
HAL Id: hal-00450674
https://hal.science/hal-00450674v1

Submitted on 26 Jan 2010 (v1), last revised 20 May 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building the Minimal Automaton of A*X in Linear
Time, When X Is of Bounded Cardinality

Omar Aitmous, Frédérique Bassino, Cyril Nicaud

To cite this version:
Omar Aitmous, Frédérique Bassino, Cyril Nicaud. Building the Minimal Automaton of A*X in Lin-
ear Time, When X Is of Bounded Cardinality. 21st Annual Symposium on Combinatorial Pattern
Matching (CPM 2010), Jun 2010, United States. pp.275-287. �hal-00450674v1�

https://hal.science/hal-00450674v1
https://hal.archives-ouvertes.fr

Building the Minimal Automaton of A
∗
X in

Linear Time, When X Is of Bounded Cardinality

Omar AitMous1, Frédérique Bassino1, and Cyril Nicaud2.

1 LIPN UMR 7030, Université Paris 13 - CNRS, 93430 Villetaneuse, France.
2 LIGM, UMR CNRS 8049, Université Paris-Est, 77454 Marne-la-Vallée, France.

{aitmous,bassino}@lipn.univ-paris13.fr, nicaud@univ-mlv.fr

Abstract. We present an algorithm for constructing the minimal au-
tomaton recognizing A∗X, where the pattern X is a set of m (that is a
fixed integer) non-empty words over a finite alphabet A whose sum of
lengths is n. This algorithm, based on Brzozowski’s minimization algo-
rithm, uses sparse lists to achieve a linear time complexity.

1 Introduction

This paper addresses the following issue: given a pattern X (that is a non-empty
language which does not contain the empty word ε) and a text T ∈ A+, assumed
to be very long, how to efficiently find occurrences of words of X in the text T ?

A usual approach is to precompute a deterministic automaton recognizing the
language A∗X and use it to sequentially treat the text T . To find the occurrences
of words of X , we simply read the text and move through the automaton. An
occurrence of the pattern is found every time a final state is reached. Once built,
this automaton can of course be used for other texts.

The pattern X can be of different natures, and we can reasonably consider
three main categories: a single word, a finite set of words and a regular language.
Depending on the nature of the pattern, the usual algorithms [6] construct a
deterministic automaton that is not necessary minimal.

In the case of a single word u, very efficient algorithms such as the ones
of Knuth, Morris and Pratt [10, 6] or Boyer and Moore [4, 6] are used. Knuth-
Morris-Pratt algorithm builds the minimal automaton recognizing A ∗ u. Aho-
Corasick algorithm [1] treats the case of a finite set of words by constructing a
deterministic yet non-minimal automaton. An algorithm for the case of regular
languages based on a deterministic automaton was proposed by Mohri in [11].

In this article, we consider the case of a set of m non-empty words whose
sum of lengths is n, where m is fixed and n tends toward infinity. Aho-Corasick
algorithm [1] builds a deterministic automaton that recognizes A∗X with linear
time and space complexities. Experimentally we remark, by generating uniformly
at random patterns of m words whose sum of lengths is n, that the probability
for Aho-Corasick automaton to be minimal is very small for large n.

One can apply a minimization algorithm (such as Hopcroft’s algorithm [8])
to Aho-Corasick automaton, but this operation costs an extra O(n log n) time.

We propose another approach to directly build the minimal automaton of
A∗X . It is based on Brzozowski’s minimization algorithm described in [5]. This
algorithm considers a non-deterministic automaton A recognizing a language L,
and computes the minimal automaton in two steps. First the automaton A is
reversed and determinized. Second the resulting automaton is reversed and de-
terminized too. Though the complexity of Brzozowski’s algorithm is exponential
in the worst case, our adaptation is linear in time and quadratic in space, using
both automata constructions and an efficient implantation of sparse lists. The
fact that the space complexity is greater than the time complexity is typical for
that kind of sparse list implantation (see [3] for another such example, used to
minimize local automata in linear time).
Outline of the paper: Our algorithm consists in replacing the first step of
Brzozowski’s algorithm by a direct construction of a co-deterministic automaton
recognizing A∗X , and in changing the basic determinization algorithm into an ad

hoc one using the specificities of the problem in the second step. With appropriate
data structures, the overall time complexity is linear.

In Section 2 basic definitions and algorithms for words and automata are
recalled. A construction of a co-deterministic automaton recognizing A∗X is de-
scribed in Section 3. The specific determinization algorithm that achieves the
construction of the minimal automaton is presented in Section 4. Section 5 ad-
dresses the global complexity of the construction. Note that for a lack of space,
only sketches of the proofs are given.

