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We present a Bayesian sampling algorithm called adaptive importance sampling or population

Monte Carlo (PMC), whose computational workload is easily parallelizable and thus has the potential

to considerably reduce the wall-clock time required for sampling, along with providing other benefits. To

assess the performance of the approach for cosmological problems, we use simulated and actual data

consisting of CMB anisotropies, supernovae of type Ia, and weak cosmological lensing, and provide a

comparison of results to those obtained using state-of-the-art Markov chain Monte Carlo (MCMC). For

both types of data sets, we find comparable parameter estimates for PMC and MCMC, with the advantage

of a significantly lower wall-clock time for PMC. In the case of WMAP5 data, for example, the wall-clock

time scale reduces from days for MCMC to hours using PMC on a cluster of processors. Other benefits of

the PMC approach, along with potential difficulties in using the approach, are analyzed and discussed.

DOI: 10.1103/PhysRevD.80.023507 PACS numbers: 98.80.Es, 02.50.�r, 02.50.Sk

I. INTRODUCTION

In recent years we have seen spectacular advances in
observational cosmology, with the availability of more and
more high quality data allowing for the testing of models
with higher complexity. Some of these tests have been
made possible thanks to the use of Bayesian sampling
techniques, and, in particular, Markov chain Monte Carlo
(MCMC)—an (iterative) algorithm that produces a
Markov chain whose distribution converges to the target
posterior �. After a ‘‘burn-in’’ period, samples from such a
chain can be regarded as samples approximately from �.
Proposed values for the chain or the updating scheme of
MCMC can be designed to ensure that moves towards
regions of higher mass under � are favored, and regions
with null probability (under �) are never visited. This way,
most of the computational effort can be spent in the region
of importance to the posterior distribution, and an MCMC
approach is usually much more efficient than traditional
grid sampling of the model parameter space.

The MCMC technique is now well known in cosmology,
and, in particular, in its most simple form, the Metropolis-
Hastings algorithm, thanks to the user-friendly and freely
available package COSMOMC [1]. Other forms of the
MCMC algorithm, like Gibbs sampling and hybrid
Monte Carlo (better known in cosmology as Hamiltonian
sampling), have also been proposed and have found some
interesting usage in the estimation of the posterior distri-
bution for the cosmic microwave background anisotropy
power spectrum at low resolution (see [2], references
therein, and also [3,4]).

For all its advantages over grid sampling, the MCMC
approach also suffers from problems. One difficulty is to
assess the correct convergence of the chain. Another lies in
the presence of correlations within the chain which can

greatly reduce the efficiency of the sample [5]. A third
issue which is particularly relevant for the usage of MCMC
in cosmology is the computational time involved. Indeed,
whatever the sampling technique, we often need to com-
pute at least one estimate of the posterior for each sampled
point. This computation can be slow in cosmology. With
the current processing speed of computers, a point of the
posterior of, for example, the WMAP5 data set, using
CAMB [6]1 and the public WMAP5 likelihood code [4],2

both with their default precision settings, is computed at
the order of several seconds, and can be much slower when
exploring nonflat models. Of course, as stated above, for
most problems MCMC will require orders of magnitude
less samples than a grid for a given target precision, thus
providing an important efficiency improvement. However,
apart from improving the likelihood codes or waiting for
the availability of faster computers there is not much speed
improvement to expect from an MCMC approach, while
probably needed if one wants to explore yet bigger and
more complex models. On the algorithmic side of the
problem, some effort has been devoted recently to the
improvement of the likelihood codes, mainly by using
clever interpolation tricks (segmentation [7] and neural
networks [8]) and by looking for improvements in the
MCMC algorithm [9–11]. The former [7,8] indeed provide
some gain in efficiency, but at the cost of a long precom-
putation step for each model. The latter improves on the
natural inefficiency of the Metropolis algorithm but im-
poses some other requirements, like the availability of
cheap computation of the derivatives of the likelihood
[9], or the knowledge of conditional probabilities of
some of the parameters [10,11]. Other (non-Markovian)

1http://camb.info
2http://lambda.gsfc.nasa.gov

PHYSICAL REVIEW D 80, 023507 (2009)

1550-7998=2009=80(2)=023507(18) 023507-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.023507


Monte Carlo methods, such as nested sampling, have also
been proposed and applied recently to cosmological prob-
lems with some success along with presenting their own
problems [12–14].

On the hardware side, however, there is a route to speed
improvement that does not lie in quicker CPUs, but on the
availability of cheap multi-CPU computers and the stand-
ardization of clusters of computers. This opportunity, how-
ever, is only partly opened toMCMC. Indeed, there are two
ways of parallelizing the parameter exploration: first, by
distributing the computation of the likelihood, which is not
always possible and does not always lead to speed im-
provement, and second, by running multiple chains in
parallel. This last option is the simplest, but is ‘‘forbidden’’
by the iterative nature of the MCMC algorithm. More
precisely, running parallel chains and mixing them in the
end to build a bigger chain sample is of course possible
(and can be advantageous in fully exploring the support of
�), but at the condition that each of the individual chains
has converged. In the absence of such a condition, signifi-
cant biases in the sample can be introduced. Determining
convergence for each chain is inherently difficult in prac-
tice and has largely prevented more widespread use of the
approach [15]. Thus, for MCMC any speed improvements
through parallelization are difficult to achieve.

In this paper, we propose another sampling algorithm
suitable for cosmological applications, that is not based
upon MCMC, and can be parallelized. This novel algo-
rithm, called population Monte Carlo (PMC), is an adap-
tive importance sampling technique, that has been studied
recently in the statistics literature [16]. While this algo-
rithm solves some of the issues of MCMC in cosmology,
the approach of course has a different set of potential
problems that we will analyze and discuss, along with its
advantages.

The paper is outlined as follows. In the next section, we
provide a brief introduction to the Bayesian approach,
which we hope will give the casual reader some important
keys for further readings, and we also discuss the chal-
lenges and issues involved with using either an MCMC or
an importance sampling algorithm for estimation. We then
describe details of the PMC approach. In Sec. III, we assess
the performance of the PMC approach using a simulated
target density with features similar to cosmological pa-
rameter posteriors, and provide a comparison to results
obtained using an MCMC approach. In Sec. IV, we illus-
trate the results from the PMC approach using actual data,
consisting of CMB anisotropies, supernovae of type Ia and
weak cosmological lensing. We conclude in Sec. V with a
discussion and an outlook for further work.

II. METHODS

A. Bayesian inference via simulation

A key feature of Bayesian inference is to provide a
probabilistic expression for the uncertainty regarding a

parameter of interest x by combining prior information
along with information brought by the data. Prior informa-
tion, for example, could take the form of information
obtained from previous experiments which cannot readily
be incorporated into the current experiment or simply
consist of a feasible range. The absence of prior informa-
tion, however, is not a restriction for the use of Bayesian
inference and estimation can still be regarded as valid [17].
Information brought by the data and prior information are
entirely subsumed in the posterior probability density func-
tion obtained, up to a normalization constant, by

�ðxÞ / likelihoodðdatajxÞ � priorðxÞ: (1)

It is however generally difficult to handle the posterior
distribution, due to (a) the dimension of the parameter
vector x, and (b) the use of nonanalytical likelihood func-
tions. For both of these reasons, the normalizing constant
missing from the right-hand side of (1) is usually not
explicitly available. A practical solution to this difficulty
is to replace the analytical study of the posterior distribu-
tion with a simulation from this distribution, since produc-
ing a sample from � allows for a straightforward
approximation of all integrals related with �, due to the
Monte Carlo principle [5]. In short, if x1; . . . ; xN is a
sample drawn from the distribution � and f denotes a
function (with finite expectation under �), the empirical
average

1

N

XN
n¼1

fðxnÞ (2)

is a convergent estimator of the integral

�ðfÞ ¼
Z

fðxÞ�ðxÞdx; (3)

in the sense that the empirical mean (2) converges to �ðfÞ
as N grows to infinity. Quantities of interest in a Bayesian
analysis typically include the posterior mean, for which
fðxÞ ¼ x; the posterior covariance matrix corresponding to
fðxÞ ¼ xxT; and probability intervals, with fðxÞ ¼ 1SðxÞ,
where S is a domain of interest, and 1SðxÞ denotes the
indicator function which is equal to one if x 2 S and
zero otherwise.

