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Abstract. This paper addresses the uniform random generation of words from a context-free
language (over an alphabet of size k), while constraining every letter to a targeted frequency
of occurrence. Our approach consists in an extended – multidimensional – version of the classic
Boltzmann samplers [7]. We show that, under mostly strong-connectivity hypotheses, our sam-
plers return a word of size in [(1 − ε)n, (1 + ε)n] and exact frequency in O(n1+k/2) expected
time. Moreover, if we accept a tolerance interval of length in Ω(

√
n) for the number of occur-

rences of each letters, our samplers perform an approximate-size generation of words in expected
O(n) time. We illustrate these techniques on the generation of Tetris tessellations with uniform
statistics in the different types of tetraminoes.

1 Introduction

Random generation is the core of the simulation of complex data. It appears in real applicative
domains such as complex networks (biology, Internet or social relationship), or software testing (vali-
dation, benchmarking). It helps us to predict the behavior of algorithms (complexities and statistical
significance of results), to visualize limit properties (such as transition phases in statistical physics),
to model real contexts (random graphs for web simulation).

Following the pioneering work of Flajolet et al [10], decomposable combinatorial classes can be
specified using standard specifications. Two major techniques can then be applied to draw m objects
of size n at random from such a class. On one hand, the recursive approach [14] precomputes the
cardinalities of sub-classes for sizes up to n and uses these numbers to perform local choices that are
consistent with the targeted uniformity. The best known optimization of this technique [5] uses certified
floating point arithmetics and works inO(m·n1+o(1)) but its implementation remains highly non-trivial
due to its sophisticated precomputations. On the other hand, the Boltzmann sampling techniques,
recently introduced by Duchon et al [7], achieves a random generation for most unlabelled [8] and
labelled specifications in O(m · n2) operations at an optimally low O(m · n) memory cost. Instead of
enforcing a strict – and costly – control on the size of generated objects, this general technique rather
induces an appropriate distribution on the size of sampled objects, and performs rejection until a
suitable object is found.

In the present work, we investigate a natural multivariate extension of Boltzmann sampling, aiming
at drawing objects, uniformly at random, having a prescribed composition in the different terminal
letters. From a combinatorial perspective, such a generation allows the so-called symbolic method to
reclaim combinatorial classes and languages that fall slightly off of its natural expressivity. For in-
stance, restrictions of rational languages may not admit a rational (or even-context-free) specification
under the additional hypothesis that some letters co-occur strictly (One may consider the triple-copy
language). For context-free languages on k letters, this problem was previously addressed within the
recursive framework [14] by Denise et al [5], deriving an algorithm in Θ(nk)/Θ(n2k) arithmetic op-
erations respectively for rational and context-free languages. Using properties of holonomic series,
Bertoni et al [3] revisited the problem and proposed a method for the uniform sampling from ra-
tional languages on two letters in Θ(n). Unfortunately a direct generalization of the technique only
generalizes into a Θ(nk−1) algorithm for k letters, as pointed out in Radicioni’s thesis [13].



Size Tolerance Composition Tolerance Average complexity

∅ ∅ O(n2+k/2)
∅ Ω (

√
n) O(n2)

O(n) ∅ O(n1+k/2)
O(n) Ω (

√
n) O(n)

Table 1. Summary of our results for the generation of a word of length n over k letters in strongly
connected context-free languages.

Following the general philosophy of Boltzmann sampling, our algorithm will first relax the com-
positional constraint by using non-uniform samplers to draw objects whose average composition is
fine-tuned to match the targeted one, and perform rejection until an acceptable object is found. By
acceptable, one understands that generated objects must feature prescribed size and composition,
while tolerances may be allowed on both requirements. Our programme can then be summarized in
the three following phases:

Phase I. Figure out a set of weights such that the expected composition matches the targeted one.
Phase II. Draw structures from a weighted distribution, using either the recursive approach (See [5])

or a weighted Boltzmann sampler (See section 4).
Phase III. Reject structures of unsuitable compositions, until an adequate object is generated and

returned.

Although phases II and III are independently addressed in our analyses, one can (and will) combine
them into a single rejection step when a weighted Boltzmann sampler is used for Phase II. The
algorithmic aspects of our programme will essentially build on and extend previous works addressing
the uniform version, but a general analysis of its overall performance is more challenging. Indeed,
the complexity of the rejection Phase III is heavily related to the limiting (joint) distribution of
the associated multivariate generating functions. For each phase, we attempt to give mathematical
characterizations of classes having proper behaviors. In particular, for context free languages whose
grammars are strongly connected, we obtain for each combination of tolerances, the complexities
summarized in Table 1.

The plan of this paper follows the different phases : Section 2 defines the concepts and notations
used throughout the paper. Section 3 explains how to tune efficiently the parameters such that the
targeted composition matches the average behavior (Phase I). In Section 4, we discuss the complexity
of Phase II, the number of rejections needed to reach a word of suitable size (or suitable approximate
size). The complexity of the multidimensional rejection (Phase III) is addressed in Section 5. We
illustrate our method in Section 6 by sampling perfect Tetris tessellations – tesselations of a w × h
rectangles using balanced lists of tetraminoes. Finally we conclude with a short overview of future
works.

