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Building the Minimal Automaton of A * X in Linear Time, when X is of Bounded Cardinality

We present an algorithm for constructing the minimal automaton recognizing A * X, where the pattern X is a set of m (that is a fixed integer) non-empty words over a finite alphabet A whose sum of lengths is n. This algorithm, inspired by Brzozowski's minimization algorithm, uses sparse lists to achieve a linear time complexity with respect to n.

Introduction

This paper addresses the following issue: given a pattern X, that is to say a nonempty language which does not contain the empty word ε, and a text T ∈ A + , assumed to be very long, how to efficiently find occurrences of words of X in the text T ?

A usual approach is to precompute a deterministic automaton recognizing the language A * X and use it to sequentially treat the text T . To find the occurrences of words of X, we simply read the text and move through the automaton. An occurrence of the pattern is found every time a final state is reached. Once built, this automaton can of course be used for other texts.

The pattern X can be of different natures, and we can reasonably consider three main categories: a single word, a finite set of words and a regular language. Depending on the nature of the pattern, the usual algorithms [START_REF] Crochemore | Algorithms on Strings[END_REF] build a deterministic automaton that is not necessary minimal.

For a single word u, very efficient algorithms such as the ones of Knuth, Morris and Pratt [START_REF] Knuth | Fast pattern matching in strings[END_REF][START_REF] Crochemore | Algorithms on Strings[END_REF] or Boyer and Moore [START_REF] Boyer | A fast string searching algorithm[END_REF][START_REF] Crochemore | Algorithms on Strings[END_REF] are used. Knuth-Morris-Pratt algorithm simulates the minimal automaton recognizing A * u. Aho-Corasick algorithm [START_REF] Aho | Efficient string matching: an aid to bibliographic search[END_REF] treats finite sets of words by constructing a deterministic yet nonminimal automaton. And Mohri in [START_REF] Mohri | String-matching with automata[END_REF] proposed an algorithm for regular languages given by a deterministic automaton.

In this article, we consider the case of a set of m non-empty words whose sum of lengths is n, where m is fixed and n tends toward infinity. Aho-Corasick algorithm [START_REF] Aho | Efficient string matching: an aid to bibliographic search[END_REF] builds a deterministic automaton that recognizes A * X with linear time and space complexities. Experimentally we remark, by generating uniformly at random patterns of m words whose sum of lengths is n, that the probability for Aho-Corasick automaton to be minimal is very small for large n. One can apply a minimization algorithm such as Hopcroft's algorithm [START_REF] Hopcroft | An n log n algorithm for minimizing states in a finite automaton[END_REF] to Aho-Corasick automaton, but this operation costs an extra O(n log n) time.

We propose another approach to directly build the minimal automaton of A * X. It is based on Brzozowski's minimization algorithm described in [START_REF] Brzozowski | Canonical regular expressions and minimal state graphs for definite events[END_REF]. This algorithm considers a non-deterministic automaton A recognizing a language L, and computes the minimal automaton in two steps. First the automaton A is reversed and determinized. Second the resulting automaton is reversed and determinized too. Though the complexity of Brzozowski's algorithm is exponential in the worst case, our adaptation is linear in time and quadratic in space, using both automata constructions and an efficient implementation of sparse lists. The fact that the space complexity is greater than the time complexity is typical for that kind of sparse list implementation (see [START_REF] Béal | Minimizing local automata[END_REF] for another such example, used to minimize local automata in linear time). Outline of the paper: Our algorithm consists in replacing the first step of Brzozowski's algorithm by a direct construction of a co-deterministic automaton recognizing A * X, and in changing the basic determinization algorithm into an ad hoc one using the specificity of the problem in the second step. With appropriate data structures, the overall time complexity is linear.

In Section 2 basic definitions and algorithms for words and automata are recalled. A construction of a co-deterministic automaton recognizing A * X is described in Section 3. The specific determinization algorithm that achieves the construction of the minimal automaton is presented in Section 4. Section 5 present the way of using sparse lists and the analysis the global complexity of the construction.

Preliminary

In this section, the basic definitions and constructions used throughout this article are recalled. For more details, the reader is referred to [START_REF] Hopcroft | Introduction To Automata Theory, Languages, And Computation[END_REF] for automata and to [START_REF] Crochemore | Algorithms on Strings[END_REF][START_REF] Crochemore | Jewels of Stringology[END_REF] for algorithms on strings.

