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Abstract. This paper addresses how to efficiently sample words from a rational language (over
an alphabet of size k), while constraining every letter to a targeted frequencies of occurrence. Our
approach consists in an extended – multivariate – version of the classical Boltzmann samplers [6].
We prove that, under relatively weak hypotheses, our sampler returns a word of size in [(1 −
ε)n, (1+ε)n] and exact frequency in O(n1+k/2) expected time. Moreover, if we accept a tolerance
interval of length in O(√n) for the number of occurrences of each letters, our sampler reaches
an approximate-size generation of words in expected O(n) time. We illustrate these techniques
on the generation of perfect Tetris histories (Tesselations of a w × h rectangle).

1 Introduction

Random generation is the core of the simulation of complex data. It appears in real applicative
domains such as complex networks (biology, Internet or social relationship), or software testing (vali-
dation, benchmarking). It helps us to predict the behavior of algorithms (complexities and statistical
significance of results), to visualize limit properties (such as transition phases in statistical physics),
to model real contexts (random graphs for web simulation).

Following the pioneering work of Flajolet et al [8], decomposable combinatorial classes can be
specified using standard specifications. Two major techniques can then be applied to drawm objects of
size n at random from such a class. On one hand, the recursive approach precomputes the cardinalities
of sub-classes for sizes up to n and uses these numbers to perform local choices that are consistent
with the targeted uniformity. The best known optimization of this technique [5] uses certified floating
point arithmetics and works in O(m · n1+o(1)) but its implementation remains delicate because of
sophisticated precomputations. On the other hand, the Boltzmann sampling techniques, recently
introduced by Duchon et al [6], achieves a random generation for most unlabelled [7] and labelled
specifications in O(m ·n2) operations at an optimally low O(m ·n) memory cost. Instead of enforcing
a strict – and costly – control on the size of generated objects, this general technique rather induces
an appropriate distribution on the size of sampled objects, and performs rejection until a suitable
object is found.

In the present work, we investigate a natural multivariate extension of Boltzmann sampling, aiming
at drawing objects uniformly at random having a prescribed composition in the different terminal
letters. For rational languages on k letters, this problem was previously addressed through the so-called
recursive approach [12] by Denise et al [5] deriving an algorithm in Θ(nk) arithmetic operations. Using
properties of holonomic series, Bertoni et al [3] revisited the problem and proposed a method for the
uniform sampling from rational languages on two letters in Θ(n). Unfortunately the technique involved
in the optimization generalizes poorly to a Θ(nk−1) algorithm, as was pointed out in Radicioni’s
thesis [11].

From a combinatorial perspective, such a generation allows the so-called symbolic method to
reclaim combinatorial classes and languages that fall off of its natural expressivity. We illustrate
this general claim with a generation of perfect Tetris games, tessellations of a w × h boards using
tetraminoes while conserving a uniform statistics on pieces. This latter constraint arises from the
so-called bag strategy used for the random generation of sequences of pieces by most implementations
of the Tetris game. This strategy consists in drawing sequences of permutations of the 7 types of
tetraminoes, therefore inducing an equal compositions in each type of piece every 7 pieces. Conse-
quently, the language of perfect Tetris games can be seen as an unordered (constrained) version of



Tolerance Size Tolerance Composition Average complexity

∅ ∅ O(n2+k/2)
∅ O(√n) O(n2)

O(n) ∅ O(n1+k/2)
O(n) O(√n) O(n)

Table 1. Summary of our results for the generation of a word of length n over k letters in strongly
connected rational languages.

a 7-copy language and is clearly not rational. However a rational specification can be found for any
family of perfect games having a prescribed constant width w. Such specification can then be used in
conjunction with a control of the number of occurrences in each piece to draw perfect games uniformly
at random. Such games can in turn be used to build sequences of pieces, i. e. instances of the offline
version of the algorithmic Tetris problems [4,9].

Following the philosophy underlying Boltzmann sampling, we first relax the compositional con-
straint by using non-uniform samplers and draw objects whose average composition is fine-tuned to
match the targeted one. Then we perform rejection until an acceptable object is found. By acceptable,
one understands that generated objects must feature prescribed size and composition, while tolerances
may be allowed for both requirements. Our programme can then be summarized in the three following
phases:

Phase I. Figure out a set of weights such that the expected composition matches the targeted one.
Phase II. Draw structures from a weighted distribution, using either a recursive approach (See [5])

or a weighted Boltzmann sampler (See section 4).
Phase III. Reject structures of unsuitable compositions, until an adequate object is generated and

returned.

Although phases II and III are independently addressed in our analyses, one can (and will) combine
them into a single rejection step if a weighted Boltzmann sampler is used for Phase II. The algorithmic
aspects of our programme will essentially build on and extend previous works addressing the uniform
version, but a general analysis of its overall performance is more challenging. Indeed, the complexity
of the rejection Phase III is heavily related to the limiting (joint) distribution of the associated multi-
variate generating functions. For each phase, we give mathematical characterizations of classes having
proper behaviors. In particular, for rational languages whose automata are strongly connected, we
obtain for each combination of tolerances, the complexities summarized in Table 1.

