"UNIVERSAL" INEQUALITIES FOR THE EIGENVALUES OF THE BIHARMONIC OPERATOR SA ÏD ILIAS AND OLA MAKHOUL

Keywords: Mathematics Subject Classification. 35P15, 58J50, 58C40, 58A10 eigenvalues, biharmonic operator, Universal inequalities, submanifolds, eigenmap. 1

In this paper, we establish universal inequalities for eigenvalues of the clamped plate problem on compact submanifolds of Euclidean spaces, of spheres and of real, complex and quaternionic projective spaces. We also prove similar results for the biharmonic operator on domains of Riemannian manifolds admitting spherical eigenmaps (this includes the compact homogeneous Riemannian spaces) and finally on domains of the hyperbolic space.

Introduction

Let (M, g) be a Riemannian manifold of dimension n and let ∆ be the Laplacian operator on M. In this paper, we will be concerned with the following eigenvalue problem for Dirichlet biharmonic operator, called the clamped plate problem:

   ∆ 2 u = λu in Ω u = ∂u ∂ν = 0 on ∂Ω, (1.1) 
where Ω is a bounded domain in M, ∆ 2 the biharmonic operator in M and ν is the outward unit normal. It is well known that the eigenvalues of this problem form a countable family 0 < λ 1 ≤ λ 2 ≤ . . . → +∞.

For the case when M = R n , in 1956, Payne, Polya and Weinberger [START_REF] Payne | On the ratio of consecutive eigenvalues[END_REF] (henceforth PPW) established the following inequality, for each k ≥ 1,

λ k+1 -λ k ≤ 8(n + 2) n 2 k k i=1 λ i .
Implicit in the PPW work, as noticed by Ashbaugh in [START_REF] Ashbaugh | Isoperimetric and universal inequalities for eigenvalues[END_REF], is the better inequality

λ k+1 -λ k ≤ 8(n + 2) n 2 k 2 k i=1 λ 1 2 i 2 . (1.2)
Later, in 1984, Hile and Yeh [START_REF] Hile | Inequalities for eigenvalues of the biharmonic operator[END_REF] extended ideas from earlier work on the Laplacian by Hile and Protter [START_REF] Hile | Inequalities for eigenvalues of the Laplacian[END_REF] and proved the better bound

n 2 k 3 2 8(n + 2) ≤ k i=1 λ 1 2 i λ k+1 -λ i k i=1 λ i 1 2 .
Implicit in their work is the stronger inequality

n 2 k 2 8(n + 2) ≤ k i=1 λ 1 2 i λ k+1 -λ i k i=1 λ 1 2 i ,
which was proved independently by Hook [START_REF] Hook | Domain-independent upper bounds for eigenvalues of elliptic operators[END_REF] and Chen and Qian [START_REF] Chen | Estimates for discrete spectrum of the laplacian operator with any order[END_REF] in 1990 (see also [START_REF] Chen | Hile-Yeh estimates of eigenvalues of polyharmonic operators[END_REF], [START_REF] Chen | On the difference of consecutive eigenvalues of uniformly elliptic operators of higher orders[END_REF] and [START_REF] Chen | On the upper bound of eigenvalues for elliptic equations with higher orders[END_REF]).

In 2003, Cheng and Yang [START_REF] Cheng | Inequalities for eigenvalues of a clamped plate problem[END_REF] obtained the following bound

k i=1 (λ k+1 -λ i ) ≤ 8(n + 2) n 2 1 2 k i=1 λ i (λ k+1 -λ i ) 1 2 . (1.3)
Very recently, Cheng, Ichikawa and Mametsuka [START_REF] Cheng | Inequalities for eigenvalues of laplacian with any order[END_REF] obtained an inequality for eigenvalues of Laplacian with any order l on a bounded domain in R n . In particular, they showed, for l = 2,

k i=1 (λ k+1 -λ i ) 2 ≤ 8(n + 2) n 2 k i=1 (λ k+1 -λ i )λ i . (1.4) 
For the case when M = S n , Wang and Xia [START_REF] Wang | Universal bounds for eigenvalues of the biharmonic operator on riemannian manifolds[END_REF] showed