Automata. A finite automaton A over a finite alphabet A is a quintuple A = (A, Q, I, F, δ), where Q is a finite set of states, I ⊂ Q is the set of initial states, F ⊂ Q is the set of final states and δ is a transition function from Q × A to P(Q), where P(Q) is the power set of Q. The automaton A is deterministic if it has only one initial state and if for any (p, a) ∈ Q×A, |δ(q, a)| ≤ 1. It is complete if for any (p, a) ∈ Q × A, |δ(q, a)| ≥ 1. A deterministic finite automaton A is accessible when for each state q ∈ Q, there exists a path from the initial state to q. The size of an automaton A is its number of states. The minimal automaton of a regular language is the unique smallest accessible and deterministic automaton recognizing this language.

The transition function δ is first extended to P(Q)×A by δ(P, a) = ∪ p∈P δ(p, a), then inductively to P(Q) × A * by δ(P, ε) = P and δ(P, w • a) = δ(δ(P, w), a). A word u is recognized by A if there exists an initial state i ∈ I such that δ(i, u) ∩ F = ∅. The set of words recognized by A is the language L(A).

The reverse of an automaton A = (A, Q, I, F, δ) is the automaton t A = (A, Q, F, I, t δ). For every (p, q, a) ∈ Q×Q×A, p ∈ t δ(q, a) if and only if q ∈ δ(p, a). We denote by w the mirror word of w. The automaton t A recognizes the language L(A) = { w | w ∈ L(A)}. An automaton A is co-deterministic if its reverse automaton is deterministic.

Any finite automaton A = (A, Q, I, F, δ) can be transformed by the subset construction into a deterministic automaton B = (A, P(Q), {I}, F B , δ B ) recognizing the same language and in which F B = {P ∈ P(Q) | P ∩ F = ∅} and δ B is a function from P(Q) × A to P(Q) defined by δ B (P, a) = {q ∈ Q | ∃p ∈ P such that q ∈ δ(p, a)}. In the following we consider that the determinization of A only produces the accessible and complete part of B.

Two complete deterministic finite automata A = (A, Q, i 0 , F, δ) and A ′ = (A, Q ′ , i ′ 0 , F ′ , δ ′ ) on the same alphabet are isomorphic when there exists a bijection φ from Q to Q ′ such that φ(i 0 ) = i ′ 0 , φ(F ) = F ′ and for all (q, a) ∈ Q × A, φ(δ(q, a)) = δ ′ (φ(q), a). Two isomorphic automata only differ by the labels of their states.

Combinatorics on words.

A word y is a factor of a word x if there exist two words u and v such that

x = u•y •v. The word y is a prefix of x if u = ε; it is a suffix of x if v = ε.
We say that y is a proper prefix (resp. suffix) of x if y is a prefix (resp. suffix) such that y = ε and y = x.

A word y is called a border of x if y = x and y is both a prefix and a suffix of x. The border of a non-empty word x denoted by Border(x) is the longest of its borders. Note that any other border of x is a border of Border(x). The set of all borders of x is {Border(x), Border(Border(x)), . . .}.

In the following we note x[i] the i-th letter of x, starting from position 0; the factor of x from position i to j is denoted by

x[i••j]. If i > j, x[i••j] = ε.
To compute all borders of a word x of length ℓ, we construct the border array of x defined from {1, . . . , ℓ} to {0, 1, . . . , ℓ -1} by border

[i] = | Border(x[0 • •i - 1]) |.
An efficient algorithm that constructs the border array is given in [START_REF] Crochemore | Algorithms on Strings[END_REF][START_REF] Crochemore | Jewels of Stringology[END_REF]. Its time and space complexities are Θ(|x|). It is based on the following formula that holds for any x ∈ A + and any a ∈ A

Border(x • a) = Border(x) • a if Border(x) • a is a prefix of x, Border(Border(x) • a) otherwise. ( 1 
)
3 A Co-Deterministic Automaton Recognizing A * X

In this section we give a direct construction of a co-deterministic automaton recognizing A * X that can be interpreted as the first step of a Brzozowski-like algorithm.

Remark that if there exist two words u, v ∈ X such that u is a suffix of v, one can remove the word v without changing the language, since A * v ⊂ A * u and thus A * X = A * (X \ {v}). Hence, in the following we only consider finite suffix sets X, i.e. there are not two distinct words u, v ∈ X such that u is a suffix of v.