The plan of this paper follows the different phases : Section 2 defines the concepts and notations
used throughout the paper. Section 3 explains how to tune efficiently the parameters such that the
targeted composition matches the average behavior (Phase I). In Section 4, we discuss the complexity
of Phase II, the number of rejections needed to reach a word of suitable size (or suitable approximate
size). The complexity of the multidimensional rejection (Phase III) is addressed in Section 5. We
illustrate our method in Section 6 by sampling perfect Tetris histories – tesselations of a w × h
rectangles using tetraminoes. Finally we conclude with a short overview of future works.

2 Notations and definitions

Following traditional mathematical notations, we will use bold symbols for multi-dimensional vari-
ables/functions (i.e. x), and use subscripts to access a specific dimension (i.e. xi). Throughout the
rest of the document, we will denote by Σ the alphabet of k letters, and C be a rational language
over Σ.

Composition and tolerance. Define the composition of sampled words as the frequency of
occurrences of each letter ti in a word w ∈ C, denoted by p(w) := (|w|ti/n)i∈[1,k] . Our main goal is to
generate – uniformly at random – some word w ∈ C having a composition that is close to a targeted
composition f ∈ [0, 1]k.



Epsilon C = 1 Cπ(z) = 1 ΓCπ(x) := ε
Letters C = ti Cπ(z) = πtiz ΓCπ(x) := ti

Union C = A+ B Cπ(z) = Aπ(z) +Bπ(z) ΓCπ(x) := Bern

(

Aπ(x)

Cπ(x)
,
Bπ(x)

Cπ(x)

)

−→ ΓAπ(x) | ΓBπ(x)

Product C = A×B Cπ(z) = Aπ(z)×Bπ(z) ΓCπ(x) := ΓAπ(x).ΓBπ(x)

Fig. 1. Weighted generating functions and weighted Boltzmann samplers for rational languages.

We make this notion of proximity explicit, and formalize the notion of acceptability for a sampled
word. Namely let ǫ be a k-tuple of positive real numbers and α ∈ Q+ a rational exponent, an object
w ∈ C qualifies as (ǫ, α)-acceptable if and only if

p(w)i ∈ I(fi, ǫi, α), ∀i ∈ [1, k]

where I(m, e, a) := [m−mae,m+mae]. This definition captures the case of fixed (exact) compositions
by setting α = 1 and ǫi = 1/n, ∀i ∈ [1, k].

Weighted distributions. The following notions and definitions, recalled here for the sake of self-
containment, can be found in Denise et al [5]. A positive weight vector π will assign positive weights
πi ∈ R+ to each letter ti ∈ Σ. The weight is then extended multiplicatively on any object w by
π(w) =

∏

x∈w πx. This gives rise to the notion of weighted generating function Cπ(z) for a
rational language C, a natural generalization of the size (enumerative) generating function where each
structure is counted with multiplicity equal to its weight

Cπ(z) =
∑

w∈C

π(w)z|w| =
∑

n≥0

cπ,nz
n

where cπ,n is the total weight3 of objects of size n. Notice that this generating function can be re-
interpreted as a multivariate generating function in π and z

This weighting scheme implicitly defines a weighted distribution on the set Cn of words of size
n, such that

P(w | n) = π(w)
∑

w′∈Cn
π(w′)

=
π(w)

cπ,n
.

Finally, the weighted distribution can be generalized into a Boltzmann weighted distribution
on the whole language such that

Px,π(w | n) = π(w)xn

∑

w′∈C π(w
′)x|w′|

=
π(w)xn

[zn]Cπ(zx)
. (1)

Property 1. Let N (resp. Ni) be the random variable for the size (resp. number of occurrences of
a letter ti) of any word in a (x,π)− Boltzmann weighted distribution over a class C. Then the
expectations Ex,π(N) and Ex,π(Ni) are obtained from the partial derivatives of the multivariate
generating function Cπ(z) through

Ex,π(N) = x
dCπ(x)

dx

Cπ(x)
, Ex,π(Ni) =

πi
∂

∂πi
Cπ(x)

Cπ(x)
(2)

In the sequel we will denote by µ(x,π) the vector of expectations (Ex,π(N1), · · · ,Ex,π(Nk)).

3 This quantity is essentially similar to the partition function in statistical mechanics, dear to L. Boltzmann. . .



Rational generating functions of rational languages Let us consider the weighted generating
function Lπ of a rational language L. It is a classic result of language theory that any rational language
L is recognized by a deterministic minimal automaton. Such an automaton can in turn be transformed
into a left-linear grammar generating exactly L.

From the deterministic nature of the automaton, the resulting grammar is unambiguous and
only uses the Cartesian product and disjoint union operators, respectively denoted by × and + in
the so-called symbolic method. One can therefore systematically translate such a grammar, using
rules summarized in Table 1, into a system of functional equations involving the weighted generating
function associated with each state. The system can be expressed using the following classical matrix
representation L = M · L + E , where E is the final state {0, ǫ}-vector and the matrix M is the
transition matrix of A.

The resulting system is linear in each of the generating function associated with non-terminals,
and can therefore always be solved by a simple Gaussian elimination. By considering the non-
terminal/generating function associated with the initial state, one obtains the weighted generating
function Lπ of L. Since this function is the solution of a linear system, it can be written as a fraction
of polynomials in z and π, i. e. a rational generating function.