k i=1 (λ k+1 -λ i ) 2 ≤ 1 n k i=1 (λ k+1 -λ i ) 2 n 2 + (2n + 4)λ 1 2 i 1 2 × k i=1 (λ k+1 -λ i ) n 2 + 4λ 1 2 i 1 2
, (1.5) from which they deduced, using a variant of Chebyshev inequality,

k i=1 (λ k+1 -λ i ) 2 ≤ 1 n 2 k i=1 (λ k+1 -λ i ) 2(n+2)λ 1 2 i +n 2 4λ 1 2 i +n 2 . (1.6)
This last inequality was also obtained, by a different method, by Cheng, Ichikawa and Mametsuka (see [START_REF] Cheng | Estimates for eigenvalues of the poly-laplacian with any order in a unit sphere[END_REF]).

On the other hand, Wang and Xia [START_REF] Wang | Universal bounds for eigenvalues of the biharmonic operator on riemannian manifolds[END_REF] also considered the problem (1.1) on domains of an n-dimensional complete minimal submanifold M of R m and proved in this case

k i=1 (λ k+1 -λ i ) 2 ≤ 8(n + 2) n 2 1 2 k i=1 (λ k+1 -λ i ) 2 λ 1 2 i 1 2 k i=1 (λ k+1 -λ i )λ 1 2 i 1 2
, (1.7) from which they deduced the following generalization of inequality (1.4) to minimal Euclidean submanifolds

k i=1 (λ k+1 -λ i ) 2 ≤ 8(n + 2) n 2 k i=1 (λ k+1 -λ i )λ i . (1.8)
Recently, Cheng, Ichikawa and Mametsuka [START_REF] Cheng | Estimates for eigenvalues of a clamped plate problem on riemannian manifolds[END_REF] extended this last inequality to any complete Riemannian submanifold M in R m and showed

k i=1 (λ k+1 -λ i ) 2 ≤ 1 n 2 k i=1 (λ k+1 -λ i ) n 2 δ + 2(n + 2)λ 1 2 i n 2 δ + 4λ 1 2 i ,
(1.9) with δ = Sup Ω |H| 2 , where H is the mean curvature of M. The goal of the first section of this article is to study the relation between eigenvalues of the biharmonic operator and the local geometry of Euclidean submanifolds M of arbitrary codimensions. The approach is based on an algebraic formula (see theorem 2.1) we proved in [START_REF] Ilias | Universal inequalities for the eigenvalues of a power of the laplace operator[END_REF]. This approach is useful for the unification and for the generalization of all the results in the literature. In fact, using this general algebraic inequality, we obtain (see theorem 2.2) the following inequality

k i=1 f (λ i ) ≤ 1 n k i=1 g(λ i ) 2(n + 2)λ 1 2 i + n 2 δ 1 2 × k i=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) 4λ 1 2 i + n 2 δ 1 2
, (1.10)

where f and g are two functions satisfying some functional conditions (see Definition 2.1), δ = Sup Ω |H| 2 and H is the mean curvature of M. We note that the family of such couples of functions is large. And particular choices for f and g lead to the known results. For instance, if we take f (x) = g(x) = (λ k+1x) 2 , then (1.10) becomes

k i=1 (λ k+1 -λ i ) 2 ≤ 1 n k i=1 (λ k+1 -λ i ) 2 2(n + 2)λ 1 2 i + n 2 δ 1 2 × k i=1 (λ k+1 -λ i ) 4λ 1 2 i + n 2 δ 1 2
, (1.11) which gives easily (see remark 2.1) inequality (1.9) of Cheng, Ichikawa and Mametsuka.

In the second section, we consider the case of manifolds admitting spherical eigenmaps and obtain similar results. As a consequence, we obtain universal inequalities for the clamped plate problem on domains of any compact homogeneous Riemannian manifold.