B. Markov chain Monte Carlo methods

For most problems in practice, direct simulation from �
is not an option and more sophisticated approximation
techniques are necessary. One of the standard approaches
[5] to the simulation of complex distributions is the class of
MCMC methods that rely on the production of a Markov
chain fxng having the target posterior distribution � as a
limiting distribution.
MCMC can be implemented with many Markovian

proposal distributions but the standard approach is the
random walk Metropolis-Hastings algorithm: given the
current value xn of the chain, a new value x? is drawn
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from c ðx� xnÞ, where the so-called proposal c denotes a
symmetric probability density function. The point x? is
then accepted as xnþ1 with probability (also called the
acceptance rate in this context)

min

�
1;
�ðx?Þ
�ðxnÞ

�
; (4)

and otherwise, xnþ1 ¼ xn. The algorithm is implemented
as follows:

Random walk Metropolis-Hastings algorithm

Do: Choose an arbitrary value of x1.
For n � 1:
Generate x? � c ðx� xnÞ and u� Uniformð0; 1Þ.
Take

xnþ1 ¼
�
x? if u � �ðx?Þ=�ðxnÞ;
xn otherwise:

While this algorithm is universal in that it applies to any
choice of posterior distribution � and proposal c , its
performance highly depends on the choice of the proposal
c that has to be properly tuned to match some character-
istics of �. If the scale of the proposal c is too small, that
is, if it takes many steps of the random walk to explore the
support of �, the algorithm will require many iterations to
converge and, in the most extreme cases, will fail to
converge in the sense that it will miss some relevant part
of the support of � [18]. If, on the other hand, the scale of
c is too large, the algorithm may also fail to adequately
sample from �. This time, the chain may exhibit low
acceptance rates and fail to generate a sufficiently diverse
sample, even with longer runs. There exist monitors that
assess the convergence of such algorithms but they usually
are conservative—i.e., require a multiple of the number of
necessary iterations—and partial—i.e., only focus on a
particular aspect of convergence or on a special class of
targets [5]. MCMC algorithms are also notoriously delicate
to calibrate online, both from a theoretical point of view
and from a practical perspective [19]. For these ap-
proaches, often called adaptive MCMC, some recommen-
dations for the optimal scaling and calibration schedule for
various proposals in high dimensions have been proposed
[20], but this is still at an experimental stage.

C. Population Monte Carlo

PMC [16,21] is an adaptive version of importance sam-
pling [22,23] that produces a sequence of samples (or
populations) that are used in a sequential manner to con-
struct improved importance functions and improved esti-
mations of the quantities of interest.

We recall that importance sampling is based on the
fundamental identity [5]

�ðfÞ ¼
Z

fðxÞ�ðxÞdx ¼
Z

fðxÞ�ðxÞ
qðxÞ qðxÞdx; (5)

which holds for any probability density function q with
support including the support of � and any function f for
which the expectation �ðfÞ is finite. Hence, this approach
to approximating integrals linked with complex distribu-
tions is also universal in that the above identity always
holds. If x1; . . . ; xN are drawn independently from q,

�̂ðfÞ ¼ 1

N

XN
n¼1

fðxnÞwn; wn ¼ �ðxnÞ=qðxnÞ; (6)

provides a converging approximation to �ðfÞ. In this con-
text, q is called the importance function and wn are com-
monly referred to as importance weights. For Bayesian
inference, one cannot directly use (6) as only the unnor-
malized version of � [i.e., the right-hand side of Eq. (1)] is
available. Conveniently, the self-normalized importance
ratio

�̂ NðfÞ ¼
XN
n¼1

fðxnÞ �wn; (7)

where the normalized importance weights are defined as

�w n ¼ wnP
N
m¼1 wm

; (8)

is also a converging approximation to�ðfÞ, independent of
the normalization of �. For an importance function that is
closely matched to the target density, significant reductions
in the variance of the Monte Carlo estimates are possible in
comparison to estimates obtained using MCMC [5].
However, the importance sampling approach is equally
prone to poor performances as MCMC, in that the resulting
converging approximation may suffer from a large or even
infinite variance if q is not selected in accordance with �.
There is no universal importance function and most of the
research in this field aims at fitting the most efficient
importance functions for the problem at hand.
Population Monte Carlo offers a possible solution to this

difficulty through adaptivity: given the target posterior
density � up to a constant, PMC produces a sequence qt

of importance functions (t ¼ 1; . . . ; T) aimed at approxi-
mating this very target. The first sample is produced by a
regular importance sampling scheme, x11; . . . ; x

1
N � q1, as-

sociated with importance weights

w1
n ¼ �ðx1nÞ

q1ðx1nÞ
; n ¼ 1; . . . ; N; (9)

and their normalized counterparts �w1
n [Eq. (8)], providing a

first approximation to a sample from �. Moments of � can
then be approximated to construct an updated importance
function q2, etc.
The quality of approximation is measured in terms of the

Kullback divergence (also called Kullback-Leibler diver-
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gence or relative entropy [24,25]) from the target,

Kð� k qtÞ ¼
Z

log

�
�ðxÞ
qtðxÞ

�
�ðxÞdx; (10)

and the density qt can be adjusted incrementally to mini-
mize this divergence. The importance function should be
selected from a family of functions which is sufficiently
large to allow for a close match with � but for which the
minimization of (10) is computationally feasible. In [16]
the authors propose to use mixture densities of the form

qtðxÞ ¼ qðx;�t; �tÞ ¼ XD
d¼1

�t
d’ðx;�tdÞ; (11)

where �t ¼ ð�t
1; . . . ; �

t
DÞ is a vector of adaptable weights

for the D mixture components (with �t
d > 0 andP

D
d¼1 �

t
d ¼ 1), and �t ¼ ð�t1; . . . ; �tDÞ is a vector of pa-

rameters which specify the components; ’ is a parame-
trized probability density function, usually taken to be
multivariate Gaussian or Student-t (where the latter is to
be preferred in cases where it is suspected that the tails of
the posterior � are indeed heavier than Gaussian tails).
Given the vast array of densities that can be approximated
by mixtures, such an importance function provides consid-
erable flexibility to efficiently estimate a wide range of
posteriors, including in this case those found in cosmologi-
cal settings. Another benefit of using such mixture models
is that their parameters are easily reestimated to minimize
(10).

The generic PMC algorithm then consists of the follow-
ing:

Population Monte Carlo algorithm

Do: Choose an importance function q1.
Generate an independent sample x11; . . . ; x

1
N � q1.

Compute the importance weights w1
1; . . . ; w

1
N .

For t � 1:
Update the importance function to qtþ1, based on the previous

weighted sample ðxt1; wt
1Þ; . . . ; ðxtN; wt

NÞ.
Generate independently xtþ1

1 ; . . . ; xtþ1
N � qtþ1.

Compute the importance weights wtþ1
1 ; . . . ; wtþ1

N .

Unlike for MCMC, in a PMC approach, the process can
be interrupted at any time as the sample produced at each
iteration can be validly used to approximate expectations
under � using self-normalized importance sampling fol-
lowing (7). Further, sampling outputs from previous iter-
ations can be combined [26,27], and the sample size at
each iteration does not necessarily need to be fixed. Both of
these properties of PMC can be exploited to improve
parameter estimates, either by increasing the coverage of
the importance function to the target density or increasing
the precision of the approximation for the integral of
interest.