2 Notations and definitions

Following traditional mathematical notations, we will use bold symbols for multi-dimensional vari-
ables/functions (i.e. x), and use subscripts to access a specific dimension (i.e. xi). Throughout the rest
of the document, we will denote by Σ the alphabet of k letters, and by C a context-free language
over Σ.

Composition and tolerance. Define the composition of sampled words as the frequency of
occurrences of each letter ti in a word w ∈ C, denoted by p(w) := (|w|ti/n)i∈[1,k] . Our main goal is to
generate – uniformly at random – some word w ∈ C having a composition that is close to a targeted
composition f ∈ [0, 1]k.

We make this notion of proximity explicit, and formalize the notion of acceptability for a sampled
word. Namely let ǫ be a k-tuple of positive real numbers and α ∈ Q+ a rational exponent, an object



Epsilon C = 1 Cπ(z) = 1 ΓCπ(x) := ε
Letters C = ti Cπ(z) = πtiz ΓCπ(x) := ti

Union C = A+ B Cπ(z) = Aπ(z) +Bπ(z) ΓCπ(x) := Bern

(

Aπ(x)

Cπ(x)
,
Bπ(x)

Cπ(x)

)

−→ ΓAπ(x) | ΓBπ(x)

Product C = A×B Cπ(z) = Aπ(z)×Bπ(z) ΓCπ(x) := ΓAπ(x).ΓBπ(x)

Fig. 1. Weighted generating functions and weighted Boltzmann samplers for context-free languages.

w ∈ C qualifies as (ǫ, α)-acceptable if and only if

p(w)i ∈ I(fi, ǫi, α), ∀i ∈ [1, k]

where I(m, e, a) := [m−mae,m+mae]. This definition captures the case of fixed (exact) compositions
by setting α = 1 and ǫi = 1/n, ∀i ∈ [1, k].

Weighted distributions. The following notions and definitions, recalled here for the sake of self-
containment, can be found in Denise et al [5]. A positive weight vector π will assign positive weights
πi ∈ R+ to each letter ti ∈ Σ. The weight is then extended multiplicatively on any object w by
π(w) =

∏

x∈w πx. This gives rise to the notion of weighted generating function Cπ(z) for a
context-free language C, a natural generalization of the size (enumerative) generating function where
each structure is counted with multiplicity equal to its weight

Cπ(z) =
∑

w∈C

π(w)z|w| =
∑

n≥0

cπ,nz
n

where cπ,n is the total weight3 of objects of size n. Notice that this generating function can be re-
interpreted as a multivariate generating function in π and z

This weighting scheme implicitly defines a weighted distribution on the set Cn of words of size
n, such that

P(w | n) = π(w)
∑

w′∈Cn
π(w′)

=
π(w)

cπ,n
.

Finally, the weighted distribution can be generalized into a Boltzmann weighted distribution
on the whole language such that

Px,π(w | n) = π(w)xn

∑

w′∈C π(w
′)x|w′|

=
π(w)xn

Cπ(x)
. (1)

Property 1. Let N (resp. Ni) be the random variable for the size (resp. number of occurrences of
a letter ti) of any word in a (x,π)− Boltzmann weighted distribution over a class C. Then the
expectations Ex,π(N) and Ex,π(Ni) are obtained from the partial derivatives of the multivariate
generating function Cπ(z) through

Ex,π(N) = x
dCπ(x)

dx

Cπ(x)
, Ex,π(Ni) =

πi
∂

∂πi
Cπ(x)

Cπ(x)
(2)

In the sequel we will denote by µ(x,π) the vector of expectations (Ex,π(N1), · · · ,Ex,π(Nk)).

3 Tuning weights (Phase I)

First, let us address the question of finding a vector π such that the multidimensional rejection scheme
(Phase III) is as efficient as possible. We propose and explore two alternatives, both computing a
weights vector that make the expected and targeted compositions coincide. The first one uses a
numerical Newton iteration. The second one uses an asymptotic approximation for the value of z
which greatly simplifies the weights/frequencies relationship.

3 This quantity is essentially similar to the partition function in statistical mechanics, dear to L. Boltzmann. . .



Input: Initial parameters z0 and π0, a composition f , a size n and ǫ a numerical precision
Output: The valid weights
Let Ez0 be the map from the space of the weights into Rk

+ such that Ez0(π) = µ(z0,π);
Let J(Ez0(π)) be the Jacobian matrix of Ez0(π);
π := π0;
repeat

end:=true; c := nf ; N := ||c − Ez0(π)||;
while N > ǫ do

πaux := π;
π := J(Ez0)

−1(π) · (nf − Ez0(π)) + π;
if N < ||c− Ez0(π)|| then

π := πaux; c := (c+ Ez0(π))/2; end:=false;
end

end

until end=true;
return π

Algorithm 1: Tracking the weights.

Tuning by expectation. Newton’s methods are based on successive linear (or higher order) approxi-
mations in order to obtain numerical estimates of a root of a system of equations. It is generally an
efficient algorithm assuming that the initial values are close enough to a root. Here, we are interested
in finding the unique root (z0,πf ) of the system µ(z0,π) = nf . Algorithm 1 is a slightly revisited
version of Newton’s method which tests at each step if Newton’s approximation has improved the
estimate of the root. This test fails if and only if the current parameters are too far from the solution.
In this case, we search using dichotomy an intermediate target that is closer to the solution than the
current parameters.