Proposition 1. Let X be a set of m non-empty words whose sum of lengths is n. There exists a deterministic automaton recognizing the language XA * whose number of states is at most nm + 2.

Proof. (By construction) Let A be the automaton that recognizes X, built directly from the tree of X by adding an initial state to the root and final states to the leaves. The states are labelled by the prefixes of X. As we are basically interested in X, change every state label by its mirror, so that the states of the automaton are labelled by the suffixes of X. Merge all the final states into one new state labelled i, and add a loop on i for every letter in A. The resulting automaton is deterministic and recognizes the language XA * .

⊓ ⊔

The space and time complexities of this construction are linear in the length of X. This automaton is then reversed to obtain a co-deterministic automaton recognizing A * X. For a given finite set of words X, we denote by C X this codeterministic automaton.

Example 1. Let A = {a, b} be the alphabet and X = {aaa, abaa, abab} be a set of m = 3 words whose sum of lengths is n = 11. The steps of the process are given in Figure 1. 

Computing the Minimal Automaton

Once C X is built, its determinization produces the minimal automaton recognizing the same language. It comes from the property used by Brzozowski's algorithm, namely that the determinization of a co-deterministic automaton gives the minimal automaton. According to Aho-Corasick algorithm this minimal automaton has at most n + 1 states. It remains to efficiently handle sets of states in the determinization process. The subset construction produces the accessible part B of the automaton (A, P(Q), {I}, F B , δ B ) from an automaton A = (A, Q, I, F, δ). The states of B are labelled by subsets of Q.

Applied to the automaton of Figure 1 the subset construction leads to the minimal automaton depicted in Figure 2. Figure 3 shows Aho-Corasick automaton recognizing the same language A * X where X = {aaa, abaa, abab}. The states are labelled by prefixes of words of X. This automaton is not minimal since the states aaa and abaa are equivalent. 

Cost of the Naive Subset Construction

When computing the subset construction, one has to handle sets of states: starting from the set of initial states, all the accessible states are built from the fly, using a depth-first traversal (for instance) of the result. At each step, given a set of states P and a letter a, one has to compute the set δ B (P, a) and then check whether this state has already been built.

In the co-deterministic automaton C X , only the initial state i has non-deterministic transitions, and for every letter a, the image of i by a is of size at most m + 1, m being the number of words in X and one corresponding to the loop on the initial state i. Hence δ B (P, a) is of cardinality at most m + 1 + |P | and is computed in time Θ(|P |), assuming that it is done using a loop through the elements of P . So even without taking into account the cost of checking whether δ B (P, a) has already been built, the time complexity of the determinization is Ω( P |P |), where the sum ranges over all P in the accessible part of the subset construction.

For the pattern X = {a n-1 , b}, the states of the result are {i}, {i, a n-2 }, {i, a n-2 , a n-3 }, . . ., {i, a n-2 , a n-3 , . . . , a}, {i, a n-2 , a n-3 , . . . , a, ε} and {i, ε}, so that P |P | = Ω(n 2 ). Therefore the time complexity of the naive subset construction is at least quadratic.

In the sequel, we present an alternative way to compute the determinization of C X whose time complexity is linear.

Outline of the Construction

We make use of the following observations on C X . In the last automaton of Figure 1, when the state labelled b is reached, a word u = v • aba has been read, and the state bab has also been reached. This information can be obtained from the word b and the borders of prefixes of words in X: aba is a prefix of the word x = abab ∈ X, and Border(aba) = a. Our algorithm is based on limiting the length of the state labels of the minimal automaton by storing only one state per word of X, and one element to mark the state as final or not (ε or ε /). Hence if aba is read, only b is stored for the word x = abab.

When, for a letter c ∈ A, δ(b, c) is undefined, we jump to the state corresponding to the longest border of aba (the state bab in our example). We continue until either a transition we are looking for is found, or the unique initial state i is reached. More formally define the failure function f from X × Q \ {i, ε} × A to Q \ {ε} in the following way: f (x, p, a) is the smallest suffix q of x, with q = x, satisfying:

x = up = vq, v being a border of u δ(q, a) is defined.

If no such q exists, f (x, p, a) = i.