Also note that an approximate sample from the target
density can be obtained by sampling (xt1; . . . ; x

t
n) with

replacement, using the normalized importance weights
�wt
n. Although this process induces extra Monte Carlo varia-

tion, there are a number of methods available which con-
siderably reduce the variation involved (e.g., residual
sampling [28] or systematic sampling [29]).

1. Updating the importance function in the Gaussian case

In this section, we particularize the generic PMC algo-
rithm to the case where the importance function consists of
a mixture of p-dimensional Gaussian densities with mean
�d and covariance �d:

’ðx;�d;�dÞ ¼ ð2�Þ�p=2j�dj�1=2

� exp½�1
2ðx��dÞT��1

d ðx��dÞ�: (12)

Using this importance function for the mixture model
(11), we start the PMC algorithm by arbitrarily fixing the
mixture parameters ð�1; �1;�1Þ, and then sample indepen-
dently from the resulting importance function q1 to obtain
our initial sample (x11; . . . ; x

1
N). From this stage, updates of

the parameters proceed recursively.
At iteration t, the importance weights associated with

the sample (xt1; . . . ; x
t
N) are given by

wt
n ¼ �ðxtnÞP

D
d¼1 �

t
d’ðxtn;�t

d;�
t
dÞ

(13)

with normalized counterparts �wt
n given by Eq. (8). The

parameters (�t, �t and �t) of the importance function are
then updated according to

�tþ1
d ¼ XN

n¼1

�wt
n�dðxtn;�t;�t;�tÞ; (14)

�tþ1
d ¼

PN
n¼1 �wt

nx
t
n�dðxtn;�t;�t;�tÞ
�tþ1
d

; (15)

�tþ1
d ¼

P
N
n¼1 �wt

nðxtn��tþ1
d Þðxtn��tþ1

d ÞT�dðxtn;�t;�t;�tÞ
�tþ1
d

;

(16)

where

�dðx;�;�;�Þ ¼ �d’ðx;�d;�dÞP
D
d¼1 �d’ðx;�d;�dÞ : (17)

The appendix provides derivations of these expressions
and further details on the general approach, as well as
equations pertaining to the (more involved) case of mix-
tures of multivariate Student-t distributions, which are used
in the simulations presented in Sec. III.
As discussed in the appendix, the main theoretical ap-

peal of this particular update rule is that, as N tends to
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infinity, the corresponding Kullback divergence Kð� k
qtþ1Þ is guaranteed to be less than Kð� k qtÞ.

2. Monitoring convergence

The above update process can be repeated a number of
times, and although there is no need for a formal stopping
rule, some measures of performance against the target
density can be used as a guide. As the objective of impor-
tance function adaptations is to minimize the Kullback
divergence between the target density and the importance
function, we can stop the process when further adaptations
do not result in significant improvements in Kð� k qtÞ. To
this end, it can be shown that exp½�Kð� k qtÞ� may be
estimated by the normalized perplexity

p ¼ expðHt
NÞ=N; (18)

where

Ht
N ¼ � XN

n¼1

�wt
n log �w

t
n (19)

is the Shannon entropy of the normalized weights, a fre-
quently used measure of the quality of an importance
sample. Thus, minimization of the Kullback divergence
can be approximately connected with the maximization of
the perplexity (18). Values of this criterion close to 1 will
therefore indicate good agreement between the importance
function and the target density.

Another frequently used criterion for importance sam-
pling is the so-called effective sample size (ESS),

ESS t
N ¼

�XN
n¼1

f �wt
ng2

��1
; (20)

which lies in the interval ½1;N� and can be interpreted as
the number of sample points with nonzero weight [30].
Both measures (18) and (20) are interconnected, as an
importance function which is close to the target density
will have both a high normalized perplexity and a rela-
tively large number of points with nonzero weight, com-
pared to an ill-fitting importance function. Given a real-
valued function f of interest one can also estimate the
asymptotic variance of the self-normalized importance
sampling estimator �̂t

NðfÞ ¼
P

N
n¼1 �wt

nfðxtnÞ [cf. Eq. (7)]

using the importance sample itself, as

N
XN
n¼1

f �wt
nðfðxtnÞ � �̂t

NðfÞÞg2: (21)

Beware that this formula (which is derived from Theorem 2
of [31]) is only valid with normalized weights, and that it is
a variance conditional on the current importance proposal
qt; i.e., it does not take into account the adaptation. This
measure can be related to the so-called integrated autocor-
relation time used for Markov chain Monte Carlo simula-

tions, which, in this case, takes into consideration the level
of autocorrelation present in the chain [5,20,32].

3. A first illustration

To illustrate the PMC approach, we explore a bananalike
target density presented Fig. 1. The same target distribution
will be studied in greater depth in the next section. The
results of the first 11 iterations of the PMC algorithm using
a mixture of Student-t densities are shown Fig. 2 (see also
the appendix for details of the update procedure).
While this target density shows slightly more pro-

nounced curvature for an example of a posterior density
in practice, it serves to illustrate the process of adaptation
of the importance function. The initial importance function
q1 is a mixture of multivariate Student-t’s, consisting of
nine components placed around the center of the range for
the first two variables, each with a relatively large variance
(for the first dimension ¼ 200 and the second ¼ 50) and
degrees of freedom � ¼ 9. The different colored circles in
Fig. 1 indicate the location of the component means, and
the circle size is proportional to the weight �d associated
with the component. At the fourth iteration (t ¼ 4), we see
that the importance function starts to resemble the shape of
the target density, with components becoming more sepa-
rated and moving into the tails of the target. By the sixth
iteration (t ¼ 6) the importance function has further
adapted to the shape of the target banana density. For this
target density and importance function, Fig. 3 presents
estimates of the normalized perplexity and normalized
effective sample size (ESS=N) for the first 10 iterations
over 500 simulation runs. As shown, the estimates of the
normalized perplexity improve rapidly from approxi-

x1

x 2

−40 −20 0 20 40

−
40

−
30

−
20

−
10

0
10

20

FIG. 1 (color online). Test target density on the ðx1; x2Þ plane.
Contours represent the 68.3% (blue), 95% (green) and 99%
(black) confidence regions.
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mately 0.14 for the second importance function (iteration 2)
to approximately 0.81 for the last importance function
(iteration 10), with a similar increase in estimates of the
normalized effective sample size (ESS=N, increasing from
0.10 to 0.60). For this importance function and target
density, the normalized perplexity starts to level off after
the 10th iteration (around 0.82), indicating that there is no
need for further adaptation of the proposal density. As
mentioned previously however, in general, one does not
need to observe the convergence of the proposal (as for
MCMC) in order to stop the sampling process.

An important consideration, and a choice that needs to
be made at the start of the algorithm, are the parameter
values�1,�1 and�1 for the initial importance function q1,
including the degrees of freedom � in the case of the
Student-t mixture, and the sample size N. A poor initial
importance function, such as one that is tightly centered
around only one mode in the case of a multimodal posterior
or a narrow importance function with light tails, may take a
long time to adapt or may miss important parts of the
posterior. For importance sampling the choice of q requires
both fat tails and a reasonable match between q and the

FIG. 2 (color online). Evolution of the importance function for the target density (see Fig. 1) over 11 iterations of 10 000 points for x1
(horizontal axis) and x2 (vertical axis), except for the last iteration (11) which is a sample of 100 000 points. Iterations 1 (top left) to 11
(bottom right) from left to right with every second iteration shown (i.e., 1, 3, 5, 7, 9, 11). Colors indicate the mixture components with
mean of each component indicated by colored dots and approximate 95% confidence regions for the sample of points from each
component by colored ellipses. Every 3rd sample point from the importance function is plotted.
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target � in regions of high density. Such an importance
function can be more easily constructed in the presence of
a well informed guess about the parameters and possibly
the shape of the posterior density. Sample size consider-
ations also play an important role—smaller samples can
adapt quite quickly with less computational time but may
provide less reliable information about the posterior den-
sity relative to larger samples. Such considerations are
important as we look at posterior densities of increasingly
high dimensions, and thus we can expect to take a larger
sample size as the dimension of the problem increases. We
will discuss these issues further in the context of simulated
and actual data, and also in Sec. V.