Proposition 1. Let f and n be the targeted composition and size respectively. Assume that the Jaco-
bian matrix J(Ez0(πf )) is not singular4, then Algorithm 1 returns parameters (z0,π1) such that the
expected composition µ(z0,π1) satisfies ||µ(z0,π1)− nf || < ǫ.
Moreover, there exists a neighborhood B of (z0,πf ) such that, for any π0 ∈ B, Algorithm 1 with
initial condition π0 quadratically converges to πf (i.e. ∃C > 1 such that ∀k ≥ 0, ||πk − πf || ≤ C−2k

where πk+1 := J(Ez0)
−1(πk) · (nf − Ez0(πk)) + πk).

Asymptotic tuning. Since one generally attempts to generate large objects, a natural option consists
in solving the simpler asymptotic system.

Proposition 2. Let us consider a context-free (resp. rational) language whose grammar is irreducible
and aperiodic, and whose generating functions Cπ(z) admits ρ(π) as its dominant singularity of the
generating function,

for any letter t, Ez,π(Nt) ∼ 1
2πtn

∂
∂πt

ρ(π)

ρ (resp. Ez,π(Nt) ∼ −πtn
∂

∂πt
ρ(π)

ρ ) as z tends to ρ(π).

Remark 1. Considering the expectation En(Nt) of the number of letters t in a word of fixed size
n. Then, from [5], similar asymptotic estimates holds for En(Nt) and the weights computed by our
methods can therefore be used by the recursive approach.

4 Efficiency of the size rejection scheme (Phase II)

At this point, we assume that a k-tuple of weights π has been found such that the average composition
in the weighted distribution matches the targeted one. We now need to perform a random generation
of m words from the contex-free language with respect to the π-weighted distribution.

4 i.e. there is no linear dependency between the expected numbers of different letters.



Input: Parameters x,π
Output: Object of A of size in I(n, ε) := [n(1− ε), n(1 + ε)]
repeat

γ := ΓAπ(x)
until |γ| ∈ I(n, ε);
return (γ)

Algorithm 2: Rejection algorithm Γ2A(x,π;n, ε)

This problem was previously addressed in Denise et al [5] within the framework of the recursive
method, and an algorithm in O(m · n) arithmetic operations was proposed. Despite its apparent
low complexity, the exponential growth of the numbers processed by the algorithm increases the
practical complexity to Θ(m · n2) in time and Θ(n2) in memory. Therefore we investigate a weighted
generalization of the so-called Boltzmann sampling [7].

Weighted Boltzmann generation Let us remind that Boltzmann sampling first relaxes the size
constraint and draws objects in a Boltzmann distribution of parameter x. To that purpose a fixed
stochastic process, coupled with an (anticipated) rejection procedure, is used (See Figure 2). The
probabilities of the different alternatives are precomputed by an external procedure called oracle
(Symbolic algebra, or numerical method [12], see Appendices for details). A judicious choice of value
for x ensures a low probability of rejection and this approach yields, for large classes of structures
(Trees, sequences, runs, mappings, fountains. . . ), generic algorithms in O(n2) for objects of exact-size
n, and in O(n) for objects of approximate-sizes in [n(1− ε), n(1 + ε)], for some ε > 0.

Through a minor modification of the oracle, one can easily turn unlabelled Boltzmann samplers
introduced by Flajolet et al [8] into generators for the weighted Boltzmann distribution (See Eq. 1).
Namely, one only needs to replace occurrences of the generating function C(z) with its weighted
counterpart Cπ(z), obtaining the samplers summarized in Figure 2, and use the classic size rejection
process (Algorithm 2).

Proposition 3. Let π be a k-tuple of weights, x be a Boltzmann parameter, C be a context-free
specification and Cπ(z) its weighted generating function.
Then any word w ∈ C is generated by the samplers summarized in Figure 2 with probability

Px,π(w | n) = π(w)xn

Cπ(x)
.

The (renormalized) restriction of a π-weighted Boltzmann distribution to objects of size n is clearly
a π-weighted distribution, and this fact ensures the correctness of a rejection-based approach.

Complexity analysis Let us qualify a context-free language as well-conditioned iff the singular
exponent απ of its dominant singularity is non negative. It is then possible to restrict our analysis to
such languages, associated with flat Boltzmann distribution, from the remark [7] that any language
C can be pointed repeatedly, until its exponent becomes non-negative. Generating from the pointed
version and erasing the point(s) generates any word of size n from C with respect to the weighted
distribution.

Theorem 1 (Essentially proven in [7]). Let Cπ be a weighted well-conditioned context-free lan-
guage and xn be the root in (0, ρπ) of Ex,π(N) = n, then

a) The approximate-size sampler Γ2C(xn,π;n, ε) has expected running time bounded by
κn

ζαπ
(ε)

+c(π).

b) The exact-size sampler Γ2C(xn,π;n, 0) has expected running time bounded by
κΓ (απ)n

2

ααπ

π

+ c(π)n.

where κ is the cost-per-letter induced by the canonical Boltzmann samplers, απ is the singular expo-

nent of the dominant singularity of Cπ(z), ζαπ
(ε) =

ααπ

π

Γ (απ)

∫ ε

−ε

(1 + s)απ−1e−απ(1+s)ds, Γ (x) is the

gamma function, and c(π) is homogeneous on n.