Precomputation of the Failure Function

Our failure function is similar to Aho-Corasick one in [START_REF] Aho | Efficient string matching: an aid to bibliographic search[END_REF]. The difference is that ours is not based on suffixes but on borders of words. The value of Border(v•a) for every proper prefix v of a word u ∈ X and every letter a ∈ A is needed for the computation.

Extended border array. Let u be a word of length ℓ. We define an extended border array from {0, 1, . . . , ℓ-1}×A to {0, 1, . . . , ℓ-1} by border ext Algorithm 1 (see Figure 4) computes the extended border array for a word u of length ℓ, considering the given alphabet A. 

[0][u[0]] = 0 and border ext[i][a] = |Border(u[0 ••i -1]•a)| for all i ∈ {1, . . . , ℓ -1}. Recall that u[0 ••i] is the prefix of u of length i + 1. Remark that |Border(u[0 ••i])| = |Border(u[0••i -1]•u[i])| = border ext[i -1][u[i]].

Algorithm 1 Extended Borders

Inputs: u ∈ X, ℓ = |u|, alphabet A 1 border ext[0][u[0]] ← 0 2 for j ← 1 to ℓ -1 do 3 for a ∈ A do 4 i ← border ext[j -1][u[j -1]] 5 while i ≥ 0 and a = u[i] do 6 if i = 0 then 7 i ← -1 8 else 9 i ← border ext[i-1][u[i-1]]
To compute border ext[j][a] = |Border(u[0••j-1])•a|, we need the length of Border(u[0••j -1]) = Border(u[0••j - 2]•u[j -1]). Thus |Border(u[0••j -1])| = border ext[j -1][u[j -1]]. According to Equation (1), if Border(u[0• •i -1]) • a is not a prefix of u[0 • •i -1]
• a, we need to find the longest border of the prefix of u of length i. Standard propositions concerning the border array algorithm given in [START_REF] Crochemore | Jewels of Stringology[END_REF] are extended to Algorithm 1.

Since Border(u[0••i -1]) = Border(u[0••i - 2]•u[i -1]), we have |Border(u[0••i -1])| = border ext[i -1][u[i -1]]).
Proposition 2. E xtended B orders algorithm above computes the extended border array of a given word u of length ℓ considering the alphabet A. Its space and time complexities are linear in the length of the word u.

Proof. The routine Extended Borders computes sequentially |Border(v • a)| for every proper prefix v of u and every letter a ∈ A. As the size of the alphabet A is considered to be constant, the space complexity of the construction is linear in ℓ.

A comparison between two letters a and b is said to be positive if a = b and negative if a = b. The time complexity of the algorithm is linear in the number of letter comparisons. The algorithm computes, for j = 1, . . . , ℓ -1 and

a ∈ A, border ext[j][a] = |Border(u[0 • •j -1] • a)|. For a given letter a ∈ A, border ext[j][a] is obtained from |Border(u[0 • •j -1])| that is already computed.
The quantity 2ji increases by at least one after each letter comparison: both i and j are incremented by one after a positive comparison; in the case of a negative comparison j is unchanged while i is decreased by at least one.

When ℓ = |u| ≥ 2, 2ji is equal to 2 at the first comparison and 2ℓ -2 at the last one. Thus the number of comparisons for a given letter a is at most 2ℓ -3. The total time complexity is linear in the length of u.

⊓ ⊔

The extended border array can be represented by an automaton. Given a word u ∈ A + , we construct the minimal automaton recognizing u. The states are labelled by prefixes of u. We then define a border link for all prefixes p of u and all letters a ∈ A by:

BorderLink(p, a) = Border(p • a)
that can be computed using Equation ( 1). This extended border array shows a strong similarity with the classical String Matching Automata (SMA) [START_REF] Crochemore | Algorithms on Strings[END_REF][START_REF] Crochemore | Jewels of Stringology[END_REF]. An adaptation of the SMA construction could be used as an alternative algorithm.

Example 2. Figure 5 shows this construction for the word u = abab ∈ X. Failure function. The value f (u, p, a) of the failure function is precomputed for every word u ∈ X, every proper suffix p of u and every letter a ∈ A using Algorithm 2. The total time and space complexities of this operation are linear in the length of X. Remark that if f (u, p, a) = i then |δ(f (u, p, a), a)| = 1.