3 Tuning weights (Phase I)

The weighted distribution impacts the average composition of a randomly generated word. Conse-
quently, we address here the question of finding a vector π such that the multidimensional rejection
scheme (Phase II) is as efficient as possible. We propose and explore two alternatives, both computing
a weights vector making the expected and targeted compositions coincide. The first one uses a nu-
merical Newton iteration. The second one uses an asymptotic approximation for the value of z which
greatly simplifies the weights/frequencies relationship.

Tuning by expectation. Newton’s methods are based on successive linear (or higher order) approxi-
mations in order to obtain numerical estimates of a root of a system of equations. It is generally an
efficient algorithm assuming that the initial values are close enough to a root. Here, we are interested
in finding the unique root (z0,π) of the system µ(z0,π) = nf . Algorithm 1 is a slightly revisited
version of Newton’s method which tests at each step if Newton’s approximation has improved the
estimate of the root. This test fails if and only if the current parameters are too far from the solution.
In this case, we search using dichotomy an intermediate target that is closer to the solution than the
current parameters.

Proposition 1. Let f be a targeted composition and n be a size, the Algorithm 1 returns parameters
z0 and π such that the expected composition µ(z0,π)/n is ǫ-close to f .

Asymptotic tuning. As we generally attempts to generate large objects, a natural option consists in
solving the simpler asymptotic system.

Proposition 2. Let us consider that the automaton is irreducible and aperiodic and that ρ(π) is the
dominant singularity of the generating function Cπ(z),

for any letter t, Ez,π(Nt) ∼ −πtn
∂

∂πt
ρ(π)

ρ as z tends to ρ(π).

Remark 1. Considering the expectation En(Nt) of the number of letters t in a word of fixed size n.

Then, from [5], a similar asymptotic estimate −πtn
∂

∂πt
ρ(π)

ρ holds for En(Nt) and the weights computed
by our methods can therefore be used by the recursive approach.



Input: Initial parameters z0 and π, a composition f , a size n and ǫ a numerical precision
Output: The valid weights
Let Ez0 be the map from the space of the weights into Rk

+ such that Ez0(π) = µ(z0,π);
Let J(Ez0(π)) be the Jacobian matrix of Ez0(π);
repeat

end:=true; c := nf ; N := ||c − Ez0(π)||;
while N > ǫ do

πaux := π;
π := J(Ez0)

−1(π) · (nf − Ez0(π)) + π;
if N < ||c− Ez0(π)|| then

π := πaux; c := (c+ Ez0(π))/2; end:=false;
end

end

until end=true;
return π

Algorithm 1: Tracking the weights.

4 Efficiency of the size rejection scheme (Phase II)

At this point, we assume that a k-tuple of weights π has been found such that the average composition
in the weighted distribution matches the targeted one. We now need to perform a random generation
of m words from the rational language with respect to the π-weighted distribution.

This problem was previously addressed in Denise et al [5] within the framework of the recursive
method, and an algorithm in O(m · n) arithmetic operations was proposed. Despite its apparent low
complexity, the exponential growth of numbers processed by the algorithm increases the practical com-
plexity to Θ(m ·n2) in time and Θ(n2) in memory. Therefore we investigate a weighted generalization
of the so-called Boltzmann sampling [6], which we briefly present.

Classic Boltzmann sampling [6] By contrast with the recursive method, Boltzmann sampling, re-
cently introduced by Duchon et al [6] first relaxes the size constraint and draws objects in a Boltzmann
distribution of parameter x. To that purpose, a fixed stochastic process, coupled with an (anticipated)
rejection procedure, is used. The probabilities associated with the different alternatives during the
generation are computed by an external procedure called oracle (Symbolic algebra, or numerical
method [10], see Appendices for details). A judicious choice of value for x ensures a low probability of
rejection and this approach yields, for large classes of structures (Trees, sequences, runs, mappings,
fountains,...), generic algorithms in O(n2) for objects of exact-size n, and in O(n) for objects of
approximate-sizes in [n(1− ε), n(1 + ε)], for some ε > 0.

Weighted Boltzmann generation Unlabelled Boltzmann samplers introduced by Flajolet et al [7]
can be modified to draw objects from a weighted Boltzmann distribution (See Eq. 1) through a minor
modification of the oracle. Indeed, one only needs to replace any occurrence of a generating function
C(z) with its weighted counterpart Cπ(z), obtaining the samplers summarized in Figure 2, and use
the classic size rejection process, made explicit by Algorithm 2.

Input: the parameters x,π
Output: An object of A of size in I(n, ε) := [n(1− ε), n(1 + ε)]
repeat

γ := ΓAπ(x)
until |γ| ∈ I(n, ε);
return (γ)

Algorithm 2: Rejection algorithm Γ2A(x,π;n, ε)



Proposition 3. Let π be a k-tuple of weights, x be a Boltzmann parameter, C be a context-free
specification and Cπ(z) its weighted generating function.
Then any word w ∈ C is generated by the samplers summarized in Figure 2 with probability

Px,π(w | n) = π(w)xn

[zn]Cπ(zx)
.