2 Preliminary

In this section, the basic definition and constructions used throughout this article
are recalled. For more details, the reader is referred to [9] for automata and to [6,
7] for algorithms on strings.

Automata. A finite automaton A over a finite alphabet A is a quintuple A =
(A, Q, I, F, δ), where Q is a finite set of states, I ⊂ Q is the set of initial states,
F ⊂ Q is the set of final states and δ is a transition function from Q × A to
P(Q), where P(Q) is the power set of Q. The automaton A is deterministic if it
has only one initial state and if for any (p, a) ∈ Q×A, |δ(q, a)| ≤ 1. It is complete

if for any (p, a) ∈ Q × A, |δ(q, a)| ≥ 1. A deterministic finite automaton A is
accessible when for each state q ∈ Q, there exists a path from the initial state to
q. The size of an automaton A is its number of states. The minimal automaton of
a regular language is the unique smallest accessible and deterministic automaton
recognizing this language.

The transition function δ is first extended to P(Q)×A by δ(P, a) = ∪p∈P δ(p, a),
then inductively to P(Q) × A∗ by δ(P, ε) = P and δ(P, w · a) = δ(δ(P, w), a).
A word u is recognized by A if there exists an initial state i ∈ I such that
δ(i, u) ∩ T 6= ∅. The set of words recognized by A is the language L(A).

The reverse of an automaton A = (A, Q, I, F, δ) is the automaton tA =
(A, Q, F, I, tδ). For every (p, q, a) ∈ Q×Q×A, p ∈ tδ(q, a) if and only if q ∈ δ(p, a).

We denote by w̃ the mirror word of w. The automaton tA recognizes the language

L̃(A) = {w̃ | w ∈ L(A)}. An automaton A is co-deterministic if its reverse
automaton is deterministic.

Any finite automaton A = (A, Q, I, F, δ) can be transformed by the subset

construction into a deterministic automaton B = (A,P(Q), {I}, FB, δB) recog-
nizing the same language and in which FB = {P ∈ P(Q) | P ∩ F 6= ∅} and
δB is a function from P(Q) × A to P(Q) defined by δB(P, a) = {q ∈ Q | ∃p ∈
P such that q ∈ δ(p, a)}. In the following we consider that the determinization
of A only produces the accessible and complete part of B.

Two complete deterministic finite automata A = (A, Q, i0, F, δ) and A′ =
(A, Q′, i′0, F

′, δ′) on the same alphabet are isomorphic when there exists a bijec-
tion φ from Q to Q′ such that φ(i0) = i′0, φ(F) = F ′ and for all (q, a) ∈ Q × A,
φ(δ(q, a)) = δ′(φ(q), a). Two isomorphic automata only differ by the labels of
their states.

Combinatorics on words. A word y is a factor of a word x if there exist two
words u and v such that x = u·y ·v. The word y is a prefix of x if u = ε; it is a
suffix of x if v = ε. We say that y is a proper prefix (resp. suffix) of x if y is a
prefix (resp. suffix) such that y 6= ε and y 6= x.

A word y is called a border of x if y 6= x and y is both a prefix and a suffix of
x. We denote by Border(x) the longest border of a non-empty word x. We say
that Border(x) is the border of x. Note that any other border of x is a border of
Border(x). The set of all borders of x is {Border(x), Border(Border(x)), . . .}.

In the following we note x[i] the i-th letter of x, starting from position 0; the
factor of x from position i to j is denoted by x[i··j]. If i > j, x[i··j] = ε.

To compute all borders of a word x of length ℓ, we construct the border table of
x defined from {0, 1, · · · , ℓ-1} to {0, 1, · · · , ℓ-1} by border[i] = | Border(x[0··i]) |.
An efficient algorithm that constructs the border table is given in [6, 7]. Its time
and space complexities are Θ(|x|). It is based on the following formula, for any
x ∈ A+ and a ∈ A.

Border(x ·a) =

{
Border(x) · a if Border(x) · a is a prefix of x,

Border(Border(x) · a) otherwise.
(1)

3 A Co-Deterministic Automaton Recognizing A
∗
X

In this section we give a direct construction of a co-deterministic automaton
recognizing A∗X .

Remark that if there exist two words u, v ∈ X such that u is a suffix of v, one
can remove the word v without changing the language, since A∗v ⊂ A∗u and
thus A∗X = A∗(X \ {v}). Hence, in the following we only consider finite suffix
sets X , i.e. there are not two distinct words u, v ∈ X such that u is a suffix of v.