III. SIMULATIONS

In this section, we test the performance of PMC using
simulated data, and compare the results to an adaptive
MCMC procedure.

A. Target density

In order to provide a good test for both approaches we
use the target density considered in [19], which is difficult
to explore but which also provides a realistic scenario for
many problems encountered in cosmology. The target
density is based on a centered p-multivariate normal, x�
N pð0;�Þ with covariance � ¼ diagð�2

1; 1; . . . ; 1Þ, which

is slightly twisted by changing the second coordinate x2 to
x2 þ bðx21 � �2

1Þ. Other coordinates are unchanged. We
obtain a twisted density which is centered with uncorre-
lated components. Since the Jacobian of twist is equal to 1,
the target density is

ðx1; x2 þ bðx21 � �2
1Þ; x3; . . . ; xpÞ �N pð0;�Þ: (22)

For the target density that we will consider, we set p ¼ 10,
�2

1 ¼ 100, and b ¼ 0:03, which results in a banana-shaped
density in the first two dimensions (see Fig. 1).
For the target density considered, interest is in how well

PMC and MCMC are able to approximate the tails of the
target. While the curvature present in the first two dimen-
sions of this target density is slightly more pronounced
than what is typically seen in practice for cosmology it
serves to highlight the difficulties faced by both PMC and
MCMC in covering the parameter space. In particular, little
accurate information is available in order to guide the
choice of importance function (for PMC) and proposal
distribution (for MCMC) and so both approaches are
forced to learn about the parameter space.

B. Test run proposal for PMC

For PMC, and in the absence of any detailed a priori
information about the target density, except the possible
range for each variable, we have chosen the first impor-
tance function to be a mixture of multivariate Student-t
distributions with components displaced randomly in dif-
ferent directions slightly away from the center of the range
for each variable: the mean of the components is drawn
from a p-multivariate Gaussian with mean 0 and covari-
ance equal to �0=5, where �0 is some positive-definite
matrix; the variance for components was chosen to be �0.
We choose a mixture of 9 components of Student-t distri-
bution with � ¼ 9 degrees of freedom, and�0 is a diagonal
matrix with diagonal entries (200; 50; 4; . . . ; 4). This
choice of ð�;�0Þ ensures adequate coverage, albeit some-
what overdispersed, of the feasible parameter region. In
this simulated example, Student-t distributions are prefer-
able to Gaussian distributions because the range of the
variables is unbounded (in contrast to the cosmology ex-
amples to be discussed in Sec. IV).
A representation of the first importance function for the

first two dimensions is shown in the top left-hand box in
Fig. 2, with a typical evolution over the next few iterations
in the other panels. In pilot runs of various importance
functions against the target density, the best fitting impor-
tance function required at least seven components in order
to adequately represent the coverage of the entire density.
For PMC, an important issue is the sample size for each

iteration. A poor initial importance function with a rela-
tively small sample size will take a long time to adapt or it
may even be unable to recover sufficiently to provide
reasonable parameter estimates. Such problems are more
likely to occur as the dimension of the parameter space
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FIG. 3. Normalized perplexity (top panel) and normalized
effective sample size (ESS=N) (bottom panel) estimates for
the first 10 iterations of PMC (represented in Fig. 2) over
500 simulation runs. The distributions are shown as whisker
plots: the thick horizontal line represents the median; the box
shows the interquartile range (IQR), containing 50% of the
points; the whiskers indicate the interval 1:5� IQR from either
Q1 (lower) or Q3 (upper); points outside the interval ½Q1; Q3�
(outliers) are represented as circles.
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increases, the so-called curse of dimensionality. For the
simulation exercise each iteration is based on a sample of
10 000 points. To prevent numerical instabilities in the
updating of the parameters, components with a very small
weight (< 0:002) or containing less than 20 sample points
are discarded in the next iteration of the algorithm.

C. Test run proposal for MCMC

As little information is available for the target density, an
adaptive MCMC approach is used which can allow for
faster learning of the target density than using either inde-
pendent or nonadaptive random walk proposals [33]. For
MCMC, the proposal distribution is a centered Gaussian
with covariance matrix which is updated along the itera-
tions. An important choice for adaptive MCMC concerns
the scaling of the proposal and the rate of adaptation. There
has been much research on this [33,34], and a common
choice for the covariance of the Gaussian proposal is to
consider c�n, where �n is an estimate of the covariance of
the target density, at update n. The choice c ¼ 2:382=p is
considered to be optimal when the chain is in its stationary
regime, and for target densities that have a product form
[33]. However for the target density we consider this does
not hold: the first two components are not independent
despite being uncorrelated and dependence is not linear
but quadratic. However, with no other theoretical results to
follow we start with a scaling factor of that form and for the
simulation results to follow assess the effect on conver-
gence and results using alternative values. We update the
covariance matrix by the recursive formula

�n ¼ ð1� anÞ�n�1 þ anSn; (23)

where �n�1 is the sample covariance of the previous
update, and Sn is the covariance of the sampled estimates
from the previous update to the current iteration. The value
of an is 1=n

k with k chosen suitably to allow for a cooling
of the update, which is a necessary condition to ensure
convergence of this adaptive MCMC to the target density
as well as convergence of the empirical averages [34,35].

In pilot runs, we explored the effect of this schedule for
various values of ðk; cÞ in ð0; 1Þ � ð0; 2:382=pÞ and we
observe that the choice of ðk; cÞ plays a role on the time
to convergence (for the estimation of the quantities of
interest, see below) and on the acceptance rate of the chain.

To ensure a fair comparison with PMC, we start the
chain at a random point drawn from the same Gaussian
distribution as for PMC [i.e.,N dð0;�0=5Þ, using the same
values for �0 as used for PMC]. We also explored in pilot
runs the role of the initial value of the chain: despite it
being known that MCMC is sensitive to the choice of the
initial position of the chain—which has no real counterpart
in PMC—this has not been found to have a major impact
on performance (for a reasonable choice of the initial value
at least) in this particular study. We also fixed the update
schedule to be every 10 000 points and we assessed the

effect on the results from using less or more points before
updating. For the simulation results to follow, ðk; cÞ has
been set to ð0:5; 2:382=pÞ which ensures convergence after
the burn-in period (see Sec. III C 1), and a mean acceptance
rate at convergence of about 10%. The proposal distribu-
tion is updated for the entire length of the chain and is not
stopped after the burn-in period.

1. Test runs

For PMC and the proposal outlined, the perplexity ap-
peared to level off at around the 10th iteration, so for the
results to follow for PMC we ran the PMC algorithm for
10 iterations (10 000 points per iteration) and used a final
draw of 100 000 points. To assess MCMC for the same
number of points we used a chain length of 200 000 points
with a burn-in of 100 000 points. Results for both ap-
proaches at successive intervals before 200 000 points are
also provided. To assess the performance of the ap-
proaches, each simulation was replicated 500 times.