In the last section, we show how one can easily obtain, from the algebraic techniques used in the previous sections, universal inequalities for eigenvalues of (1.1) on domains of the hyperbolic space H n . We also observe that all our results hold if we add a potential to ∆ 2 (i.e ∆ 2 + q where q is a smooth potential). For instance, in this case instead of inequality (1.10), we obtain

k i=1 f (λ i ) ≤ 1 n k i=1 g(λ i ) 2(n + 2)λ i 1 2 + n 2 δ 1 2 × k i=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) 4λ i 1 2 + n 2 δ 1 2
, (1.12)

where

λ i = λ i -inf Ω q.
Finally, note that the case of the clamped problem with weight :

   ∆ 2 u = λ ρ u in Ω u = ∂u ∂ν = 0 on ∂Ω, (1.13) 
can be easily treated with minor changes.

Euclidean Submanifolds

Before stating the main result of this section, we introduce a family of couples of functions and a theorem obtained earlier in [START_REF] Ilias | Universal inequalities for the eigenvalues of a power of the laplace operator[END_REF], which will play an essential role in the proofs of all our results. Definition 2.1. Let λ > 0. A couple (f, g) of functions defined on ]0, λ[ belongs to ℑ λ provided that 1. f and g are positive, 2. f and g satisfy the following condition, for any

x, y ∈]0, λ[ such that x = y, f (x) -f (y) x -y 2 + f (x) 2 g(x)(λ -x) + f (y) 2 g(y)(λ -y) g(x) -g(y)
xy ≤ 0.

(2.1)

A direct consequence of our definition is that g must be nonincreasing. If we multiply f and g of ℑ λ by positive constants the resulting functions are also in ℑ λ . In the case where f and g are differentiable, one can easily deduce from (2.1) the following necessary condition:

ln f (x) ′ 2 ≤ -2 λ -x ln g(x) ′ .
This last condition helps us to find many couples (f, g) satisfying the conditions 1) and 2) above. Among them, we mention 1, (λx) α / α ≥ 0 ,

(λ -x), (λ -x) β / β ≥ 1 2 , (λ -x) δ , (λ -x) δ / 0 < δ ≤ 2 .
Let H be a complex Hilbert space with scalar product ., . and corresponding norm . . For any two operators A and B, we denote by [A, B] their commutator, defined by [A, B] = AB -BA.

Theorem 2.1. Let A : D ⊂ H -→ H be a self-adjoint operator defined on a dense domain D, which is semibounded below and has a discrete spectrum λ 1 ≤ λ 2 ≤ λ 3 .... Let {T p : D -→ H} n p=1 be a collection of skew-symmetric operators, and {B p : T p (D) -→ H} n p=1 be a collection of symmetric operators, leaving D invariant. We denote by {u i } ∞ i=1 a basis of orthonormal eigenvectors of A, u i corresponding to λ i . Let k ≥ 1 and assume that λ k+1 > λ k . Then, for any

(f, g) in ℑ λ k+1 k i=1 n p=1 f (λ i ) [T p , B p ]u i , u i 2 (2.2) ≤ 4 k i=1 n p=1 g(λ i ) [A, B p ]u i , B p u i k i=1 n p=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) T p u i 2 .
Our first result is the following application of this inequality to the eiganvalues of the clamped plate problem (1.1) on a domain of a Euclidean submanifold :

Theorem 2.2. Let X : M -→ R m be an isometric immersion of an n-dimensional Riemannian manifold M in R m .
Let Ω be a bounded domain of M and consider the clamped plate problem (1.1) on it. For any k ≥ 1 such that λ k+1 > λ k and for any (f, g) in ℑ λ k+1 , we have

k i=1 f (λ i ) ≤ 2 n k i=1 g(λ i ) 2(n + 2)λ 1 2 i + n 2 δ 1 2 × k i=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) λ 1 2 i + n 2 4 δ 1 2 , (2.3) 
where δ = sup Ω |H| 2 and H is the mean curvature vector field of the immersion X (i.e which is given by 1 n trace h, where h is the second fundamental form of X).