In particular, for any fixed weight vector π, Theorem 1 implies a O(n) (resp. O(n2)) complexity
for the approximate-size (resp. exact size) weighted samplers. Now enforcing through weights com-
positions that are unnatural (O(

√
n) occurrence while naturally observed O(n) ones) may lead to

a – somewhat hidden – dependency of π in n. Although we were unable to characterize these de-
pendencies and their impact c(π) on both complexities, we expect the latter to remain limited, and
conjecture similar complexities when meaningful compositions (At least one occurrence of each letter)
are targeted.

In the case of rational languages, the following theorem provides a computable evaluation for the
efficiency of the size-rejection process. It relies on the partial fraction expansion of rational functions,
which can be obtained for any weighted generating function Cπ(z), and is denoted by

Cπ(z) =
r

∑

i=1

mi
∑

k=1

(1− z/ρi)
−αi,khi,k + P (z) (3)

where P (z) is a polynomial of degree less than the number of states, r the number of distinct roots of
det(I − z ·M ) = 0 and mi the multiplicity of ρi which are sorted by increasing module. In weighted
generating functions, ρi, P (z), hi,k, k and r depend on the actual values of the weights.

Theorem 2. Let Cπ be a weighted rational language and xn be the root in (0, ρπ) of Ex,π(N) = n,
then the approximate-size sampler Γ2C(xn,π;n, ε) succeeds in expected number of trials

Cπ(xn)
(

r
∑

i=1

mi
∑

k=1

(

n+k−1
k−1

)

(ρi)−nhi,k + [zn]P (z)

)

(xn)n
.

5 Complexity of the multidimensional rejection (Phase III)

General principle Our approach relies on a rejection scheme that generalizes that of the classic –
univariate – Boltzmann sampling. Words are drawn from a weighted distribution – rejecting those
featuring a proportion of the parameters which too distant from the targeted one – until an acceptable
one is found and returned. This gives the following rejection sampler Γ3A(x,π;n,m, ε, σ) where x is
real, π a real k-vector, m a map from N to Rk, and ε the tolerance:

Input: The parameters x,π, n,m, ε, σ
Output: An object of A of size s in I(n, ε)
and for every parameter πi, the number of occurrences of Zi is in
I(mi(s), ε, σ) := [mi(s)−mi(s)

σε,mi(s) +mi(s)
σε]

repeat
γ := Γ2A(x,π;n, ε)

until ∀i, |γ|i ∈ I(mi(s), ε, σ);
return (γ)

Algorithm 3: Γ3A(x,π;n,m, ε, σ)

In many important classes of combinatorial structures, the composition of a random object is
concentrated around its mean. It follows that a rejection-based generation can succeed after few
attempts, provided that the expected composition matches the targeted one. Our main result is
that, for any irreducible and simple context-free language, a suitably parameterized multidimensional
rejection sampler generates a word of targeted composition afterO(nk/2) attempts. Moreover, allowing
a O(

√
n) tolerance on the number of occurrences of each letters yields a sampler that succeeds in

expected number of attempts asymptotically homogenous in n.
Now, let us denote by Un(π0) the k-multivariate random variable which follows the probability

P(Un(π0) = a) =
[znπa]Cπ(z)πa

0

[zn]Cπ0 (z)
, i.e. the distribution of the parameters for objects of size n. Moreover,

let us denote by µ(n,π0) the mean-vector of Un(π0) and by V (n,π0) its variance-covariance matrix.
If we do not have any strict correlation between the parameters, the matrix V (n,π0) is positive
definite (and so, invertible). We can then define a norm as ||u||V −1 =

√

uTV (n,π0)−1u. Now, let V



be a positive definite matrix, we denote by κ(V ) := inf
||u||∞=1

{||u||V }, the infinum distance5 from the

unit sphere to the center of the Banach space.

Definition 1. The σ-concentrated condition is defined as :

lim sup
n→∞

||µ(n,π)||σ∞κ(V (n,π)−1) = c >
√
k/ε

Theorem 3 (Approximate composition). Let xn and πa be the solution of Ex,π(N) = n and
Ex,π(Ni) = ai. The map m is defined as the m(s) = Es,πa

(Ni) and assume that :
i) the standardized version (Un(πa) − µ(n,πa))/f(n) admits a limiting distribution when n tends to
the infinity,
ii) the σ-concentrated condition is verified for σ ≤ 1.
Then the expected number of trials (of Γ2A(xn,π;n, ε)) of the rejection sampler Γ3C(xn,πa;n,m, ε, σ)
is upper-bounded by

sup
s∈I(n,ε)

(ε κ(V (s,πa)
−1)|| µ(s,πa)||σ∞)2

(ε κ(V (s,πa)−1)|| µ(s,πa)||σ∞)2 − k

which tends to a constant as n → ∞.

