number of factors retained in the final PLSR model was chosen using a
leave-one-out cross validation procedure.

3.2.2 MLR calibration

To simulate the situation of a portable NIR sensor, in which only few wave-
lengths are available, wavelength selection was performed using a forward-
backward stepwise MLR procedure and cross-validation. The selection process

1Fruit and Vegetable Interprofessional Technic Center, St Remy de provence, FRANCE
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was stopped when the number of wavelengths was equal to the number of latent
variables of the PLSR.

3.2.3 LS-SVM calibration

The LS-SVM regression was trained using two method. First, to compare LS-
SVM with PLSR, the LS-SVM model was derived using scores derived from
the PLSR model factors. The number of factors included in the model was
chosen using cross-validation. This model is referred to : LS-SVMlv. Second,
an LS-SVM model (LS-SVMsv) was derived using the variables selected by the
stepwise MLR (portable sensor framework). In each case, the tuning of γ and
σ parameters was performed using cross validation.

3.2.4 Model performance evaluation

Prior to model development, the dataset was split into training and test sets
using the ’Venetian blinds’ method [25] according to total acidity (TA). The
training set S0 and the test set S1 had the same TA distribution (y0 and y1),
each containing 186 and 185 samples, respectively.
For each model the Standard Error of Calibration (SEC), the Standard Error
of leave-one-out Cross Validation (SECV) and the coefficient of determination
in cross validation (R2

cv) were calculated using S0. The Standard Error of Pre-
diction (SEP), R2

test, the Bias, the bias-corrected SEP (SEPC) were computed
on the test set S1.
In order to assess the relative robustness of each methods, seven noisy test
sets were generated by modifying S1 spectra following a procedure described in
[26]. The simulated noises were : Gaussian Noise, Multiplicative Noise, Baseline
Shift, Baseline Slope, Wavelength Shift, Stretch/Shrink, Bandwidth perturba-
tion. For all these data sets, the SEP and SEPC were calculated. In order to
evaluate the real LS-SVM interest for a portable sensor, the performances of
Standard normal variate transformation (SNV)([27]) corrected model was also
calculated.

3.2.5 Chemometrics software

All calculations were performed using MATLAB 6.0 (The MathWorks, Inc.,
Natick, USA), and the PLS toolbox from Eigenvector Research, Inc. (Manson
,USA). The free LS-SVM toolbox (LS-SVM v1.4 2, Suykens, Leuven, Belgium)
was used with MATLAB to derive all of the LS-SVM models.

2www.esat.kuleuven.ac.be/sista/lssvmlab/
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4 Results

4.1 Model tuning

During PLSR optimization, the BQ method selected 68 variables from the spec-
tra; from these variables, eight factors were derived for the PLSR model, and
10 factors for LS-SVMlv (figure 1) calibration. The optimal LS-SVM tuning
parameters were found to be γ = 10 and σ2 = 50. During optimization of
the LS-SVM parameters, it was observed that the LS-SVM must be tuned very
cautiously. Figure 2 shows the SEC and SECV values depending on γ and σ

values. The tendency of SEC to be much lower than SECV for LS-SVM regres-
sion suggests a greater tendency to overf-fit.
To match the number of factors used during PLSR modeling, the stepwise MLR
procedure was stopped after 8 variables were selected; the MLR and LS-SVMsv

calibrations were derived with these 8 wavelengths. As is shown in figure 3, the
tuning of this model produces a different result : the surface tends to a min-
imum value as γ increases toward infinity. Increasing γ to such a magnitude,
however would likely lead to an over-fitted calibration. Thus we chose γ value
where SECV is almost constant (SECV variation under 0.5%), here, γ = 4000
and σ2 = 40.
The large difference in γ values between the two LS-SVM models has to be
explained. For LS-SVMlv, the data compression based on latent variables acts
as a pre-processing filter : the PLSR factors were calculated to maximize the
correlation between spectra and acidity which provides a kernel matrix K de-
pending mainly on the acidity concentration (the measurement noise is sup-
pressed, while spectra-reference covariance is maximized). LS-SVMsv is applied
with no variable pre-processing, therefore each variable contains not only lin-
ear and/or non-linear acidity information, but also measurement noise as well
as other chemical information. As a consequence, K contains sample/sample
correlation near 0 and, the amplitude of the regression coefficients is increased
(higher γ) to compensate this phenomena.
For both models, σ2 has approximatively the same value which means that a
consistent degree of non linearity is modeled. σ2 is quite low, suggesting that
the relationships between the spectra and the total acidity of grapes is highly
non-linear.