The (renormalized) restriction of a π-weighted Boltzmann distribution to objects of size n is clearly
a π-weighted distribution, and this fact ensures the correctness of the rejection-based approach.

Complexity analysis Let us discuss the complexity of the exact-size and approximate-size rejection
processes in the presence of weights. Our results relies on the analysis of flat distributions, found in [6]
for uniform Boltzmann distributions.

Theorem 1 (Essentially proven in [6]). Let Cπ be a weighted rational language and xn be the root
in (0, ρπ) of Ex,π(N) = n, then

a) The approximate-size sampler Γ2C(xn,π;n, ε) has expected running time bounded by
κn

ζαπ
(ε)

+c(π).

b) The exact-size sampler Γ2C(xn,π;n, 0) has expected running time bounded by
κΓ (απ)n

2

ααπ

π

+ c(π)n.

where κ is the cost-per-letter introduced by the canonical Boltzmann samplers, απ is the multiplicity of

the dominant pole of Cπ(z), ζαπ
(ε) =

ααπ

π

Γ (απ)

∫ ε

−ε

(1+s)απ−1e−απ(1+s)ds, Γ (x) is the gamma function,

and c(π) is homogeneous on n.

In particular, for any fixed weight vector π, Theorem 1 implies a O(n) (resp. O(n2)) complexity
for the approximate-size (resp. exact size) weighted samplers. Now enforcing through weights compo-
sitions that are unnatural (O(

√
n) occurrence while naturally observed O(n) ones) may lead to a –

somewhat hidden – dependency of π in n. Although we were unable to characterize these dependencies
and their impact c(π) on both complexities, we expect it to be very limited and conjecture that the
complexities observed for fixed-weights hold when targeted compositions are meaningful (Targeted
occurrences of any letter in [1, n− 1]).

Nevertheless, the following theorem provides a computable evaluation for the efficiency of the size-
rejection. It is relied on the partial fraction expansion of rational functions, which can be obtained
for any weighted generating function Cπ(z), and is denoted by

Cπ(z) =

r
∑

i=1

mi
∑

k=1

(1− z/ρi)
−αi,khi,k + P (z) (3)

where P (z) is a polynomial of degree less than the number of states, r the number of distinct roots of
det(I − z ·M ) = 0 and mi the multiplicity of ρi which are sorted by increasing module. In weighted
generating functions, ρi, P (z), hi,k, k and r depend on the actual values of the weights.

Theorem 2. Let Cπ be a weighted rational language and xn be the root in (0, ρπ) of Ex,π(N) = n,
the approximate-size sampler Γ2C(xn,π;n, ε) succeeds in the following mean number of trials :

Cπ(xn)

(
r
∑

i=1

mi
∑

k=1

(

n+k−1
k−1

)

(ρi)−nhi,k + [zn]P (z))(xn)n

.

5 Complexity of the multidimensional rejection (Phase III)

General principle Our approach relies on a rejection scheme that generalizes that of the classic –
univariate – Boltzmann sampling. Namely, one draws objects in a weighted distribution – rejecting



those featuring a proportion of the parameters which too distant from the targeted one – until an
acceptable one is found and returned. This gives the following rejection sampler Γ3A(x,π;n,m, ε)
where x is real, π a real k-vector, m a map from N to Rk, and ε the tolerance:

Input: The parameters x,π, n,m, ε
Output: An object of A of size s in I(n, ε)
and for every parameter πi, the number of occurrences of Zi is in
I(mi(s), ε, α) := [mi(s)−mi(s)

αε,mi(s) +mi(s)
αε]

repeat
γ := Γ2A(x,π;n, ε)

until ∀i, |γ|i ∈ I(mi(s), ε, α);
return (γ)

Algorithm 3: Γ3A(x,π;n,m, ε)

In many important classes of combinatorial structures, the composition of a random object is
concentrated around its mean. It follows that a rejection-based generation can succeed after few
attempts, provided that the expected composition matches the targeted one . This situation allows
for an analysis adapted from the bumpy case for the size of the parameters. Our main result is
that, for any rational language whose automaton is strongly connected, a suitably parameterized
multidimensional rejection phase will accept a word of target composition after O(nk/2) attempts.
Moreover, allowing a O(

√
n) tolerance on the number of occurrences of each letters, one obtains a

sampler that succeeds in a number of attempts that is independent of n.
Now, let us denote by Un(π0) the k-multivariate random variable which follows the probability

P(Un(π0) = a) =
[zn

π
a]Cπ(z)πa

0

[zn]Cπ0
(z) . That is to say the distribution of the parameters for the objects of the

size n. Moreover, we denote by µ(n,π0) is the mean-vector of Un(π0) and by V (n,π0) is its variance-
covariance matrix. If we do not have any correlation between the parameters, the matrix V (n,π0) is
positive definite (and so, invertible). So, we can define a norm as ||u||V −1 =

√

uTV (n,π0)−1u. Now,
let V be a positive definite matrix, we denote by κ(V ) := inf

||u||∞=1
{||u||V }4, the infinum distance from

the unit sphere to the center of the Banach space.