Proof. To prove this theorem, we apply inequality (2.2) of Theorem 2.1 with A = ∆ 2 , B p = X p and T p = [∆, X p ], p = 1, . . . , m, where X 1 , . . . , X m are the components of the immersion X. This gives

k i=1 m p=1 f (λ i ) [[∆, X p ], X p ]u i , u i L 2 2 (2.4) ≤ 4 k i=1 m p=1 g(λ i ) [∆ 2 , X p ]u i , X p u i L 2 k i=1 m p=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) [∆, X p ]u i
where u i are the L 2 -normalized eigenfunctions. First we have, for any p = 1, . . . , m,

[∆ 2 , X p ]u i =∆ 2 X p u i + 2∇∆X p .∇u i + 2∆(∇X p .∇u i ) + 2∆X p ∆u i + 2∇X p .∇∆u i . Thus [∆ 2 , X p ]u i , X p u i L 2 = Ω u 2 i X p ∆ 2 X p + 2 Ω X p u i ∇∆X p .∇u i + 2 Ω X p u i ∆(∇X p .∇u i ) + 2 Ω X p u i ∆X p ∆u i + 2 Ω X p u i ∇X p .∇∆u i (2.5) = Ω ∆X p ∆ X p u 2 i -2 Ω div X p u i ∇u i ∆X p + 2 Ω ∆ X p u i ∇X p .∇u i + 2 Ω X p ∆X p u i ∆u i -2 Ω div X p u i ∇X p ∆u i .
(2.6)

A straightforward calculation gives [∆ 2 , X p ]u i , X p u i L 2 = 4 Ω u i ∆X p ∇X p .∇u i + Ω ∆X p 2 u 2 i + 4 Ω ∇X p .∇u i 2 -2 Ω |∇X p | 2 u i ∆u i . (2.7)
Since X is an isometric immersion, we have

nH = (∆X 1 , . . . ,∆X m ), m p=1 u i ∆X p ∇X p .∇u i = 0 and m p=1 ∇X p .∇u i 2 = |∇u i | 2 . (2.8)
Incorporating these identities in (2.7) and summing on p, from 1 to m, we obtain

m p=1 [∆ 2 , X p ]u i , X p u i L 2 = 4 Ω |∇u i | 2 -2n Ω u i ∆u i + n 2 Ω |H| 2 u 2 i = 2(n + 2) Ω u i (-∆u i ) + n 2 Ω |H| 2 u 2 i ≤ 2(n + 2) Ω (-∆u i ) 2 1 2 Ω u 2 i 1 2 + n 2 Ω |H| 2 u 2 i (2.9) =2(n + 2)λ 1 2 i + n 2 Ω |H| 2 u 2 i ≤2(n + 2)λ 1 2 i + n 2 δ, (2.10) 
where we used the Cauchy-Schwarz inequality to obtain (2.9) and where δ = sup Ω |H| 2 . On the other hand, we have

[∆, X p ]u i = 2∇X p .∇u i + u i ∆X p , then m p=1 [∆, X p ]u i 2 L 2 = m p=1 Ω 2∇X p .∇u i + u i ∆X p 2 =4 m p=1 Ω ∇X p .∇u i 2 + 4 m p=1 Ω u i ∆X p ∇X p .∇u i + m p=1 Ω (∆X p ) 2 u 2 i .
Using identities (2.8), we obtain

m p=1 [∆, X p ]u i 2 L 2 =4 Ω |∇u i | 2 + n 2 Ω |H| 2 u 2 i =4 Ω (-∆u i ).u i + n 2 Ω |H| 2 u 2 i ≤4 Ω (-∆u i ) 2 1 2 Ω u 2 i 1 2 + n 2 δ =4λ 1 2 i + n 2 δ. (2.11) A direct calculation gives [[∆, X p ], X p ]u i , u i L 2 = Ω ∆(X 2 p u i )-2X p ∆(X p u i )+X 2 p ∆u i u i = 2 Ω |∇X p | 2 u 2 i . Therefore m p=1 [[∆, X p ], X p ]u i , u i L 2 = 2 m p=1 Ω |∇X p | 2 u 2 i = 2n. (2.12)
To conclude, we simply use the estimates (2.10), (2.11) and (2.12) together with inequality (2.4).

Remark 2.1.