Remark 2. The condition i) is just a condition of asymptotic non fluctuation of the distribution of
the parameters according to the size.

Theorem 4 (Exact composition). Assume that (Un(πa)) admits a multidimensional Gaussian law
with mean µ and variance-covariance matrix V proportional to f(n) as limiting distribution when n
tends to the infinity, then the exact-composition rejection sampler Γ3C(xn,πa;n,m, 0, 1) succeeds after
an expected number of trials in (2π)k/2(det(V ))1/2 = O(f(n)k/2).

Proof. Just notice that the probability to draw an exact composition corresponds to taking u = µ in
the asymptotic estimate

p(u) =
1

(2π)k/2(det(V )1/2
exp

(

− 1
2 (u− µ)t V −1(u − µ) + o(1)

)

.

Consequently the expected number of attempts is (2π)k/2 det(V )1/2 = O(f(n)k/2).

5.1 Rational languages: The Bender-Richmond-Williamson theorem [2]

The Bender-Richmond-Williamson theorem [2, Theorem 1] defines sufficient conditions such that the
limiting distribution of a rational language R is a multidimensional Gaussian distribution. Let us
remind that a rational language is irreducible if its minimal automaton A is strongly-connected,
and aperiodic – if the cycle lengths in A have greatest common divisor equal to 1. Additionally the
periodicity parameter lattice Λ, defined in [2] (Definition 2) is required to be full dimensional to
avoid trivial correlations in the occurrences of letters.

Theorem 5. Let Rπ be a weighted rational language whose minimal automaton is irreducible and
aperiodic, and xn be the root in (0, ρπ) of Ex,π(N) = n. Assume that the periodicity parameter lattice
Λ is full dimensional then:
a) For all σ ≥ 1/2, the approximate-composition sampler Γ3R(xn,π;n, ε, σ) succeeds after O(1) trials
b) The exact-composition rejection sampler Γ3R(xn,π;n, 0, 1) succeeds after O(nk/2) trials.

Proof. From the system of language equations L = M · L + E, we directly obtain the system L =
zM · L + E for the generating function. In this case the Peron-Frobenius theorem ensures that the
dominating pole of every Li in L is the least real value of det(I−z ·M) = 0 and that this pole is simple.
Now, assume that the periodicity parameter lattice Λ defined in [2] (Definition 2) is full dimensional.

5 Recall that the infinity norm is defined as ||u||∞ = max (|u1|, · · · , |uk|)



Assume also that we have a compact set Π1 for the parameters in which the singular exponent is
constant and equal to 1. Then from the Bender-Richmond-Williamson Theorem (see [2], Theorem 1
and [1]), it follows that for any fixed parameter in the compact set Π1, the limiting distribution of the
parameters is a multidimensional Gaussian distribution with mean and variance-covariance matrices
proportional to n. Consequently, Theorem 3 applies for σ = 1/2, Theorem 4 applies with f(n) = n,
and the result follows.

Let us discuss the relevance of the prerequisites of Theorem 5. If the matrix M is not aperiodic,
there exists a power d such that Md is aperiodic. So, we can always reduce the problem to a list of
d aperiodic ones, and Theorem 5 applies under the same assumptions (full dimensional periodicity
parameter lattice and compact set with constant singular exponents). The irreducibility requirement
may be lifted when one of the strongly connected components dominates asymptotically, when the
associated schema only involves subcritical and supercritical compositions (In the sense of [9, The-
orem IX.2]). However the case of a competition between different components in a non irreducible
automaton is much more challenging and requires serious developments that cannot be included in
this short paper. Finally we point out that, with minor modifications, similar results could be obtained
for more general transfer matrix models.

5.2 Context-free languages: Drmota’s theorem [6]

A theorem by Drmota [6] gives very similar sufficient conditions for the limiting multivariate distribu-
tion to satisfy the conditions of Theorem 4. Namely, the irreducibility condition needs be fulfilled by
the dependency graph of the grammar – the directed graph on non-terminals whose edges connect
left hand sides of rules to their associated right-hand sides. The lattice and aperiodicity properties are
replaced by the very similar concept of simple type grammar, requiring the existence of a positive
k + 1 dimensional cone centered on 0 in the space of coefficients.

Theorem 6. Let Cπ be a weighted context-free language having a grammar G, and xn be the root in
(0, ρπ) of Ex,π(N) = n. Assuming that G is of simple-type ([6, Theorem 1]) and its dependency graph
is strongly connected then for all σ ≥ 1/2, then the complexities of Theorem 5 also hold for Cπ.

Again, the strong-connectedness requirement could be relaxed for disconnected grammars whose
behavior is dominated by that of a single connected component. A formal characterization of such
grammars may borrow to the theory of (sub/super)-critical compositions (See [9, Theorem IX.2]).