Definition 1. The σ-concentrated condition is defined as :

lim
n→∞

||µ(n,π)||σ∞κ(V (n,π)−1) → c >
√
k/ε

Theorem 3. Let xn and πa be the solution of Ex,π(N) = n and Ex,π(Ni) = ai. The map m is
defined as the m(s) = Es,πa

(Ni) and assume that :
i) the standardized version (Un(πa) − µ(n,πa))/f(n) admits a limiting distribution when n tends to
the infinity,
ii) the σ-concentrated condition is verified for σ ≤ 1.
Then the rejection sampler Γ3C(xn,πa;n,m, ε) succeeds, in average, in least than

sup
s∈I(n,ε)

(ε κ(V (s,πa)
−1)|| µ(s,πa)||σ∞)2

(ε κ(V (s,πa)−1)|| µ(s,πa)||σ∞)2 − k

trials (of Γ2A(xn,π;n, ε)). This mean value tends to a constant as n → ∞.
In particular, if the first rejection phase ( Γ2A(xn,π;n, ε)) also achieves in average in constant time,
then the overall cost of approximate size and composition sampling is O(n) on average.

Remark 2. The condition i) is just a condition of asymptotic non fluctuation of the distribution of
the parameters according to the size.

Theorem 4. Assume that (Un(πa)) admits a multidimensional Gaussian law with mean µ and
variance-covariance matrix V proportional to f(n) as limiting distribution when n tends to the in-
finity, then the rejection sampler Γ3C(xn,πa;n,m, 0) (exact composition) succeeds, in average, in
(2π)k/2(det(V ))1/2 = O(f(n)k/2).

4 Recall that the infinity norm is defined as ||u||∞ = max (|u1|, · · · , |uk|)



In particular, assuming that the first rejection phase ( Γ2A(xn,π;n, ε)) achieves in average in con-
stant time, then the overall cost of approximate-size and exact composition sampling is in O(nf(n)k/2)
on average.

Proof. Just notice that the probability to draw an exact composition corresponds to taking u = µ in
the asymptotic estimate

p(u) =
1

(2π)k/2(det(V )1/2
exp

(

− 1
2 (u− µ)t V −1(u − µ) + o(1)

)

.

Consequently the expected number of attempts is (2π)k/2 det(V )1/2 = O(f(n)k/2).

5.1 On the Bender-Richmond-Williamson theorem

We prove in this section that the theorem applies to a large class of rational languages. Also, with only
minor modifications, the ideas presented here can be extended to the more general transfer matrix
models. From a combinatorial point of view, the most important properties of a rational language
are irreducibility – strong-connectedness of the automaton – and aperiodicity – when words of
any size exist. Let us first consider that the transition matrix M associated with the language is
irreducible and aperiodic.

From the system of language equationsL = M ·L+E, we directly obtain the systemL = zM ·L+E

for the generating function. In this case the Peron-Frobenius theorem ensures that the dominating
pole of every Li in L is the least real value of det(I − z · M) = 0 and that this pole is simple.
Now, assume that the periodicity parameter lattice Λ defined in [2] (Definition 2) is full dimensional.
This condition guarantees that there is no trivial dependency between the parameters. Assume also
that we have a compact set Π1 for the parameters in which the singular exponent is constant and
equal to 1. Then, by Bender-Richmond-Williamson theorem (see [2], Theorem 1 and [1]), it follows
that for any fixed parameter in the compact set Π1, the limiting distribution of the parameters is a
multidimensional Gaussian distribution with mean and variance-covariance matrix proportional to n.
In particular, for all σ > 1/2, the σ-concentrated condition holds.

Now, if the matrix M is not aperiodic, there exists a power d such that Md is aperiodic. So, we
can always reduce the problem to a list of d aperiodic ones, and we can also apply the theorem under
the same assumptions (full dimensional periodicity parameter lattice and compact set with constant
singular exponent). The question of the irreducibility is much more challenging and required serious
developments that cannot be included in this short paper.

6 Sampling perfect Tetris histories

Let us first remind that the Tetris game consists in placing falling tetraminoes (or pieces) P one
at a time in a w × h board. The goal of the player is to create hole-free horizontal lines which are
subsequently eliminated, and the game continues until the pieces stack past the ceiling of the board.

Our focus in this application differs slightly from previous work dedicated to the complexity aspects
of the game. Indeed, we are interested in the general Tetris histories, which consists in diagrams of
pieces on the board after a game has been played, therefore disregarding the elimination of full lines.
For the pieces to remain connected in such a diagram, we additionally assume that the lower blocks
of a piece are always consumed before or simultaneously as its upper blocks. Under this hypothesis
perfect Tetris histories, defined as histories of games ending with an empty board, are in bijection
with tesselations of a w×h rectangle using tetraminoes. Our goal here is to generate such tesselations
uniformly at random of fixed width w while constraining the number of occurrences of each piece to
be uniform, capturing the bag strategy used by many implementations of the Tetris game.