Proposition 1. Let X be a set of m non-empty words whose sum of lengths is

n. There exists a deterministic automaton recognizing the language X̃A∗ whose

number of states is at most n − m + 2.

Proof. (By construction) Let A be the automaton that recognized X̃, built di-

rectly from the trie of X̃ by adding an initial state to the root and final states to
the leaves. The states are labelled by the prefixes of X̃. Next as we are basically
interested in X change every state label by its mirror, so that the states of the
automaton are labelled by the suffixes of X . Finally merge all the final states
into one new state labelled i, and add a loop on i for every letter in A. This
automaton is deterministic and recognizes the language X̃A∗. ⊓⊔

The space and time complexities of this construction are linear in the length
of X . This automaton is then reversed to obtain a co-deterministic automaton
recognizing A∗X . For a given finite set of words X , we denote by CX this co-
deterministic automaton.

Example 1. Let us illustrate this first step on the following example.
Let A = {a, b} be the alphabet and X = {aa, aaab, bb} be a set of m = 3 words
whose sum of lengths is n = 8. The steps of the process are given in Figure 1.

ε

a b

aa ab bb

aab

aaab

a

b

a a
b

a

a

ε

a b

ab

aab

i

a b

a

a

ba

a

a, b

ε

a b

ab

aab

i

a b

a

a

b
a

a

a, b

=⇒ =⇒

Fig. 1. Co-deterministic automaton CX recognizing A∗X, where X = {aa, aaab, bb}.

4 Computing the Minimal Automaton

Once CX is built, its determinization produces the minimal automaton recog-
nizing the same language. It comes from the property used by Brzozowski’s al-
gorithm, namely that the determinization of a co-deterministic automaton gives
the minimal automaton.

According to Aho-Corasick algorithm this minimal automaton has at most
n + 1 states. It remains to efficiently manipulate sets of states in the deter-
minization process. The subset construction produces the accessible part B of
the automaton (A,P(Q), {I}, FB, δB) from an automaton A = (A, Q, I, F, δ).
The states of B are labelled by subsets of Q. For the example, this procedure
produces from the last automaton of Figure 1 the minimal automaton depicted
in Figure 2.

{i}

{i, a, aab}

{i, b}

{i, a, aab, ab, ε}

{i, b, ε}

{i, a, aab, ab, b, ε}

a
b

b

a

a

b

a

b

a

b

a

b

Fig. 2. Minimal automaton recognizing A∗X (by subset construction).

4.1 Cost of the Naive Subset Construction

When computing the subset construction, one has to handle sets of states: start-
ing from the set of initial states, all the accessible states are built from the fly,
using a depth-first traversal (for instance) of the result. At each step, given a
set of states P and a letter a, one has to compute the set δ(P, a) and then check
whether this state has already been built.

The co-deterministic automaton CX , is deterministic but for the initial state
i. And for every letter a, the image of i by a is of size at most m+1, where m is
the number of words in X . Hence, δ(P, a) is of cardinality at most m+1+|P | and
is computed in time Θ(|P |), assuming that it is done using a loop through the
elements of P . So even without taking into account the cost of checking whether
δ(P, a) has already been built, the time complexity is Ω(

∑
P |P |), where the sum

ranges over all P in the accessible part of the subset construction.
Consider X = {an−1, b}, since the states of the result would be {i}, {i, an−2},

{i, an−2, an−3}, · · ·, {i, an−2, an−3,· · ·, a}, {i, an−2, an−3,· · ·, a, ε} and {i, ε}, so
that

∑
P |P | = Ω(n2) and the time complexity of the naive subset construction

is at least quadratic.
In the sequel, we present an alternative way to compute the determinization

of CX whose time complexity is linear.

4.2 Outline of the Construction

We make use of the following observations on CX . In the last automaton of
Figure 1 when the state labelled ab is reached, a word u = v · aa has been
read, and the state aab has also been reached. This information only depends on
borders of prefixes of words in X : aa is a prefix of the word x = aaab ∈ X , and
Border(aa) = a. That way, we reach the suffix aab of x since we read a word
u = v1 · a, with v1 = v · a.

Our algorithm is based on limiting the length of the state labels of the min-
imal automaton by storing only one state per word of X , and one element to
mark the state as final or not (ε or ε/). That way, if we read aa, we only store

ab for the word x = aaab. When we check for a transition labelled by c ∈ A and
δ(ab, c) is undefined, we use the borders of prefixes of words in X as mentioned
above to find another state to check (aab in our example). We continue until
either a transition we are looking for is found, or the unique initial state i is
reached.