6 Sampling perfect Tetris histories

In this short illustration, we address the generation of Tetris tessellations, i.e. tessellations using
tetraminoes of a board having prescribed width w. The Tetris game consists in placing falling
tetraminoes (or pieces) P in a w×h board. The goal of the player is to create hole-free horizontal lines
which are then eliminated, and the game goes on until the pieces stack past the ceiling of the board.
Most implementations of Tetris use the so-called bag strategy, which consists in giving the player se-
quences of permutations of the 7 types of tetraminoes, therefore inducing an even composition in each
tetramino type. A rational specification (Built by Algorithm 4) exists for Tetris tessellations of any
fixed width, but the additional constraint on composition provably throws the associated language
out of the context-free class. Therefore, we choose to model the generation of evenly-distributed Tetris
tessellations as a multivariate generation from a rational language. Such tessellations could in turn
be used as a basic construct to build hard instances for the offline version of the algorithmic Tetris
problems [4,11].

6.1 Building the automaton of Tetris tesselations

First let us find an unambiguous decomposition of Tetris tessellations. The idea is to focus on the
state of the upper band of the tessellation that is not entirely filled, or boundary of a tessellation.



Input: The board width w and the flat boundary Bw
Output: Q the states set and σ the transition

function of Aw = (P , Q,Bw, {Bw}, σ)
begin

(Q,σ)← (Bw ,∅)
S ← {Bw}
while S 6= ∅ do

S ⇒pop B;
for p ∈ PB do

B′ ← B − p;
if B′ /∈ Q then

Q← Q ∪ {B′};
S ⇐push B′;

end

σ ← σ ∪ {(B, p,B′)};
end

end

return (Q,σ)
end

Width w #States in Aw #States minimal

2 4 minimal
3 55 minimal
4 80 78
5 1686 1646
6 4247 4130
7 41389 40099
8 49206 47564
9 919832 –

Algorithm 4: Constructing the automaton Aw for tessellations of width w. Right: Growth of the
number of states for increasing values of w.

In particular for tessellations the upper band is completely filled and the associated boundary is flat.
One can investigate the different ways to get to a given boundary B by simulating the adjunction of
a piece p to another boundary B′, or conversely its removal from B, which we favor in the following.
Without further restriction on the position of removal, such a decomposition would be ambiguous and
give rise to an infinite number of different boundaries. Consequently, we enforce a canonical order on
the removal of pieces by restricting it to a set of (possibly rotated) pieces PB positioned such that the
upper-rightmost position of the piece matches that of the boundary, and the piece is entirely contained
in the boundary. We refer to the induced decomposition as the disassembly decomposition.

Proposition 4. The disassembly decomposition generates sequences of removals from and to flat
boundaries that are in bijection with Tetris tesselations.

Proof (Sketch of). Let us discuss briefly the correctness of this decomposition, or equivalent that
the sequences of k removals leading from a flat boundary Bw to itself are in bijection with the
tessellations of w × 4 · k/w. First let us notice that the decomposition is unambiguous, since all the
local removals share at least one position (the upper-rightmost of the boundary) and are therefore
strongly ordered. Furthermore, it is also provably complete by induction on the number of piece n,
since any tessellation has a upper-rightmost position which, upon removal, gives another tessellation
of smaller size, and completeness of the decomposition propagates from tessellations of size n to size
n + 1. Finally, it gives rise to a finite number of states since the difference between the highest and
lowest point in any reached boundary does not exceed the maximal height of a piece.

The finiteness of the state space yields Algorithm 4 that builds the automaton Aw, generating
tessellations of width w. Notice that the resulting automaton in not necessarily co-accessible, since
the removal of some piece can create boundaries that cannot be completed into a flat one through
any sequence of removal. Consequently, we added in our implementation a test of connectedness that
discards any boundary having a (dis)connected component involving a number of blocks that is not
a multiple of 4, as such boundaries clearly cannot reach a flat state again. Running a minimization
algorithm of the resulting automata confirms the expected explosion in the number of states (See
Algorithm 4) required for increasing values of w.

6.2 Random generation

First we point out that the automaton has matching initial and final states, so the strong connect-
edness is obviously ensured and our theorems regarding the complexity of generation apply. One can



then translate it into a system of functional equations involving the (rational) generating functions
associated with each states. Solving the system gives the generating functions, from which one can
extract many informations.

For instance, fixing the width w = 6 and a number n = 105 of pieces, one obtains a number
h6,105 = 3.1071 of potential tessellations, and extracting coefficients of derivatives (See Equation 2)
yields:

Piece
Frequency (%) 7.90 10.55 20.42 20.42 17.00 7.90 15.81

Consequently, the average composition of a Tetris tessellation is incompatible with the bag strategy,
which results in instances that lead to evenly distributed pieces. One can then use the method described
in Section 3 to compute a set of weights ensuring, on the average, one piece out of seven of each type,
and get the following weight vectors

Piece
Weight 0.939919 0.80 0.37561 0.373549 0.45759 0.957851 0.420387

A weight random generation for the w = 6 and n = 105, coupled with a rejection that allows the
numbers of any piece to be equal to 15± 1, gives the instances drawn in Figure 3.

6.3 From random Tetris tessellations to Tetris instances

Fig. 2. Left: Tetris tessellations associated with a unique instance. Only the most relevant dependency
points are displayed here (arrows) and pieces are labelled with their rank in the only compatible
instance. Duplicating the gadget preserves the uniqueness of the associated instance while allowing
for the generation of tessellations of arbitrarily large dimensions. Right: Tesselation realized by
(

h
h/2

)

∈ Θ(2n/
√
n) different instances.