2. Results of the simulations

For the results of the simulations, we are interested in
both the mean estimates of the parameters (in particular,
for x1 and x2) and also estimates of the confidence region
coverage (68.3% and 95%) which will provide an indica-
tion of how well both approaches are covering the tails of
the target density. For each run r ¼ 1; . . . ; 500, we provide
the results for various functions f of interest:

faðxÞ ¼ x1; fbðxÞ ¼ x2;

fcðxÞ ¼ 168:3ðxÞ; fdðxÞ ¼ 195ðxÞ;
feðxÞ ¼ 168:3ðx1; x2Þ; fgðxÞ ¼ 195ðx1; x2Þ;
fhðxÞ ¼ 168:3ðx1Þ; fiðxÞ ¼ 195ðx1Þ:

We note here 1q as the indicator function for the q% region.

fh and fi are indicators only for the first dimension, while
fe and fg are dealing with the first 2. In all cases, the

remaining dimensions are marginalized over.
Table I shows the results for estimation of �ðfÞ for

functions fa and fb ( �x1 and �x2, respectively). The results
provided show the mean and standard deviation of esti-
mates calculated over 500 runs. Although the performance
is quite similar for both methods, PMC does display a
twofold reduction in standard deviation compared to
MCMC for both functions. A closer look at the results
reveals that for �ðfaÞ the empirical distributions of the
estimates (see Fig. 4) are quite similar for both methods,
except for the variance which is much reduced for PMC.
For �ðfbÞ, on the other hand, the empirical distribution of
the estimates for PMC are quite skewed, resulting in a
slight positive bias for the majority of the runs (second
panel of Fig. 4). The difference between �ðfaÞ and �ðfbÞ
can be explained from Fig. 1 which shows that failure to
visit sufficiently the downward low-probability tails does
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indeed imply a positively biased estimate for the mean of
the second component. PMC does appear to be more
sensitive to this issue than MCMC, despite the fact that
the estimates for MCMC display a larger overall
variability.

Figure 5 provides the results for the confidence region
coverage. To depict the variability of the data, the results
are displayed by using whisker plots. The results from both
PMC and MCMC against all of the performance measures
are similar, with both showing good coverage of the target
density. The distribution of this estimator is again more
skewed for PMC than it is for MCMC, particularly for the
95% regions in the bottom panel of Fig. 5. Nevertheless,
the variability of the estimates obtained with PMC also is
significantly reduced compared to MCMC.

Figure 4 shows the evolution of the results for �ðfaÞ and
�ðfbÞ from 10 000 points to 100 000 points for both PMC
(left panels) and MCMC (right panels). The results from
Fig. 4, in general, highlight the reduction in variance of the
Monte Carlo estimates for PMC in comparison to MCMC.
In particular, it is interesting to note that the variance of the
estimates, either for �ðfaÞ or �ðfbÞ for 100 000 posterior
evaluations under MCMC, is comparable to estimates ob-
tained using PMC at the second iteration (20 000 points).

Simulating from this target distribution is a challenging
problem for both methods. In particular, the use of a vague
initial importance function in a multidimensional space
represents a challenge to PMC and it has been observed
that the importance function takes some time to properly
adapt to the target density (about 10 iterations). The choice
of the initial importance function in PMC is more crucial
than is the choice of the initial proposal distribution in
adaptive MCMC. Although different variations for updat-
ing the covariance matrix for the MCMC approach are
possible we did not see a significant improvement in the
results presented from using alternative covariance struc-
tures. For most of the simulation results, the proposal
covariance matrix was observed to adapt relatively quickly
to the true covariance matrix. Changes to the covariance
structure considered included changes to the update fre-
quency, the starting proposal �0, the scaling of the pro-
posal (value of c) and adaptation of the covariance (value
of k). Hence, the PMC approach may require more precise
a priori knowledge of the target density than MCMC.

In the next section, we apply the PMC approach to
typical cosmological examples, and provide results in
comparison to MCMC.

IV. APPLICATION TO COSMOLOGY

We apply our new adaptive importance sampling
method to the posterior of cosmological parameters. Flat
CDM models with either a cosmological constant
(�CDM) or a constant dark-energy equation-of-state pa-
rameter (wCDM) are explored and tested with recent ob-
servational data of CMB anisotropies, supernovae type Ia
and cosmic shear, as described in the next section.
The three data sets and likelihood functions used here

are the same as in [36]; the CMB measurements and like-
lihood are based on the five-year WMAP data release [37],
the SNIa data set is the first-year SNLS survey [38], while
the cosmic shear is from the CFHTLS-Wide third release
[T0003, [39]]. The results presented in the following sec-
tions can be compared to the MCMC analysis in [36].

A. Data sets

1. CMB

To obtain theoretical predictions of the CMB tempera-
ture and polarization power and cross spectra we use the
publicly available package CAMB [6]. The likelihood is
calculated using the public WMAP5 code [4].
The WMAP5 likelihood takes as input the theoretical

temperature (TT), polarization (EE and BB) and cross
spectra (TE) calculated by CAMB, and returns a likelihood
computed from a sum of different parts. It computes a
pixel-based Gaussian likelihood based on template-
cleaned maps [40] and their associated inverse covariance
matrices (see Page et al. [41] for details) at large angular
scales (‘ � 32 for TT, ‘ � 23 for TE, EE and BB). At
small angular scales, it computes an approximate likeli-
hood based on pseudospectra and their associated covari-
ance for TT and TE [42], based, respectively, on the ðQ;VÞ
and ðV;WÞ channel pairs for TE and TT.
In addition, the likelihood computation takes into ac-

count analytic marginalizations on nuisance parameters
such as the beam transfer function and point-source un-
certainties [42,43]. We ignore corrections due to Sunyaev-
Zel’dovich and impose a larger (flat) prior on the Hubble
constant. Indeed, CMB data alone exhibit a degeneracy
between the Hubble constant and, e.g., the cosmological
constant [44] which is removed by adding other cosmo-
logical probes.
The acoustic oscillation peaks in the CMB anisotropy

spectrum are a standard ruler at a redshift of about z ¼
1100. CMB therefore measures the angular diameter dis-
tance to that redshift which depends mainly on the total
matter-energy density (�m þ�de) and weakly on the
Hubble constant h. The overall anisotropy amplitude is
determined by the large-scale normalization �2

R. The rela-

TABLE I. Results of the simulations for the ten-dimensional
banana-shaped target density over 500 runs for both PMC and
MCMC.

PMC MCMC

�ðfaÞ Mean 0.097 �0:028
�ðfaÞ Std 0.218 0.536

�ðfbÞ Mean 0.013 0.002

�ðfbÞ Std 0.163 0.315

Acceptance 0.11

Perplexity 0.80
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tive height of the peaks is sensitive to the baryonic and dark
matter densities. On large scales, secondary anisotropies
are generated at late times (z & 20) due to reionization,
which is parametrized by the optical depth �, and the
integrated Sachs-Wolfe effect, which is a probe of �de.

2. SNIa

The SNLS data set is described in detail in [38]. We use
their results from the SNIa light-curve fits which, for each
supernova, provides the rest-frame B-band magnitude m�

B,
the shape or stretch parameter s and the color c. We use the
standard likelihood analysis described in [36], adopted
from [38].

Under the assumption that supernovae of type Ia are
standard candles we can fit the luminosity distance to the
SNIa data. The luminosity distance is a function of �m,
�de and w. Three additional parameters are the universal
SNIa magnitude M and the linear response parameters to
stretch and color, � and 	, respectively. Those three pa-
rameters are specific to our choice of distance estimator,
and can be regarded as nuisance parameters. The Hubble
constant h is integrated into the parameterM, so there is no
explicit dependence on h in the SNIa posterior.

3. Cosmic shear

The CFHTLS-Wide 3rd year data release (T0003), the
data and weak lensing analysis as well as cosmological
results are described in [39]. As in [39] we use the aperture-
mass dispersion between 2 and 230 arc minutes as a
second-order lensing observable [45]. We assume a multi-
variate Gaussian likelihood function and take into account
the correlation between angular scales. The theoretical
aperture-mass dispersion is obtained by nonlinear models
of the large-scale structure [46]. This has been calibrated
with a �CDM cosmology but also provides good fits to
wCDM models [47].
The galaxy redshift distribution is obtained by using the

CFHTLS-Deep redshift distribution [48] and rescaling it
according to the iAB magnitude distribution of CFHTLS-
Wide galaxies. We fit the resulting histogram with Eq. (14)
from [39], introducing the three fit parameters a, b, and c.
The histogram data is modeled as multivariate, uncorre-
lated Gaussian, the corresponding likelihood is included,
independent of the lensing likelihood, in the analysis.
Weak gravitational lensing by the large-scale structure is

sensitive to the angular diameter distance and the amount
of structure in the Universe. It is an important probe to

FIG. 4 (color online). Evolution of �ðfaÞ (top panels) and �ðfbÞ (bottom panels) from 10 000 points to 100 000 points for both PMC
(left panels) and MCMC (right panels). See Fig. 3 for details about the whisker plot representation.
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measure the normalization �8 on small scales. With the
current data, this parameter is however largely degenerate
with �m. This degeneracy is likely to be lifted by future
surveys which will include the measurement of higher-
order statistics [49,50] and shear tomography [51]. In
particular, from the latter a great improvement on the

determination of w is to be expected, a parameter which
is only weakly constrained by lensing up to now [52,53].