6.1 Building the automaton of perfect histories

First let us find an unambiguous decomposition of Tetris histories. The idea is to focus on the state of
the upper band of the tesselation that is not entirely filled, or boundary of an history. In particular



Input: The board width w and the flat boundary Bw
Output: Q the states set and σ the transition function of Aw = (P , Q,Bw , {Bw}, σ)
begin

(Q,σ)← (Bw,∅)
S ← {Bw}
while S 6= ∅ do

S ⇒pop B;
for p ∈ PB do

B′ ← B − p;
if B′ /∈ Q then

Q← Q ∪ {B′};
S ⇐push B′;

end

σ ← σ ∪ {(B, p,B′)};
end

end

return (Q,σ)
end

Algorithm 4: Constructing the automaton Aw for tesselations of width w.

for tesselations the upper band is completely filled and the associated boundary is flat. One can
investigate the different ways to get to a given boundary B by simulating the adjunction of a piece p
to another boundary B′, or conversely its removal from B, which we favor in the following. Without
further restriction on the position of removal, such a decomposition would be ambiguous and give
rise to an infinite number of different boundaries. Consequently, we enforce a canonical order on the
removal of pieces by restricting it to a set of (possibly rotated) pieces PB positioned such that the
upper-rightmost position of the piece matches that of the boundary, and the piece is entirely contained
in the boundary. We refer to the induced decomposition as the disassembly decomposition.

Proposition 4. The disassembly decomposition generates sequences of removals from and to flat
boundaries that are in bijection with perfect histories.

Proof (Sketch of). Let us discuss briefly the correctness of this decomposition, or equivalent that
the sequences of k removals leading from a flat boundary Bw to itself are in bijection with the
tesselations of w × 4 · k/w. First let us notice that the decomposition is unambiguous, since all the
local removals share at least one position (the upper-rightmost of the boundary) and are therefore
strongly ordered. Furthermore, it is also provably complete by induction on the number of piece n,
since any tesselation has a upper-rightmost position which, upon removal, gives another tesselation
of smaller size, and completeness of the decomposition propagates from tesselations of size n to size
n + 1. Finally, it gives rise to a finite number of states since the difference between the highest and
lowest point in any reached boundary does not exceed the maximal height of a piece. The finiteness
of the state space yields Algorithm 4 that builds the automaton Aw, generating perfect histories of
width w.

Notice that the resulting automaton in not necessarily co-accessible, since the removal of some
piece can create boundaries that cannot be completed into a flat one through any sequence of removal.
Consequently, we added in our implementation a test of connectedness that discards any boundary
having a (dis)connected component involving a number of blocks that is not a multiple of 4, as such
boundaries clearly cannot reach a flat state again. Running a minimization algorithm of the resulting
automata confirms the expected explosion in the number of states required for increasing values of w
(See Table 2).

6.2 Random generation

First we point out that the automaton has matching initial and final states, so the strong connect-
edness is obviously ensured and our theorems regarding the complexity of generation apply. One can



Width w #States in Aw #States minimal

2 4 minimal
3 55 minimal
4 80 78
5 1686 1646
6 4247 4130
7 41389 40099
8 49206 47564
9 919832 –

Table 2. Number of states in generated and minimal equivalent automata for various width.

then translate it into a system of functional equations involving the (rational) generating functions
associated with each states. Solving the system gives the generating functions, from which one can
extract many informations.

For instance, fixing the width w = 6 and a number of pieces of n = 105, one obtains the number
of perfect histories

h6,105 = 336397650518572335440738353688656902745059634630110167876935128082282911.

One can then take suitable derivatives (See Equation 2) and extract the average composition in
the uniform (unweighted) distribution, obtaining:

Piece
Frequency (%) 7.90 10.55 20.42 20.42 17.00 7.90 15.81

Consequently, the average composition of a perfect history is incompatible with the bag strategy,
which results in instances that lead to evenly distributed pieces. One can then use the method described
in Section 3 to compute a set of weights ensuring, on the average, one piece out of seven of each type,
and get the following weight vectors

Piece
Weight 0.939919 0.80 0.37561 0.373549 0.45759 0.957851 0.420387

A weight random generation for the w = 6 and n = 105, coupled with a rejection that allows the
numbers of any piece to be equal to 15± 1, gives the instances drawn in Figure 4.

6.3 From random perfect histories to Tetris instances

Proposition 5. For any perfect history T , there exists an instance (sequence of pieces) such that T
can be obtained.

Proof. Let us assume that T is a perfect tesselation of a w×n rectangle using tetraminoes, and let us
call dependency point any contact between the southward face of a piece B1 and the northward face
of a piece B2. Such a point induces a directionality B1 → B2, corresponding to the necessity of placing
B1 before B2. This defines a dependency graph D = (V,E) whose vertices are the pieces B ∈ T , and
whose directed edges are such that (B1,B2) ∈ E iff B1 → B2. Additionally, each edge is labelled with
the coordinate of its associated dependency point.

It can be shown thatD is acyclic, by first proving that any path alongD is labelled with coordinates
that are either increasing on the y-axis or monotonic on the x-axis. Let us start by noticing that,
aside from the and pieces, all types of pieces exhibit northward faces that are strictly higher
than their southward ones. Furthermore, any heterogenous pair of piece only exposes northward faces
that are at greater y-coordinates than their dependency point, inducing an increase of y-coordinate in
the path. Consequently, there only exists two configurations of dependent pieces A → B, namely
and , such that B exposes a southward wall at the same height as their dependency point. The
only way for a path in D not to increase in y-coordinate is then to feature a sequence of (resp. )
pieces, inducing a monotonic behavior which proves our claim, and the acyclic nature of D follows.