• As indicated in the end of the introduction, Theorem 2.2 holds for a general operator ∆ 2 +q, where q is a smooth potential. Indeed, this is an immediate consequence of the fact that [∆ 2 + q, X p ] = [∆ 2 , X p ] and all the proof of Theorem 2.2 works in this situation. The only modification is in the estimation of the term Ω |∇u i | 2 . In fact, in this case, we have

Ω |∇u i | 2 ≤ Ω (-∆u i ) 2 1 2 Ω u 2 i 1 2 = λ i - Ω qu 2 i 1 2 ≤ λ i 1 2
,

where λ i = λ i -inf Ω q.
Taking into account this modification in inequalities (2.9) and (2.11), we obtain inequality (1.12).

• If f (x) = g(x) = (λ k+1 -x) 2 ,

then inequality (2.3) extends

inequality (1.7) of Wang and Xia to any Riemannian submanifolds of R m . We also observe that, by using a Chebyshev inequality (for instance the one of Lemma 1 in [START_REF] Cheng | Inequalities for eigenvalues of laplacian with any order[END_REF]), inequality (1.9) of Cheng, Ishikawa and Mametsuka can be easily deduced from inequality (2.3).

• If f (x) = g(x) 2 = (λ k+1 -x), then inequality (2.

3) generalizes inequality (1.3) of Cheng and Yang to the case of Euclidean submanifolds.

Using the standard emdeddings of the rank one compact symmetric spaces in a Euclidean space (see for instance Lemma 3.1 in [START_REF] Soufi | Universal inequalities for the eigenvalues of laplace and schrodinger operators on submanifolds[END_REF] for the values of |H| 2 of these embeddings), we can extend easily the previous theorem to domains or submanifolds of these symmetric spaces and obtain Theorem 2.3. Let M be the sphere S m , the real projective space RP m , the complex projective space CP m or the quaternionic projective space QP m endowed with their respective metrics. Let (M, g) be a compact Riemannian manifold of dimension n and let X : M -→ M be an isometric immersion of mean curvature H. Consider the clamped plate problem on a bounded domain Ω of M. For any k ≥ 1 such that λ k+1 > λ k and for any (f, g) ∈ ℑ λ k+1 , we have

k i=1 f (λ i ) ≤ 2 n k i=1 g(λ i ) 2(n + 2)λ 1 2 i + n 2 δ ′ 1 2 × k i=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) λ 1 2 i + n 2 4 δ ′ 1 2 , (2.13 
)

where δ ′ = sup(|H| 2 + 1) if M = S m , δ ′ = sup(|H| 2 + d(n)), where d(n) =      2(n+1) n if M = RP m , 2(n+2) n if M = CP m , 2(n+4) n if M = QP m .
Remark 2.2.

• We observe (as in Remark 3.2 of [START_REF] Soufi | Universal inequalities for the eigenvalues of laplace and schrodinger operators on submanifolds[END_REF]) that in some special geometrical situations, the constant d(n) in the inequality of Theorem 2.3 can be replaced by a sharper one. For instance, when 2 , and M is a sphere, (2.13) generalizes to submanifolds inequality (1.5) established by Wang and Xia for spherical domains. • As for Theorem 2.2, the result of Theorem 2.3 holds for a more general operator ∆ 2 + q, with the same modification (i.e λi

M = CP m and -M is odd-dimensional, then one can replace d(n) by d ′ (n) = 2 n (n + 2 -1 n ), -X(M) is totally real, then d(n) can be replaced by d ′ (n) = 2(n+1) n . • When f (x) = g(x) = (λ k+1 -x)
1 2 instead of λ 1 2
i ).