B. Cosmological parameter and priors

We sample a hypercube in parameter space which cor-
responds to flat priors for all parameters; see Table II for

FIG. 5 (color online). Results showing the distributions of the PMC and the MCMC estimates �ðfÞ for (top) f ¼ fc; fe; fh and
(bottom) f ¼ fd; fg; fi (in this order, left to right). All estimates are based on 500 simulation runs. See Fig. 3 for details about the

whisker plot representation.

TABLE II. Parameters for the cosmology likelihood. C ¼ CMB, S ¼ SNIa, L ¼ lensing.

Symbol Description Minimum Maximum Experiment

�b Baryon density 0.01 0.1 C L

�m Total matter density 0.01 1.2 C S L

w Dark-energy eq. of state �3:0 0.5 C S L

ns Primordial spectral index 0.7 1.4 C L

�2
R Normalization (large scales) C

�8 Normalization (small scales)a C L

h Hubble constant C L

� Optical depth C

M Absolute SNIa magnitude S

� Color response S

	 Stretch response S

a L

b Galaxy z-distribution fit L

c L

aFor WMAP5, �8 is a deduced quantity that depends on the other parameters.
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more details. Additional priors exist, both in explicit and
implicit form, which represent regions of parameter space
which are unphysical or where numerical fitting formulas
break down. For example, we exclude extremely high
baryon fractions (�b > 0:75�m) because of numerical
problems in the computation of the transfer function.
Further, for very low values of both �m and �8 the pivot
scale for the nonlinear power spectrum is outside the
allowed range. Very rarely, the calculation of the likelihood
for individual points in parameter space is unsuccessful
because of numerical errors or limitations of the likelihood
code. Since these points cannot be taken into account, a
pragmatic solution is to formally modify the prior to
exclude those points. Note that these rare cases occur
mainly in regions of very low likelihood.

C. Initial choice of the importance function

As described earlier in Sec. II C 3, it is important to have
a good guess for the initial importance function. In all cases
considered here, we rely on an estimate of the maximum-
likelihood point and the Hessian at that point (Fisher
matrix) to build our initial proposals. We use the
conjugate-gradient approach [54] to find the maximum-
likelihood point at which to calculate the Fisher matrix F
using the theoretical model. We construct a mixture model
consisting of D Gaussian components. Student-t mixtures
with small degrees of freedom were tested and turned out
to be a poorer approximation to the posterior under study,
resulting in lower perplexities. Each mixture component is
shifted randomly from the maximum by a small amount. A
random scaling is applied to the covariance of each com-
ponent; i.e., the eigenvectors and ratios between the eigen-
values of the covariance are the same as the ones of the
Fisher matrix.

We obtain good results for shifts of about 0.5% to 2% of
the box size. Here, a trade-off between too large shifts
(resulting in low importance weights) and too small shifts
(components stay near the maximum, the posterior tails do
not get sampled) has to be found. The stretch factor is
chosen randomly between typical values of 1 and 2. In
some cases, in particular, with high dimensionality, the
derivation of the Fisher matrix is not stable and the matrix
is numerically singular. In such cases we set the off-
diagonal elements of F to zero.

We found a sample size between 7500 and 10 000 points
to be adequate for most cases. The number of components
D of the initial importance function was chosen between 5
and 10. For the final iteration we used a sample size 5 times
that of the initial sample size.

D. Results

1. General performance

The PMC algorithm is reliable and very efficient in
sampling and exploring the parameter space. Both the

perplexity as well as the effective sample size increase
quickly with each iteration (Fig. 6). The perplexity reaches
values of 0.95 or more in many cases, although, in particu-
lar, for higher dimensional posteriors the final values are
lower. Satisfactory results (i.e., yielding consistent mean
and marginals compared to MCMC; see below) are ob-
tained for perplexities larger than about 0.6.
The distribution of importance weights gets narrower

from iteration to iteration (Fig. 7). Initially, many sampled
points exhibit very low weights. After a few iterations, the
importance function has moved towards the posterior in-
creasing the efficiency of the sampling.
Our initial mixture model starts with all mixture com-

ponents close to the maximum-likelihood point. With con-
secutive iterations the components spread out to better
cover the region where the posterior is significant. This
can be seen in Figs. 8 and 9.
Compared to traditional MCMC, our new PMC method

is faster by orders of magnitude. The time-consuming
calculation of the posterior can be performed in parallel
and therefore a speedup by a factor of the number of CPUs
is obtained. In times where clusters of multicore processors
are readily available, this speedup is easily of the order of
100. In addition, MCMC has a low efficiency with typical
acceptance rates of 0.25–0.3. The PMC normalized effec-
tive sample size in the WMAP5 case is 0.7 which results in
a much larger final sample for the same number of poste-
rior calculations of around 150 000.
We emphasize again that with MCMC one can make

only limited use of parallel computing since one has to wait
for each Markov chain to converge, and because it is not
straightforward to combine chains, as mentioned earlier.

2. Comparison with MCMC

The MCMC results we present here are either obtained
using the adaptive MCMC algorithm or a classical one.
Indeed, as we show in the following, adaptive MCMC can
have some issues that a less efficient classical MCMC
algorithm can avoid. Apart from those special cases, the
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FIG. 6 (color online). Perplexity (left panel) and normalized
effective sample size ESS=N (right panel), as a function of the
cumulative sample size N. The likelihood is WMAP5 for a flat
�CDM model with six parameters.
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MCMC and adaptive MCMC gave very similar results, the
latter usually reaching a better acceptance rate, and thus a
better efficiency.

We find excellent agreement between using our respec-
tive implementations of MCMC (adaptive or not) and
PMC. Mean, confidence intervals and 2D marginals are
very similar using both methods. The performance of PMC
is superior to MCMC in some cases, which is illustrated by
the following examples.

An inherent problem of MCMC is that even for a long
run there can be regions in parameter space that are not
sampled in an unbiased way. This is illustrated in Fig. 10.
The feature at the 99.7% level of MCMC (left panel, for
large values of�M and �) is due to an ‘‘excursion’’ of the

 0.001

 0.01

 0.1

 1

-30 -25 -20 -15 -10 -5

fr
eq

ue
nc

y

log(importance weight)

iteration 0
iteration 3
iteration 6
iteration 9

FIG. 7 (color online). Histogram of the normalized importance
weights �wt

n for four iterations t ¼ 0; 3; 6; 9. The posterior is
WMAP5, flat �CDM model with six parameters.

FIG. 8 (color online). Lower left panel: Overlaid to the SNIa confidence contours (68%, 95%, 99.7%) is the movement of the
importance function. For each iteration a circle is plotted at the position of the mean of each component, where different colors indicate
different components. The circle size indicates the component weight. The starting point [first iteration, at ð0:3;�1:3Þ] is marked by a
thick circle. The other two panels show the mean positions in projection, fanned out as a function of the iteration.
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FIG. 9 (color online). The sampled points from the final itera-
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chain into a low-likelihood region at step 130 500, lasting
for 300 steps. We ran the chain for 300 000 steps and the
feature was still visible. A second run of the chain did not
exhibit this anomaly. This kind of sample ‘‘noise’’ can be
prevented by running a chain for a very long time or by
combining several (converged) chains. Such features are
much less likely to occur in an importance sample which
consists of uncorrelated points.