Determinization Algorithm

Let X = {u 1 , . . . , u m } be a set of m non-empty words whose sum of lengths is n and let C X = (A, Q, {i}, {ε}, δ) be the co-deterministic automaton recognizing Algorithm 2 Failure Function

Inputs: u ∈ X, p proper suffix of u, a ∈ A 1 if p[0] = a and |p| > 1 then 2 return p 3 end if 4 j ← border ext[|u| -|p|][a] 5 if j ≤ 1 then 6 return i 7 end if 8 return u[j -1••|u| -1] Let v be the prefix of u such that u = v•p. If δ(p, a) is defined and different than ε then f (u, p, a) = p. If |Border(v • a)| = 0 then f (u, p, a) = i, where i is the unique initial state of the co- deterministic automaton A recognizing A * X (see Section 3). If |Border(v•a)| ≥ 1 then Border(v•a) = w•a, with w ∈ A * . If w = ε then f (u, p, a) = i.
Otherwise, f (u, p, a) = q, with Border(v•a) = w1 •a and u = w1 •q. Fig. 6. Failure function.

the language A * X obtained in Section 3. We denote by B X the accessible part of the automaton (A,

I B , Q B , F B , δ B ), where Q B = (Q \ {ε}) m × {ε, ε /}, I B = {(i, . . . , i, ε
/)} and for all P ∈ F B , P = (v 1 , v 2 , . . . , v m , ε), where v r ∈ Q \{ε} for all r ∈ {1, . . . , m}. Given a state P ∈ Q B and a letter a ∈ A we use Algorithm 3 (see Figure 7) to compute δ B (P, a). Note that the automaton B X is complete.

Theorem 1. B X is the minimal automaton recognizing A * X.

Proof. (Sketch) The idea of the proof is to show that B X and the automaton produced by the classical subset construction are isomorphic.

Denote by M = (A, Q M , I M , F M , δ M ) the minimal automaton built by the subset construction. Given a state P ∈ Q B (resp. P ∈ Q M ) and the smallest word v (the shortest one, and if there are several words of minimal length, we use the lexicographical order) such that δ B (I B , v) = P (resp. δ M (I M , v) = P ) we construct the unique corresponding state R in M (resp. in B X ) using the same idea as in Section 4.2. Notice that i is in every state of M. A word s ∈ A + is in R if there exist two words x ∈ X and u ∈ A + such that x = u • s and either u = v or u is a non-empty border of v. The state R is final and contains ε if and only if P is final. In the example of Figure 8 the word v = aa is the smallest word such that δ B (I B , v) = P = (a, baa, bab, ε /), and the corresponding state in M (see Figure 2) is R = {i, a, aa, baa, bab}. The minimality of the automaton is guaranteed by Brzozowski's construction [START_REF] Brzozowski | Canonical regular expressions and minimal state graphs for definite events[END_REF].

⊓ ⊔ Example 3. Algorithm 3 produces the automaton depicted in Figure 8 that is the minimal automaton recognizing A * X, where X = {aaa, abaa, abab}.

Sparse Lists

In this section we present data structures and analyze the complexity of the construction of the minimal automaton. The co-deterministic automaton C X of Algorithm 3 Transition Function 

Inputs: P = (v1, v2, . . . vm, j) ∈ QB, a ∈ A 1 j ′ ← ε / 2 for r ∈ {1, . . . m} do 3 v ′ r ← i 4 if δ(vr, a) = ε then 5 j ′ ← ε 6 end if 7 end for 8 for ℓ = 1 to m do 9 v ℓ ← f (u ℓ , v ℓ , a) 10 if v ℓ = i then 11 if v ′ ℓ = i or |δ(v ℓ , a)| < |v ′ ℓ | then 12 v ′ ℓ ← δ(v ℓ ,
return R = (v ′ 1 , v ′ 2 , . . ., v ′ m , j ′ )
We initialize the first m elements of R to the unique initial state i in A. The value of the last term of R is calculated (marking the state as final or non-final).

For each member v ℓ we check the value of the failure function f (u ℓ , v ℓ , a). If f (u ℓ , v ℓ , a) = i then |δ(f (u ℓ , v ℓ , a), a)| = 1 and we have found a potential value for v ′ ℓ that is a suffix of u l ∈ X. It remains to compare it to the already existing one and store the smallest in length different than i.