Let define the failure function f from X × Q \ {i, ε} × A to Q \ {ε} by
f(x, p, a) = q if δ(q, a) is defined and q is the smallest suffix of x such that
x = u · p = v · q, with u and v prefixes of x, and v is a border of u. If no such
state q exists, f(x, p, a) = i.

4.3 Precomputation of the Failure Function

Our failure function is similar to the Aho-Corasick one in [1]. The difference is
that ours is not based on suffixes but on borders. To compute it the value of
Border(v·a) for every proper prefix v of a word u ∈ X and every letter a ∈ A is
needed.

Extended border table. Let u be a word of length ℓ. We define an extended

border table from {0, 1, · · · , ℓ−1}×A to {0, 1, · · · , ℓ−1} by border ext[0][u[0]] =
0 and border ext[i][a] = |Border(u[0··i − 1]·a)| for all i ∈ {1, · · · , ℓ − 1}. Recall
that u[0 · ·i] is the prefix of u of length i + 1. Remark that |Border(u[0 · ·i])| =
|Border(u[0··i − 1]·u[i− 1])| = border ext[i − 1][u[i − 1]].

Algorithm 1 (see Figure 3) computes the extended border table for a word u
of length ℓ, considering the given alphabet A.

Table 1 depicts the border table of the word aaab. Values computed by a
usual border table algorithm are represented in bold.

Prefix w of u
with w 6= u

Letter ε a aa aaa

a 0 1 2 3
b / 0 0 0

Table 1. Extended border table for u = aaab, given A = {a, b}.

Standard propositions concerning the border table algorithm given in [7] are
extended to Algorithm 1.

Proposition 2. Extended Borders algorithm above computes the extended

border table of a given word u of length ℓ considering the alphabet A. Its space

and time complexities are linear in the length of the word u.

Failure function. f (u, p, a) is precomputed for every word u ∈ X , every proper
suffix p of u and every letter a ∈ A using Algorithm 2. The total time and space
complexities of this operation are linear in the length of X . Let us remark that
if f (u, p, a) 6= i then |δ(f (u, p, a), a)| = 1.

Algorithm 1 Extended Borders

Inputs: u ∈ X, ℓ = |u|, alphabet A
1 border ext[0][u[0]] ← 0
2 for j ← 1 to ℓ− 1 do

3 for a ∈ A do

4 i← border ext[j − 1][u[j − 1]]
5 while i ≥ 0 and a 6= u[i] do

6 if i ≤ 1 then

7 i← −1
8 else

9 i← border ext[i−1][u[i−1]]
10 end if

11 end while

12 i← i + 1
13 border ext[j][a] ← i
14 end for

15 end for

16 return border ext

For every word u ∈ X we compute its
extended border table using procedure
Extended Borders. It contains for
every proper prefix x of u and every letter
a ∈ A, |Border(x·a)|.

To compute border ext[j][a] =
|Border(u[0··j−1])·a|, we need the length
of Border(u[0··j − 1]) = Border(u[0··j −
2]·u[j − 1]). Thus |Border(u[0··j − 1])| =
border ext[j − 1][u[j − 1]].

According to Equation (1), if Border(u[0·
·i − 1]) ·a is not a prefix of u[0 · ·i − 1] ·a,
we need to find the longest border of the
prefix of u of length i.
Since Border(u[0··i−1]) = Border(u[0··i−
2]·u[i−1]), we have |Border(u[0··i−1])| =
border ext[i− 1][u[i − 1]]).

Fig. 3. Extended border table construction algorithm.

4.4 Determinization Algorithm

Let CX = (A, Q, {i}, {ε}, δ) be the co-deterministic automaton recognizing the
language A∗X as constructed in Section 3, where X = {u1, · · · , um} is a set of
m non-empty words whose sum of lengths is n. We denote by BX the accessible
part of the automaton (A, IB, QB, FB, δB), where QB = Q\{ε}m × {ε, ε/}, IB =
(i, · · · , i, ε/) and for all P ∈ FB, P = (v1, v2, · · · , vm, ε), where vr ∈ Q \{ε} for
all r ∈ {1, · · · , m}. Given a state P ∈ QB and a letter a ∈ A we use Algorithm 3
(see Figure 5) to compute δB(P, a). Note that the automaton BX is complete.