4.2 Model accuracy

The performances of LS-SVM were found to be better than the classical linear
methods (table 1). LS-SVMlv produces the best SEP of 1.03g.l−1, compared
to 1.28g.l−1 for PLSR. Similarly, LS-SVMsv greatly improved the prediction
accuracy compared to MLR. Table 1 draw a further comment when regarding
SEC and SECV : for the two LS-SVM models the gap between these two criteria
was shown wider than for PLSR and MLR, which suggests a higher likelihood
of over-fit with LS-SVM. This enlights γ importance which permits to find the
good balance between over-fitting and non-linear modeling.
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The calibration plots (table 2) for the PLSR and MLR prediction demonstrate
the presence of non-linearities. The high acidity samples are not well predicted.
This could be due to changes in chemical interactions or in the fruit matrix
(unripe fruits with dense structure). Both LS-SVM models took into account
this non-linearity. LS-SVMlv corrected the non linearities for the high acidity
but also improved the low prediction performance level. LS-SVMsv succeeded
in predicting the high nonlinearities with only 8 selected wavelengths. However
in this case, the dispersion is more scattered in the middle range of acidity. On
the contrary, the prediction values in the low acidity were more compact.

4.3 Model robustness

Table 3 contains the results of the robustness tests for each of the four methods.
The solid line at 1 g.l−1 represents a satisfactory predictive model (Standard
deviation(Y1)/SEP = 2.72) while the other line at 1.5 g.l−1 represents the perfor-
mance of the worst model (MLR : Standard deviation(Y1)/SEP = 1.81). PLSR
appeared sensitive to Baseline slope, Wavelength Shift and Stretch/Shrink and
to a smaller extebd to Baseline Shift. In these cases, the model was unusable.
Nevertheless, since the SEPC remained under 1.5 g.l−1, it may be possible to
correct the prediction with a simple bias.
As far as SEP is concerned, LS-SVMlv is more robust than PLSR be for all the
noises, the sum of SEP2 is much lower. However it is sensitive to four type of
noise : Gaussian noise, Baseline slope, Wavelength Shift and Stretch/Shrink.
However unlike the PLSR, the LS-SVM SEPC is above the 1.5 g.l−1 circle and
follows the SEP tendency. Hence, it is not possible to correct the model since
the error is no longer a simple bias.
MLR was very sensitive to only Gaussian noise and was shown to be the most
robust model, but it was also the most limited in performance since the model
was barely usable. Due to this stability, there is practically no difference be-
tween the SEP an SEPC.
LS-SVMsv is very sensitive to 4 noises : Gaussian noise, Multiplicative noise,
Baseline Shift, Baseline slope (SEP = 14 g.l−1!), which exceeded the significance
circles, precluding the correction of the model error via bias removal. LS-SVMlv

appeared more robust than LS-SVMsv because it was derived using PLSR fac-
tors which acts as a data pre-processing filter ; hence, the method aggregates
the advantages of PLSR and LS-SVM regression. The LS-SVM model behavior
(SEPC which follows SEP trend) can be explained by the sensitivity of RBF
functions to multiplicative and additive noise, since the RBF kernel is calculated
as a function of the difference between each training spectrum.
The SNV preprocessing improved the robustness of all models (table 4), in
particular for baseline-shift and multiplicative noise (by nature since xSNV =

x−x̄
standard deviation

) but also for baseline slope. The models based on single wave-
lengths (MLR, LS-SVMsv with or without SNV) are very sensitive to gaus-
sian noise, whereas the latent variable (PLSR factors) computation partially
removes the noise in PLSR and LS-SVMlv. Thus, except for the gaussian noise,
SNV + LS-SVMsv is the most robust model.
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5 Conclusion