A second issue are parameters which are nearly uncon-
strained by the data with the result that the marginalized
posterior in that dimension is flat. To illustrate this we
choose weak lensing alone which cannot constrain �b

(Fig. 11). Using the Fisher matrix as the initial Gaussian
proposal for adaptive MCMC, the chain stays in a small
region in the �b direction; the covariance being very flat,
most jumps end up out of the prior distribution. This results
in an update variance for this parameter which is much too
small, and in a bad exploration of the posterior in this flat
direction as shown Fig. 11. The classical MCMC algo-
rithm, with the same proposal yields better results, but with
a very low acceptance rate and needing 500 000 steps to
reach the result presented in Fig. 11. Alternatively, mod-
ifying the initial proposal to be smaller and better adapted
to the prior, or increasing the covariance stretch factor from
the optimal value of c ¼ 2:382=p (see Sec. III C) to c ¼

3:22=p, helps the chain to explore more of the parameter
space in the latter steps of the adaptation. These modifica-
tions to the algorithm also result in a very low acceptance
rate, and somehow go against the very idea of an adaptive
algorithm, since they require very fine-tuning of the initial
proposal.
With PMC we obtain a much better performance and

recover very well the flat posterior.
In Tables III and IV we show the mean and 68% con-

fidence intervals for CMB alone for the �CDM model and
for lensingþ SNIaþ CMB using wCDM, respectively.
The differences in mean and 68%-confidence intervals is
less than a few percent in most cases. Figure 10 shows that
the lower-confidence regions and the correlation between
parameters agrees very well between (nonadaptive)
MCMC and PMC.

V. DISCUSSION

In this paper, we have introduced and assessed an adap-
tive importance sampling approach, called population
Monte Carlo, which aims to overcome the main difficulty
in using importance sampling, namely, the reliance on a

TABLE III. Parameter means and 68% confidence intervals for
PMC and (nonadaptive) MCMC from the WMAP5 data.

Parameter PMC MCMC

�b 0:04424þ0:00321
�0:00290 0:04418þ0:00321

�0:00294

�m 0:2633þ0:0340
�0:0282 0:2626þ0:0359

�0:0280

� 0:0878þ0:0181
�0:0160 0:0885þ0:0181

�0:0160

ns 0:9622þ0:0145
�0:0143 0:9628þ0:0139

�0:0145

109�2
R 2:431þ0:118

�0:113 2:429þ0:123
�0:108

h 0:7116þ0:0271
�0:0261 0:7125þ0:0274

�0:0268

TABLE IV. Parameter means and 68% confidence intervals for
PMC using lensing, SNIa and CMB in combination. The (non-
adaptive) MCMC results correspond to the values given in
Table 5 from [36].

Parameter PMC MCMC

�b 0:0432þ0:0027
�0:0024 0:0432þ0:0026

�0:0023

�m 0:254þ0:018
�0:017 0:253þ0:018

�0:016

� 0:088þ0:018
�0:016 0:088þ0:019

�0:015

w �1:011� 0:060 �1:010þ0:059
�0:060

ns 0:963þ0:015
�0:014 0:963þ0:015

�0:014

109�2
R 2:413þ0:098

�0:093 2:414þ0:098
�0:092

h 0:720þ0:022
�0:021 0:720þ0:023

�0:021

a 0:648þ0:040
�0:041 0:649þ0:043

�0:042

b 9:3þ1:4�0:9 9:3þ1:7�0:9

c 0:639þ0:084
�0:070 0:639þ0:082

�0:070

�M 19:331� 0:030 19:332þ0:029
�0:031

� 1:61þ0:15
�0:14 1:62þ0:16

�0:14

�	 �1:82þ0:17
�0:16 �1:82� 0:16

�8 0:795þ0:028
�0:030 0:795þ0:030

�0:027
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FIG. 10 (color online). Examples of marginalized likelihoods
(68%, 95% and 99.7% contours are shown) for PMC (solid blue
line) and MCMC (dashed green line) from the SNIa data.
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FIG. 11 (color online). Normalized 1D marginals for �b from
weak lensing alone for PMC (solid blue line) and MCMC
(dashed green line: adaptive; dotted red line: nonadaptive).
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single efficient importance function. PMC achieves this
goal by iteratively adapting the importance function to-
wards the target density of interest. A significant appeal of
the approach, when compared to alternatives such as
MCMC, lies in the possibility to use (massive) parallel
sampling which considerably reduces the wall-clock time
involved in the estimation of parameters for many astro-
physical and cosmological problems. Simulated and actual
data have been used in this work to assess the performance
of PMC for estimation of parameters in a Bayesian infer-
ence with features approaching classical cosmological pa-
rameter posteriors.

The PMC approach is, in essence, an iterated importance
sampling scheme that simultaneously produces, at each
iteration, a sample approximately simulated from a target
distribution� and an approximation of� in the form of the
current proposal distribution. As such, the samples pro-
duced by the PMC approach can be exploited as regular
importance sampling outputs at any iteration t. Samples
from previous iterations can be combined [27], and ap-
proximations like �̂ðfÞ can be updated dynamically, with-
out necessarily requiring the storage of samples.

Although adaptation of the importance function has the
explicit aim of improving the coverage of the posterior
density there are instances where this objective may not be
met. In some cases, successive updates of the importance
function may result in: (a) an importance function which is
too peaked and which has light tails (invalid importance
function); (b) an importance function which fits only one
mode (in the case of a multimodal posterior); (c) numerical
problems due to the adaptation procedure (usually involv-
ing poor conditioning of some of the covariance matrices).
Such cases are likely to produce a poor approximation to
the integral of interest, or alternatively lead to highly
variable parameter estimates over iterations. These prob-
lems can be quickly discovered or signalled by observing a
poor ESS, and parameter estimates or normalized perplex-
ity which do not stabilize after a few iterations.

Such cases of poor performance as outlined can be
significantly reduced by choosing a reasonably well in-
formed initial importance function with a large enough
sample size at each iteration, especially on the initial
iteration that requires many points to counterweight a
potentially poor importance function. In general, the initial
importance function should be chosen to cover a region of
the parameter space that has support larger than the poste-
rior. In the absence of reliable prior information, finding
such an importance function may be difficult to do. One
approach may be to locate the components in the center of
the feasible range (if available) for each variable, with
reasonably large variances to ensure some coverage of
the parameter space. We found this approach to be reason-
ably successful for the simulated data case discussed in
Sec. III. In the presence of some prior information, for
example, an estimate of the maximum-likelihood point and

an approximation of the covariance matrix (via the
Hessian), components can be placed around these points
with variance comparable to the approximation. Another
approach may be to perform a singular value decomposi-
tion of the covariance matrix, and make use of the eigen-
vectors and eigenvalues to place components along the
most likely directions of interest. Alternatively and in the
same spirit, components can be placed according to the
principal points of the resulting sample, using a k-means
clustering approach [55]. Both approaches have been rea-
sonably successful for a range of posterior densities exam-
ined, and by placing components in regions of high
posterior support in addition to the mode have the potential
to further significantly reduce the number of iterations for
difficult posterior densities.
The main appeals or advantages of the PMC method are

worth re emphasizing at this point:
(1) parallelization of the posterior calculations;
(2) low variance of Monte Carlo estimates;
(3) simple diagnostics of ‘‘convergence’’ (perplexity).
We address these three points in more detail now.
(1) The first advantage, namely, the ability to parallelize

the computational task, is becoming increasingly useful
through the availability of cheap multi-CPU computers and
the standardization of clusters of computers. Software to
implement the parallelization task, such as MESSAGE

PASSING INTERFACE (MPI),3 are publicly available and rela-

tively straightforward to implement. For the cosmological
examples presented (Sec. IV), we used up to 100 CPUs on
a computer cluster to explore the cosmology posteriors. In
the case of WMAP5, this reduced the wall-clock time from
several days for MCMC4 to a few hours using PMC.
(2) In general, for PMC and an importance function that

is closely matched to the target density, significant reduc-
tions in the variance of the Monte Carlo estimates are
possible in comparison to estimates obtained using
MCMC [5]. For example, for the posterior estimates for
the WMAP5 data we observed a tenfold reduction in
variance for the same number of sample points as observed
for MCMC. Such reductions suggest that the wall-clock
time savings extend not only to the number of CPUs
available but to smaller sample requirements for PMC in
total compared to MCMC to achieve similar variability of
estimates. For cosmological applications, this observation
is valuable as we observed, e.g., in Fig. 6 for CMB data,
that the fit between the adapted importance function and
the target posterior is sometimes quite good. By combining
samples across iterations further time savings are also
possible. The absence of construction of a Markov chain

3http://www-unix.mcs.anl.gov/mpi/
4This represents the time spent by our generic adaptive

MCMC code for a similar problem as reported in [36]. A highly
cosmology-tuned MCMC code such as COSMOMC can reach
better performance by implementing different strategies for
each parameters.
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for PMC can also have the desirable attribute of reducing
sample noise, as observed for the SNIa data in Sec. IVD2.