Theorem 1. BX is the minimal automaton recognizing A∗X.

Proof. (Sketch) The idea of the proof is to show that BX and the automaton
produced by the classical subset construction are isomorphic.

Denote by M = (A, QM, IM, FM, δM) the minimal automaton built by the
subset construction. Knowing a state P ∈ QB (resp. P ∈ QM) and the smallest
word u (smallest by length, and if two words have the same length we compare
them lexicographically) such that δB(IB, u) = P (resp. δM(IM, u) = P) we
construct the unique corresponding state R inM (resp. in BX).

Finally, determinizing a co-deterministic automaton produces the minimal
automaton recognizing the same language (see [5]). ⊓⊔

Example 2. Algorithm 3 produces the automaton depicted in Figure 6 that is
the minimal automaton recognizing A∗X , where X = {aa, bb, aaab}.

Algorithm 2 Failure Function

Inputs: u∈X, p proper suffix of u, a∈A
1 if p[0] = a and |p| > 1 then

2 return p
3 end if

4 j ← border ext[|u| − |p|][a]
5 if j ≤ 1 then

6 return i
7 end if

8 return x[j − 1··|u| − 1]

Let v be the prefix of u such that u = v ·p.
If δ(p, a) is defined and different than ε then
f (u, p, a) = p.
If |Border(v · a)| = 0 then f (u, p, a) = i,
where i is the unique initial state of the co-
deterministic automaton A recognizing A∗X
(see Section 3).
If |Border(v·a)| > 1 then Border(v·a) = w·a,
with w ∈ A∗. If w = ε then f (u, p, a) = i.
Otherwise, f (u, p, a) = q, with Border(v·a) =
w1 ·a and u = w1 ·q.

Fig. 4. Failure function.

5 Complexity

We analyze the complexity of our construction of the minimal automaton. The
co-deterministic automaton CX of size at most n − m + 2 recognizing A∗X is
built in time O(n), where X is a set of m words whose sum of lengths is n. As
stated before, the analysis is done for a fix m, when n tends toward infinity.

Minimizing CX produces an automaton BX whose number of states is linear
in n and our determinization process creates only states labelled with sequences
of m+1 elements. During this process we use sparse lists to manage these states.

Sparse lists. Let g : E → F be a partial function where E is a finite set.
Denote by Dom(g) the domain of g. A sparse list (see [2][Exercise 2.12 p.71]
or [6][Exercise 1.15 p.55]) is a data structure one can use to implement g and
perform the following operations in constant time: initialize g with Dom(g) = ∅,
set a value g(x) for a given x ∈ E; test whether g(x) is defined or not; find the
value for g(x) if it is defined; remove x from Dom(g).

Since the states we build are labelled by sequences of size m + 1, and each
of the first m members is either i or a proper suffix of the corresponding word
in the pattern, we use a sort of tree of sparse lists to store our states. Let
X = {u1, · · · , um} be the pattern and denote by Suff(ur) the set of all proper
suffixes of ur for 1 ≤ r ≤ m. We define a partial function g on {0, · · · , |u1| − 1}
whose values are partial functions g(|v1|) for v1 ∈ Suff(u1)∪{i}, with i the unique
initial state of the automaton AX . We consider that |i| = 0. These functions g(v1)
are defined on {0, · · · , |u2 − 1|} and their values are again partial functions we
denote by g(|v1|, |v2|) for v1 ∈ Suff(u1)∪{i} and v2 ∈ Suff(u2)∪{i}. By extention
we build functions g(|v1|, |v2|, · · · , |vm|) : {0, · · · , |u1| − 1} × {0, · · · , |u2| − 1} ×
· · ·×{0, · · · , |um|−1}×{ε, ε/} → QB where v1 ∈ Suff(u1)∪{i}, v2 ∈ Suff(u2)∪{i},
· · · , vm ∈ Suff(um)∪ {i} and QB is the set of states in the automaton BX . That
way for a given state P = (v1, v2, · · · , vm, j) ∈ QB, g(|v1|, |v2|, · · · , |vm|, j) = P .