Proposition 5. For any Tetris tesselation T , there exists an instance (sequence of pieces) such that
T can be obtained.

Proof. Let us assume that T is a tessellation of a w × n rectangle using tetraminoes, and let us call
dependency point any contact between the southward face of a piece B1 and the northward face of
a piece B2. Such a point induces a directionality B1 → B2, corresponding to the necessity of placing
B1 before B2. This defines a dependency graph D = (V,E) whose vertices are the pieces B ∈ T , and
whose directed edges are such that (B1,B2) ∈ E iff B1 → B2. Additionally, each edge is labelled with
the coordinate of its associated dependency point.

It can be shown thatD is acyclic, by first proving that any path alongD is labelled with coordinates
that are either increasing on the y-axis or monotonic on the x-axis. Let us start by noticing that,
aside from the and pieces, all types of pieces exhibit northward faces that are strictly higher
than their southward ones. Furthermore, any heterogenous pair of piece only exposes northward faces
that are at greater y-coordinates than their dependency point, inducing an increase of y-coordinate in
the path. Consequently, there only exists two configurations of dependent pieces A → B, namely



Fig. 3. Fifteen Tetris tesselations of width 6 having even composition (+/- 1) in the different pieces.

and , such that B exposes a southward face at the same height as their dependency point. The
only way for a path in D not to increase in y-coordinate is then to feature a sequence of (resp. )
pieces, inducing a monotonic behavior which proves our claim, and the acyclic nature of D follows.

Finally, the acyclicity of D implies the existence of a sequence of pieces realizing T , since it is
possible, in any configuration resulting in a possibility to remove a free piece at maximal y-ordinate.
The reversal of any sequence of such pieces yields an instance such that T can be obtained.

There are a few limitations induced by our tesselation model. First it can be remarked that our
notion of perfect histories does not capture every possible Tetris game ending with an empty board,
as one may temporarily leave holes which amount to disconnecting pieces in the tesselation repre-
sentation. Secondly, although there exists in the general case, many different free pieces to choose
from while rebuilding an instance, there exists tesselations giving rise to a unique instance, as illus-
trated in Figure 2. Consequently, using the DAGs associated with Tetris histories to draw instances
of the offline version of Tetris algorithmic problems [4] would favor exponentially certain instances
over others. However, we still believe our method could be used to generate hard instances with the
guarantee of a possible success which could be used to benchmark the performances of heuristics and
exponential-time solutions.

7 Conclusion

In this paper, we have adapted and applied a general methodology for the multivariate random
generation of combinatorial objects. Under explicit and natural conditions, random generators having
complexity in O(n2+k/2) have been derived for the exact size and composition generation, outperform-
ing best known algorithms (in O(nk) and O(n2k) respectively for rational and context-free languages)
for this problem. Furthermore, provided a small (linear) tolerance is allowed on the size of generated
objects, and a Ω(n1/2) one is allowed in the other dimensions, our generators generate objects in
linear expected time. We have applied these principles to the generation of perfect Tetris tessellations
with uniform statistic in tetraminoes, which we have generated and drawn.



This paper is the first step toward a general analysis of the multi-parameter Boltzmann sampling.
Compared to its alternative using the recursive method, the resulting method is not only theoretically
faster, but also only requires only O(n) storage and its time complexity seems less affected by larger
specifications. Nevertheless, many questions are left open, for instance with respect to the nature of
the dependency between the weights and reasonable frequencies, which would allow us to address the
complexities of Phase 2 in a much more general setting. The present work also implicitly assumes, at
the multivariate rejection phase, that suitable weights have been found which is not always possible if
the targeted distribution is incompatible with some dependencies in the grammar. A future direction
might consist in investigating non-trivial, sufficient – yet tight – conditions such that the targeted
composition can be achieved on the average.

Since multivariate Boltzmann samplers can be obtained in any situation where the distribution is
well-concentrated, one may envisioned many classes, including constrained trees, permutations with a
fixed number of cycles, functional graphs with a controlled number of components. . . A first step in this
direction would consists in extending to simple Polya operators some of the multivariate theorems. As
mentioned earlier in the document, the requirement of strong-connectedness (or irreducibility) could
be questioned in the light of (sub/super)-critical compositions. Another similar direction is the use of
Hwang’s Quasi-powers theorem, giving rise to low variance distributions, for a general treatment of
the bivariate case.
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8 Annexes

8.1 Oracle computation

In the Boltzmann method, a crucial point consists in evaluating the generating function in the fixed
tuned parameters. This could be computationally expensive, in particular when the generating func-
tion is not defined by a closed-formed expression but only by a system S of functional equations :
F (Z, π) = Φ(F , Z, π). First, we can say that this system is well-founded if the sequence of formal
series F 0 = 0 and F n(Z, π) = Φ(F n−1, Z, π) is convergent6 and its limit F∞ is solution of S. The
näıve way to evaluate series is just to following the sequence, not with formal parameters, but with
real parameters. It is straightforward that if the parameters are taken in the convergence domain of
the series, then the sequence converges to the evaluation of series in it (by observing that the tail of
the serie becomes negligible).