(3) As shown in Sec. II C 2, the perplexity [Eq. (18)] is a
relatively simple measure of sampling adequacy to the
target density of interest. For MCMC and other approaches
which rely on formal measures of convergence, assessment
of convergence can be very difficult with users facing a
potential array of associated diagnostic tests.

In addition to the above points, a further appeal of PMC
is the ability to provide a very good approximation to the
marginal posterior or evidence, which naturally follows as
a by-product of the approach. To demonstrate this appeal,
further research is underway to explore the use of PMC in
the context of model selection problems in cosmology.
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APPENDIX: DETAILS OF THE IMPORTANCE
FUNCTION UPDATES FOR PMC

The method proposed in [16] to adaptively update the
parameters of the importance function qt is based on a
variant of the EM (expectation-maximization) algorithm
[56], which is the standard tool for the estimation of the
parameters of mixture densities. We describe below the
principle underlying the algorithm of [16], showing, in
particular, that each iteration decreases, up to the impor-
tance sampling approximation errors, the Kullback diver-
gence between the target� and the importance function qt.

Remember that our goal is to minimize (10), as t in-
creases, by iteratively tuning the parameters �t and �t of
the mixture importance function defined in (11).
Developing the logarithm in (10), this objective can be
equivalently formulated in terms of the maximization of
the following quantity:

‘ð�; �Þ ¼
Z

log

�XD
d¼1

�d’ðx;�dÞ
�
�ðxÞdx (A1)

with respect to � and �. Using Bayes’ rule, we denote by

�dðx;�; �Þ ¼ �d’ðx; �dÞP
D
d¼1 �d’ðx; �dÞ (A2)

the posterior probability that x belongs to the dth compo-
nent of the mixture (for the mixture parameters � and �).
The EM principle consists of evaluating, at iteration t, the

following intermediate quantity:

Ltð�; �Þ ¼
Z XD

d¼1

�dðx;�t; �tÞ logð�d’ðx; �dÞÞ�ðxÞdx:

(A3)

Using the concavity of the log as well as the expression of
�d in (A2), it is easily checked that

XD
d¼1

�dðx;�t; �tÞ log
�
�d’ðx;�dÞ
�t
d’ðx;�tdÞ

�

� log

� P
D
d¼1 �d’ðx; �dÞP
D
d0¼1 �

t
d0’ðx;�td0 Þ

�
(A4)

and hence that Ltð�; �Þ � Ltð�t; �tÞ � ‘ð�; �Þ � ‘ð�t; �tÞ.
Thus, any value of � and � which increases the intermedi-
ate quantity Lt above the level Ltð�t; �tÞ also results in, at
least, an equivalent increase of the actual objective func-
tion ‘. In the EM algorithm, one sets �tþ1 and �tþ1 to the
values where the intermediate quantity Ltð�; �Þ is maxi-
mal, thus satisfying the previous requirement.
Furthermore, the maximization of Ltð�; �Þ leads to a
closed form solution whenever ’ belongs to a so-called
exponential family of probability densities.
In the example of the multivariate Gaussian density

recalled in (12), the parameter �d consists of the mean
�d and the covariance matrix �d and the intermediate
quantity may be written as

Ltð�;�;�Þ ¼
Z XD

d¼1

�dðx;�t;�t;�tÞ
�
logð�dÞ

� 1

2
½logj�dj þ ðx��dÞT��1

d ðx��dÞ�
�

� �ðxÞdx; (A5)

up to terms that do not depend on �, � or �. Routine
calculations show that the maximum of (A5) is achieved
for

�tþ1
d ¼

Z
�dðx;�t;�t;�tÞ�ðxÞdx; (A6)

�tþ1
d ¼

R
x�dðx;�t;�t;�tÞ�ðxÞdx

�tþ1
d

; (A7)

�tþ1
d ¼

Rðx��tþ1
d Þðx��tþ1

d ÞT�dðx;�t;�t;�tÞ�ðxÞdx
�tþ1
d

:

(A8)

In practice, both the numerator and denominator of each of
the above expressions are integrals under � which must be
approximated. The solution proposed in [16] is based on
self-normalized importance sampling using the weighted
sample simulated at the previous iteration ðxt1; �wt

1Þ; . . . ;ðxtN; �wt
NÞ. The corresponding empirical update equations

are given in Eqs. (14)–(16) of Sec. II C 1.
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The Student-t distribution provides a family of multi-
variate densities with parameters � and � which have the
same interpretation as in the Gaussian case [except for the
fact that the covariance is equal to �=ð�� 2Þ� rater than
�] but with an additional shape factor � � 2 which allows
for heavier tails: letting � ! 1 yields back the Gaussian
but for � ¼ 2, one obtains a density with polynomially
decreasing tails whose only finite moments are the two first
ones (note that it is also possible to extend the family to the
case where 0< �< 2). Using mixtures of Student-t dis-
tributions will thus be mostly useful in cases where the
target posterior distribution � itself has heavy tails. The
parameter update corresponding to mixtures of Student-t
distributions is a bit more involved but follows the same
general pattern. For the sake of completeness, we just
recall below the formulas given in [16]:

�tþ1
d ¼ XN

n¼1

�wt
n�dðxtn;�t; �tÞ;

�tþ1
d ¼

P
N
n¼1 �wt

n�dðxtn;�t; �tÞ
dðxtn; �tÞxtnP
N
n¼1 �wt

n�dðxtn;�t; �tÞ
dðxtn; �tÞ ;

�tþ1
d ¼ 1P

N
n¼1 �wt

n�dðxtn;�t; �tÞ
XN
n¼1

�wt
n�dðxtn;�t; �tÞ

� 
dðxtn;�tÞðxtn ��tþ1
d Þðxtn ��tþ1

d ÞT;

where

�dðx;�; �Þ ¼ �d�ðx;�d;�d;�dÞP
D
d¼1 �d�ðx;�d;�d;�dÞ ; (A9)


dðxtn; �Þ ¼ �d þ p

�d þ ðx��dÞTð�dÞ�1ðx��dÞ
; (A10)

and �ð	;�;�; �Þ denotes the p-dimensional Student-t
probability density function

�ðx;�;�; �Þ ¼ �ðð�þ pÞ=2Þ
�ð�=2Þ�p=2�p=2

j�j�1=2

�
�
1þ 1

�
ðx��ÞT��1ðx��Þ

��ð�þpÞ=2
:

(A11)

Sampling from a multivariate Student-t distribution is
most easily undertaken by using its derivation in terms of a
multivariate Gaussian [Y � Nkð0;�Þ] and chi-squared dis-
tribution (Z� �2

�),

x ¼ �þ y
ffiffiffiffiffiffiffiffi
�=z

p

and taking advantage of the fact that sampling from Y and
Z is straightforward.
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