When inserting a state P = (v1, v2, · · · , vm, j) into our data structure, the
existence of g(|v1|) is tested and if it does not exist a sparse list representing

Algorithm 3 Transition Function

Inputs: P =(v1, v2,· · ·vm, j) ∈QB, a ∈ A
1 j′ ← ε/
2 for r ∈ {1, · · ·m} do

3 v′
r ← i

4 if δ(vr, a) = ε then

5 j′ ← ε
6 end if

7 end for

8 for ℓ = 1 to m do

9 vℓ ← f (uℓ, vℓ, a)
10 if vℓ 6= i then

11 if v′

ℓ = i or |δ(vℓ, a)| < |v′

ℓ| then

12 v′

ℓ ← δ(vℓ, a)
13 end if

14 else

15 for r = 1 to s such that xr 6= ε do

16 if v′
t = i or |xr| < |v

′
t| then

17 v′
t ← xr

18 end if

19 end for

20 end if

21 end for

22 return R = (v′
1, v′

2, · · · , v′
m, j′)

We initialize the first m elements of R
to the unique initial state i in A. The
value of the last term of R is calculated
(marking the state as final or non-final).

For each member vℓ we check the value
of the failure function f(uℓ, vℓ, a).
If f(uℓ, vℓ, a) 6= i then
|δ(f(uℓ, vℓ, a), a)| = 1 and we have
found a potential value for v′

ℓ that is a
suffix of ul ∈ X. It remains to compare
it to the already existing one and store
the smallest in length different than i.

When the initial state i is reached, we
are at the beginning of all the words in
X. We define variables used in lines 15-
17 as follows. From the definition of the
automaton A, δ(i, a) = {x1, x2, · · · , xs}
where 0 ≤ s ≤ m and a · x1 ∈ X, · · · , a ·
xs ∈ X. For every couple of integers
(r1, r2) ∈ {1, · · · , s}2 such that r1 6= r2,
a · xr1

6= a · xr2
. For all r ∈ {1, · · · , s}

there exists a unique t ∈ {1, · · · , m} such
that a · xr = ut ∈ X.

Fig. 5. Transition function.

this partial function is created. Then the existence of g(|v1|)(|v2|) is checked.
The same process is repeated until a function g(|v1|, |v2|, · · · , |vm|) is found.
We test whether g(|v1|, |v2|, · · · , |vm|)(j) is defined, and if not the value for
g(|v1|, |v2|, · · · , |vm|)(j) is set to P .

Testing the existence of a state works in the same way, but if a partial function
is not found then this state is not in the data structure.

Proposition 3. When using sparse lists, the construction of the minimal au-

tomaton recognizing A∗X runs in time O(n) and requires O(n2) space where n
is the length of the pattern X.

Proof. The proof is based on the fact that the determinization produces the
minimal automaton whose number of states is at most n + 1. Since each state
requires m+1 sparse lists of size |u1|, |u2|, · · · |um|, 2, the total space complexity
is quadratic in n. The time complexity of the determinization is linear in n as
searching and inserting a state takes O(1) time, as m is a fixed integer. ⊓⊔

(i, i, i, ε/)

(a, i, aab, ε/)

(i, b, i, ε/)

(a, i, ab, ε)

(i, b, i, ε)

(a, i, b, ε)

a
b

b

a

a

b

a

b

a

b

a

b

Fig. 6. Minimal automaton recognizing A∗X (by our construction).

Remark 1. In practice a hash table can be used to store these states. Under the
hypothesis of a simple uniform hashing the average time and space complexities
of the determinization process are O(n).

The natural continuation of this work is to investigate constructions based
on Brzozowski’s algorithm in the case where m is not fixed anymore.

References

1. A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic
search. Communications of the ACM, 18(6):333–340, 1975.

2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., 1974.

3. Marie-Pierre Béal and Maxime Crochemore. Minimizing local automata. In
G. Caire and M. Fossorier, editors, IEEE International Symposium on Information
Theory (ISIT’07), number 07CH37924C, pages 1376–1380. IEEE Catalog, 2007.

4. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications
of the ACM, 20(10):62–72, 1977.

5. J. A. Brzozowski. Canonical regular expressions and minimal state graphs for
definite events. In Mathematical theory of Automata, pages 529–561. Polytechnic
Press, Polytechnic Institute of Brooklyn, N.Y., 1962. Volume 12 of MRI Symposia
Series.

6. M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge
University Press, 2007. 392 pages.

7. M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific Publishing
Company, 2002.

8. J. E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton.
In Theory of Machines and computations, pages 189–196. Academic Press, 1971.

9. J. E. Hopcroft and J. D. Ullman. Introduction To Automata Theory, Languages,
And Computation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1990.

10. D. E. Knuth, J.H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM
Journal of Computing, 6(2):323–350, 1977.

11. M. Mohri. String-matching with automata. Nordic Journal of Computing,
4(2):217–231, Summer 1997.