In this paper, we compared classical linear regression techniques and LS-SVM
regression for the prediction of total acidity in fresh grapes using NIR spec-
troscopy. The LS-SVM models were implemented using both PLSR factors
(LS-SVMlv), and selected variables from the raw spectrum as input (LS-SVMsv).
LS-SVM was shown to increase prediction performance by correcting the non-
linearities which limited the performance of the classical linear methods. The
most accurate calibration was the combination of LS-SVM, SNV preprocessing
and PLSR latent variables.
LS-SVMlv was also found to be more robust than PLSR or LS-SVMsv. How-
ever, though it was the least accurate method, MLR was the most robust among
the methods tested. Both latent variable compression and SNV preprocessing
proved to be very important for LS-SVM performance. The combination of LS-
SVM and SNV on selected wavelengths appeared to be as robust as MLR model.
Based on these results, LS-SVM regression seems to be an interesting tool for
chemometrics in the area of quantitative prediction, and a valuable solution
for portable sensor applications. Further research efforts will focused on in-
cluding LS-SVM regression during the preprocessing optimization and variable
selection.
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Figure 1: SECV for LS-SVMlv (-◦-) and PLSR (-∇-) models depending on
number of latent variable. For LS-SVM, optimum γ and σ2 were calculated at
each step.
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Figure 2: Tuning of γ and σ2 for LS-SVMlv. The above surface (dotted lines)
represents the SECV and the beneath one represents the SEC. Note that γ is
on logarithm scale.

PLSR LS-SVMlv MLR LS-SVMsv

R2

cv 0.76 0.83 0.69 0.77
SECV (g.l−1) 1.32 1.11 1.50 1.30
SEC (g.l−1) 1.23 0.89 1.42 0.95
R2

test 0.77 0.86 0.68 0.78
SEP (g.l−1) 1.28 1.03 1.53 1.30
SEPC (g.l−1) 1.28 1.03 1.53 1.30
Bias (g.l−1) -0.02 0.01 -0.11 0.03

Table 1: Performances of the four models for acidity prediction in fresh grape.
Result in leave-one-out cross-validation and in test.
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Figure 3: Tuning of γ and σ2 for LS-SVMsv. The above surface (dotted lines)
represents the SECV and the beneath one represents the SEC. Note that γ is
on logarithm scale.
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PLSR LS-SVMlv, 10 LVs, γ = 10, σ2 = 50
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MLR LS-SVMsv, 8 LVs, γ = 4000, σ2 = 40

Table 2: Calibration plots : Measured acidity (g.l−1) vs predicted acidity (g.l−1)
for the different models. -◦- predicted values, · · · · · · Quadratic tendency curve.

15

Chauchard F., Cogdill R. Roussel S., Roger J.M. and Bellon-Maurel V. (2004) Application of
LS-SVM to non-linear phenomena in NIR spectroscopy : development of a robust and portable sensor
for acidity prediction in grapes, Chemometrics and Intelligent Laboratory Systems, 71, 141-150.



  1
  1.25
  1.5

  2

  3

  4
  4.5

No Noise

Gaussian Noise

Multiplicative Noise

Baseline Shift

Baseline Slope

Wavelength Shift

Strench/Shrink

Bandwidth difference

 

  1
  1.25
  1.5

  2

  3

  4
  4.5

No Noise

Gaussian Noise :

Multiplicative Noise

Baseline Shift

Baseline Slope

Wavelength Shift

Strench/Shrink

Bandwidth difference

 

8.6           

PLSR, 8 LVs MLR 8 Vs

  1
  1.25
  1.5

  2

  3

  4
  4.5

No Noise

Gaussian Noise

Multiplicative Noise

Baseline Shift

Baseline Slope

Wavelength Shift

Strench/Shrink

Bandwidth difference

 

  1

  1.25
  1.5

  2

  3

  4
  4.5

No Noise

Gaussian Noise :

Multiplicative Noise

Baseline Shift

Baseline Slope :

Wavelength Shift

Strench/Shrink

Bandwidth difference

 

7.3           

14            

LS-SVMlv, 10 LVs, γ = 10, σ2 = 50 LS-SVMsv, 8 LVs, γ = 4000, σ2 = 40

Table 3: Prediction error(g.l−1) for the different models depending on the noise
type -∇- SEP, and -�- bias-corrected SEP(SEPC). The solid line circle at 1g.l−1

shows the threshold for predictive model, and the one at 1.5g.l−1 indicates MLR
performance (the worst SEP with no noise).
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Table 4: Prediction error(g.l−1) for the different models depending on the noise
type -∇- SEP, and -�- bias-corrected SEP(SEPC). The solid line circle at 1g.l−1

shows the threshold for predictive model, and the one at 1.5g.l−1 indicates MLR
performance (the worst SEP with no noise).
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