When the initial state i is reached, we are at the beginning of all the words in X. We define variables used in lines 15-17 as follows. From the definition of the automaton A, δ(i, a) = {x1, x2, . . . , xs} where 0 ≤ s ≤ m and a • x1 ∈ X, . . . , a • xs ∈ X. For every couple of integers (r1, r2) ∈ {1, . . . , s} 2 such that r1 = r2, a • xr 1 = a • xr 2 . For all r ∈ {1, . . . , s} there exists a unique t ∈ {1, . . . , m} such that a • xr = ut ∈ X. size at most nm + 2 recognizing A * X is built in time O(n), where X is a set of m words whose sum of lengths is n. As stated before, the analysis is done for a fixed m, when n tends toward infinity. Minimizing C X produces an automaton B X whose number of states is linear in n and our determinization process creates only states labelled with sequences of m + 1 elements. Sparse lists are used to encode these states.

Let g : {0, . . . , ℓ -1} → F be a partial function and denote by Dom(g) the domain of g. A sparse list (see [START_REF] Aho | The Design and Analysis of Computer Algorithms[END_REF][Exercise 2.12 p.71] or [START_REF] Crochemore | Algorithms on Strings[END_REF][Exercise 1.15 p.55]) is a data structure that one can use to implement g and perform the following operations in constant time: initializing g with Dom(g) = ∅; setting a value g(x) for a given x ∈ {0, . . . , ℓ -1}; testing whether g(x) is defined or not; finding the value for g(x) if it is defined; removing x from Dom(g). The space complexity of a sparse list is O(ℓ).

As we are interested in storing the states during the determinization, we illustrate here how to initialize, insert and test the existence of a value g(x). To represent g, we use two arrays and a list (also represented as an array). The initialization consists in allocating these three arrays of size ℓ without initializing Figure 9 illustrates the sparse list initialization. Inserting an element g(x) = y requires the following steps: g[x] = y; index[x] = size; list[size] = x and size = size + 1. The result is shown in Figure 10. A value g(x) is defined if and only Since the states we build are labelled by sequences of size m + 1, and each of the m first elements is either the initial state i of the automaton C X or a proper suffix of the corresponding word in the pattern, we use a tree of sparse lists to store our states. Let X = {u 1 , . . . , u m } be the pattern and denote by Suff(u r ) the set of all proper suffixes of u r for 1 ≤ r ≤ m. We define a partial function g on {0, . . . , |u 1 | -1} whose values are partial functions g(|v 1 |) for v 1 ∈ Suff(u 1 ) ∪ {i}. We consider that |i| = 0. These functions g(v 1 ) are defined on {0, . . . , Figure 11 shows the insertion of the initial state P 0 = (i, i, i, ε /) for X = {aaa, abaa, abab} and Figure 12 depicts the tree of sparse lists after inserting P 0 = {i, i, i, ε /}, P 1 = {aa, baa, bab, ε /} and P 2 = {i, aa, ab, ε /}. Testing the existence of a state works in the same way, but if a partial function is not found then the state is not in the data structure.

if index[x] < size and list[index[x]] = x. 0 ℓ -1 • • • g 0 ℓ -1 • • • index 0 ℓ -1 • • • list size = 0
Theorem 2. Using sparse lists, the construction of the minimal automaton recognizing A * X runs in time O(n) and requires O(n 2 ) space where n is the length of the pattern X.

Proof. From Aho-Corasick's result the minimal automaton is of size at most n+1. As each state requires m+1 sparse lists of size |u 1 |, |u 2 |, . . . |u m |, 2, the total space complexity is quadratic in n. The time complexity of the determinization is linear in n since searching and inserting a state take O(1) time.

⊓ ⊔ Remark 1. In practice a hash table can be used to store these states. Under the hypothesis of a simple uniform hashing the average time and space complexities of the determinization are linear. The natural continuation of this work is to investigate constructions based on Brzozowski's algorithm when m is not fixed anymore.
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Fig. 11 .

 11 Fig. 11. Tree of sparse lists after inserting P0 = {i, i, i, ε /}.

Fig. 12 .

 12 Fig. 12. Tree of sparse lists.

Table 1

 1 depicts the extended border array of the word abab. Values computed by a usual border array algorithm are represented in bold.

		Prefix w of u
		with w = u
	Letter ε a ab aba
	a	0 1 1	1
	b	/ 0 0	2

Table 1 .

 1 Extended border array for u = abab, given A = {a, b}.