Nevertheless this convergence is not very fast since only one digit is typically gained per iteration.
As explained in the paper of Salvy et al [12], it is possible for univariate generating function to
improve the speed of convergence by using classical Newton’s method. They only restrict the domain
of application to functional systems build by finite compositions of simple or analytic operators (as
+, ×, 1

1−x , e
x, ln(1/(1− x)). An important point in [12] consists in proving that a system S is well-

founded if and only if the Jacobian matrix ∂Φ/∂F (0, 0) is nilpotent (and consequently Id− ∂Φ/∂F
is invertible).

Now, without any difficulty, their approach can be extended to multivariate generating functional
systems. Indeed, let F = Φ(F , Z,π) be a well-founded functional system with Φ(0, 0, π) = 0. Let
(x0, π0) be inside the domain of convergence of the generating series F (Z, π). Then the following
iteration converges to F (x0, π0):

F 0 = 0, F n+1 = F n + (Id− (∂Φ/∂F )(F n, x0, π0))
−1 × (Φ(F n, x0, π0)− F n).

Now, in practice, we continue the iteration process until ||F n+1−F n|| < ε for a fixed arithmetical
precision ε.

8.2 Proofs

Proof (Proposition 1.).
Let π be the current weight vector, the vector v = nf−Ez0(π) (where f is the composition vector)

indicates the direction of the decay. So, we could take as new current vector πc = J(Ez0)
−1(π) · (nf −

Ez0(π))+π. If, at each step, we stay inside the ”combinatorial domain of the weights (i.e. the domain
where the generating function is analytic), then the sequence converges to the solution of the system.
To stay in the combinatorial domain : for each new πc, we compare the norm nc = ||nf − Ez0(πc)||
with n = ||nf − Ez0(π)||. If nc > n the target can not be approximate directly. So, we add a new
intermediate target c = (nf +Ez0(π))/2 and try to solve recursively this intermediate problem. If we
have solved this new problem, the new current weights are closer from the targeted ones and we can
try to solve the initial problem but with these new current weights.

The quadratic convergence is a classical property of the newton’s method.

Proof (Proposition 2.).
By Perron-Frobenius theorem, assuming that ρ(π) is the dominant singularity of the system L

, the generating function vector L verifies L ∼ (1 − z
ρ)

−1H when z ∼ ρ where H is a functional

matrix which are not singular in |z| ≤ ρ. So,
πl

∂
∂πl

Li

Li
∼ πl(1 − z

ρ)
−1z

∂
∂πl

ρ(π)

ρ2 . In particular, by taking

z = ρ(1 − 1
n ), we obtain Ez,π(Nt) ∼ −πtn

∂
∂πt

ρ(π)

ρ . Now, the system ft =
nt

n = −πt

∂ρ(π)
∂πt

ρ for t in the
alphabet can be solved with less difficulty than the initial one.

6 The distance in the metric ring R[[Z]] is defined as d(F,G) = 2−k where k is the least integer such that the
k-th coefficient of the two series F and G are different



Proof (Proposition 3.). Immediate from the proof of [8], Theorem 1.1:
C = 1 (Empty structure) or C = ti (Atom): For singleton classes, equation 1 simplifies to 1 and both
samplers draw the structure unconditionally.
C = A+ B (Union): Assuming the validity of both ΓAπ(x) and ΓBπ(x), the probability of sampling

a structure w from A (resp. B) is Aπ(x)
Cπ(x)

π(w)x|w|

Aπ(x) = π(w)x|w|

Cπ(x) (resp. π(w)x|w|

Cπ(x) ).

C = A×B (Product): Assuming the validity of both ΓAπ(x) and ΓBπ(x), each structure w = wAwB ∈ C
is sampled with probability

π(wA)x
|wA|

Aπ(x)

π(wB)x
|wB|

Bπ(x)
=

π(wA)π(wB)x
|wA|+|wB|

Aπ(x)Bπ(x)
=

π(w)x|w|

Cπ(x)
.

Proof (Theorem 3.). The proof is based on the multivariate Chebyshev inequality : Let X be an
N -dimensional random variable with mean µ and covariance matrix V , then

Pr (||X − µ||V −1 < t) > 1− N

t2
.

Indeed, the probability to lie in the interval I(mi(s), ε, α) can be rewritten as

Pr (||Us(πa)− µ(s, πa)||∞ < ε||µ(s, πa)||α∞) .

Now, we have the equivalent norm formula ||x||∞ ≤ 1
κ(V (s,πa)−1) ||x||V (s,πa)−1 . So, put µ = µ(s, πa)

and V −1 = V (s, πa)
−1, one gets

Pr
(

||Us(πa)− µ||V −1 < ε κ(V −1)||µ||α∞
)

≤ Pr (||Us(πa)− µ||∞ < ε ||µ||α∞) .

By taking t = ε κ(V −1)||µ(s, πa)||α∞ in the Chebyshev inequality, we obtain

Pr (||Us(πa)− µ(s, πa)||∞ < ε||µ(s, πa)||α∞) > 1− k

(εκ(V −1)||µ(s, πa)||α∞)2
.

The theorem ensues from the fact that the expected time to reach a good answer is 1/p when p is the
probability to obtain it.