Finally, the acyclicity of D implies the existence of a sequence of pieces realizing T , since it is
possible, in any configuration resulting in a possibility to remove a free piece at maximal y-ordinate.
The reversal of any sequence of such pieces yields an instance such that T can be obtained.



Fig. 2. Left: Perfect tetris histories associated with a unique instance. Only the most relevant de-
pendency points are displayed here (arrows) and pieces are labelled with their rank in the only
compatible instance. Duplicating the gadget preserves the uniqueness of the associated instance al-
lowing for the generation of perfect of arbitrarily large dimensions. Right: Perfect game realized by
(

h
h/2

)

∈ Θ(2n/
√
n) different instances.

Fig. 3. Exemple of game ending with an empty board (Left) is not captured by our tesselation model
(Right).

There are a few limitations induced by our tesselation model. First it can be remarked that our
notion of perfect histories does not capture every possible Tetris game ending with an empty board.
Indeed, a game can be successful in clearing the board while leaving temporary holes, as illustrated by
Figure 3. Secondly, although there exists in the general case, many different free pieces to choose from
while rebuilding an instance, there exists tesselations giving rise to a unique instance, as illustrated
in Figure 2. Consequently, using the DAGs associated with Tetris histories to draw instances of
the offline version of Tetris algorithmic problems [4] would favor exponentially certain instances over
others. However, we still believe our method could be used generate hard instances with the guarantee
of a possible success (From the tesselation) which could be used to benchmark the performances of
heuristics.

7 Conclusion

In this paper, we have presented and applied a general methodology for the multivariate random
generation of combinatorial objects. Under natural hypotheses, random generators having complexity
in O(n2+k/2) have been derived, outperforming the best algorithms so far in O(nk). Furthermore,
provided a small (linear) tolerance is allowed on the size of generated objects, and a Θ(

√
n) one is

allowed in the other dimensions, our generators generate objects in linear time. We have applied these
principles to the generation of perfect Tetris histories, which we have generated and drawn.

On the Tetris side, it could be interesting to push further the generation of (possibly) hard Tetris
instances using our polynomial-time constrained generators.

Also, this paper is the first step toward a general analysis of the multi-parameter Boltzmann
sampling. Nevertheless, a lot of questions are still opened, in particular, about the difficult situation
of non irreducible languages. Also the nature of the dependency between weights and frequencies is
of uttermost interest, since it would allow us to address the complexity of our samplers in a more



Fig. 4. Fifteen Tetris tesselations of width 6 having even composition (+/- 1) in the different pieces.

human-readable – yet rigorous – way. In a forthcoming work, we expect to tackle the analysis of
multi-parameter Boltzmann samplers for the class of context-free languages. To conclude, we are
convinced that multi-parameter Boltzmann samplers could be applied in a huge and various number
of cases, such as constrained trees, permutations with a fixed number of cycles, functional graphs with
a controlled number of components and so on. To some of us, that is FUN. . .
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6. P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, Boltzmann samplers for the random generation of

combinatorial structures, Combinatorics, Probablity, and Computing 13 (2004), no. 4–5, 577–625, Special
issue on Analysis of Algorithms.

7. P. Flajolet, E. Fusy, and C. Pivoteau, Boltzmann sampling of unlabelled structures, Proceedings of
ANALCO’07 (Analytic Combinatorics and Algorithms) Conference (SIAM Press, ed.), 2007.

8. Philippe Flajolet, Paul Zimmerman, and Bernard Van Cutsem, A calculus for the random generation of

labelled combinatorial structures, Theoretical Computer Science 132 (1994), no. 1-2, 1–35.
9. Hendrik Jan Hoogeboom and Walter A. Kosters, Tetris and decidability, Inf. Process. Lett. 89 (2004),

no. 6, 267–272.
10. C. Pivoteau, B. Salvy, and M. Soria, Boltzmann oracle for combinatorial systems, Algorithms, Trees, Com-

binatorics and Probabilities, Discrete Mathematics and Theoretical Computer Science, 2008, Proceedings
of the Fifth Colloquium on Mathematics and Computer Science. Blaubeuren, Germany. September 22-26,
2008, pp. 475–488.

11. Roberto Radicioni, Holonomic power series and their applications to languages, Ph.D. thesis, Facoltà di
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8 Annexes

8.1 Oracle computation

In the Boltzmann method, a crucial point consists in evaluating the generating function in the fixed
tuned parameters. This could be computationally expensive, in particular when the generating func-
tion is not defined by a closed-formed expression but only by a system S of functional equations :
F (Z, π) = Φ(F , Z, π). First, we can say that this system is well-founded if the sequence of formal
series F 0 = 0 and F n(Z, π) = Φ(F n−1, Z, π) is convergent5 and its limit F∞ is solution of S. The
näıve way to evaluate series is just to following the sequence, not with formal parameters, but with
real parameters. It is straightforward that if the parameters are taken in the convergence domain of
the series, then the sequence converges to the evaluation of series in it (by observing that the tail of
the serie becomes negligible).

Nevertheless this convergence is not very fast since only one digit is typically gained per iteration.
As explained in the paper of Salvy et al [10], it is possible for univariate generating function to
improve the speed of convergence by using classical Newton’s method. They only restrict the domain
of application to functional systems build by finite compositions of simple or analytic operators (as
+, ×, 1

1−x , e
x, ln(1/(1− x)). An important point in [10] consists in proving that a system S is well-

founded if and only if the Jacobian matrix ∂Φ/∂F (0, 0) is nilpotent (and consequently Id− ∂Φ/∂F
is invertible).

Now, without any difficulty, their approach can be extended to multivariate generating functional
systems. Indeed, let F = Φ(F , Z,π) be a well-founded functional system with Φ(0, 0, π) = 0. Let
(x0, π0) be inside the domain of convergence of the generating series F (Z, π). Then the following
iteration converges to F (x0, π0):

F 0 = 0, F n+1 = F n + (Id− (∂Φ/∂F )(F n, x0, π0))
−1 × (Φ(F n, x0, π0)− F n).

Now, in practice, we continue the iteration process until ||F n+1−F n|| < ε for a fixed arithmetical
precision ε.

8.2 Proofs

Proof (Proposition 1.).
Let π be the current weight vector, the vector v = nf−Ez0(π) (where f is the composition vector)

indicates the direction of the decay. So, we could take as new current vector πc = J(Ez0)
−1(π) · (nf −

5 The distance in the metric ring R[[Z]] is defined as d(F,G) = 2−k where k is the least integer such that the
k-th coefficient of the two series F and G are different



Ez0(π))+π. If, at each step, we stay inside the ”combinatorial domain of the weights (i.e. the domain
where the generating function is analytic), then the sequence converges to the solution of the system.
To stay in the combinatorial domain : for each new πc, we compare the norm nc = ||nf − Ez0(πc)||
with n = ||nf − Ez0(π)||. If nc > n the target can not be approximate directly. So, we add a new
intermediate target c = (nf +Ez0(π))/2 and try to solve recursively this intermediate problem. If we
have solved this new problem, the new current weights are closer from the targeted ones and we can
try to solve the initial problem but with these new current weights.

Proof (Proposition 2.).
By Perron-Frobenius theorem, assuming that ρ(π) is the dominant singularity of the system L

, the generating function vector L verifies L ∼ (1 − z
ρ)

−1H when z ∼ ρ where H is a functional

matrix which are not singular in |z| ≤ ρ. So,
πl

∂
∂πl

Li

Li
∼ πl(1 − z

ρ)
−1z

∂
∂πl

ρ(π)

ρ2 . In particular, by taking

z = ρ(1 − 1
n ), we obtain Ez,π(Nt) ∼ −πtn

∂
∂πt

ρ(π)

ρ . Now, the system ft =
nt

n = −πt

∂ρ(π)
∂πt

ρ for t in the
alphabet can be solved with less difficulty than the initial one.

Proof (Proposition 3.). Immediate from the proof of [7], Theorem 1.1:
C = 1 (Empty structure) or C = ti (Atom): For singleton classes, equation 1 simplifies to 1 and both
samplers draw the structure unconditionally.
C = A+ B (Union): Assuming the validity of both ΓAπ(x) and ΓBπ(x), the probability of sampling

a structure w from A (resp. B) is Aπ(x)
Cπ(x)

π(w)x|w|

Aπ(x) = π(w)x|w|

Cπ(x) (resp. π(w)x|w|

Cπ(x) ).

C = A×B (Product): Assuming the validity of both ΓAπ(x) and ΓBπ(x), each structure w = wAwB ∈ C
is sampled with probability

π(wA)x
|wA|

Aπ(x)

π(wB)x
|wB|

Bπ(x)
=

π(wA)π(wB)x
|wA|+|wB|

Aπ(x)Bπ(x)
=

π(w)x|w|

Cπ(x)
.

Proof (Theorem 3.). The proof is based on the multivariate Chebyshev inequality : Let X be an
N -dimensional random variable with mean µ and covariance matrix V , then

Pr (||X − µ||V −1 < t) > 1− N

t2
.

Indeed, the probability to lie in the interval I(mi(s), ε, α) can be rewritten as

Pr (||Us(πa)− µ(s, πa)||∞ < ε||µ(s, πa)||α∞) .

Now, we have the equivalent norm formula ||x||∞ ≤ 1
κ(V (s,πa)−1) ||x||V (s,πa)−1 . So, put µ = µ(s, πa)

and V −1 = V (s, πa)
−1, one gets

Pr
(

||Us(πa)− µ||V −1 < ε κ(V −1)||µ||α∞
)

≤ Pr (||Us(πa)− µ||∞ < ε ||µ||α∞) .

By taking t = ε κ(V −1)||µ(s, πa)||α∞ in the Chebyshev inequality, we obtain

Pr (||Us(πa)− µ(s, πa)||∞ < ε||µ(s, πa)||α∞) > 1− k

(εκ(V −1)||µ(s, πa)||α∞)2
.

The theorem ensues from the fact that the expected time to reach a good answer is 1/p when p is the
probability to obtain it.