Manifolds admitting spherical eigenmaps

In this section, as before, we let (M, g) be a Riemannian manifold and Ω be a bounded domain of M. A map X : (M, g) → S m-1 is called an eigenmap if its components X 1 , X 2 , . . . , X m are all eigenfunctions associated to the same eigenvalue λ of the Laplacian of (M, g). This is equivalent to say that the map X is a harmonic map from (M, g) into S m-1 with constant energy λ i.e m p=1 |∇X p | 2 = λ . The most important examples of such manifolds M are the compact homogeneous Riemannian manifolds. In fact, they admit eigenmaps for all the positive eigenvalues of their Laplacian (see [START_REF] Li | Eigenvalue estimates on homogeneous manifolds[END_REF]). Theorem 3.1. Let λ be an eigenvalue of the Laplacian of (M, g) and suppose that (M, g) admits an eigenmap X associated to this eigenvalue λ. Let Ω be a bounded domain of M and consider the clamped plate problem (1.1) on it. For any k ≥ 1 such that λ k+1 > λ k and for any (f, g) ∈ ℑ λ k+1 , we have

k i=1 f (λ i ) ≤ k i=1 g(λ i ) λ + 6λ 1 2 i 1 2 k i=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) λ + 4λ 1 2 i 1 2 . (3.1)
Proof. As in the proof of Theorem 2.2, we apply Theorem 2.1 with

A = ∆ 2 , B p = X p and T p = [∆, X p ], p = 1, . . . , m, to obtain k i=1 m p=1 f (λ i ) [[∆, X p ], X p ]u i , u i L 2 2 ≤ 4 k i=1 m p=1 g(λ i ) [∆ 2 , X p ]u i , X p u i L 2 k i=1 m p=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) [∆, X p ]u i 2 L 2 , (3.2) 
where {u i } ∞ i=1 is a complete L 2 -orthonormal basis of eigenfunctions of ∆ 2 associated to {λ i } ∞ i=1 . As before, we have

m p=1 [[∆, X p ], X p ]u i , u i L 2 = 2 m p=1 Ω |∇X p | 2 u 2 i . Since m p=1 |∇X p | 2 = λ, m p=1 X 2 p = 1 and ∆X p = -λX p , (3.3) 
we have

m p=1 [[∆, X p ], X p ]u i , u i L 2 = 2λ (3.4) and m p=1 [∆, X p ]u i 2 L 2 = m p=1 Ω [∆, X p ]u i 2 (3.5) = 4 Ω m p=1 (∇X p .∇u i ) 2 + Ω m p=1 (∆X p ) 2 u 2 i + 4 Ω m p=1 u i ∆X p ∇X p .∇u i ≤ 4 Ω m p=1 |∇X p | 2 |∇u i | 2 + λ 2 Ω m p=1 X 2 p u 2 i -2λ Ω u i ∇ m p=1 X 2 p .∇u i (3.6) = 4λ Ω (-∆u i )u i + λ 2 ≤ 4λ Ω (-∆u i ) 2 1 2 Ω u 2 i 1 2 + λ 2 (3.7) = 4λλ 1 2 i + λ 2 , (3.8) 
where we used the Cauchy-Schwarz inequality to obtain (3.6) and (3.7).

Similarly we infer, from identities (2.7) and (3.3),

m p=1 [∆ 2 , X p ]u i , X p u i L 2 =λ 2 Ω u 2 i -λ Ω ∇ m p=1 X 2 p .∇u 2 i + 4 m p=1 Ω ∇X p .∇u i 2 + 2λ Ω (-∆u i )u i ≤ λ 2 + 4 Ω m p=1 |∇X p | 2 |∇u i | 2 + 2λ Ω -∆u 2 1 2 Ω u 2 i 1 2
≤λ 2 + 4λλ

1 2 i + 2λλ 1 2 i =λ 2 + 6λλ 1 2 i , (3.9) 
Incorporating (3.4), (3.8) and (3.9) in inequality (3.2), we get the statement of the theorem.

An immediate consequence of Theorem 3.1 is the following Corollary 3.1. Let (M, g) be a compact homogeneous Riemannian manifold without boundary and let λ 1 be the first non zero eigenvalue of its Laplacian . Then inequality of Theorem 3.1 holds with λ = λ 1 .

Remark 3.1. As before, one can get a similar result for the operator ∆ 2 + q.

domains in the hyperbolic space

We turn next to the case of a domain Ω of a hyperbolic space. It is easy to establish a universal inequality for eigenvalues of the clamped plate problem (1.1)on Ω in the vein of the preceding ones. Unfortunately, until now we have not succeeded in obtaining a simple generalization for the case of domains of hyperbolic submanifolds. In what follows, we take the half-space model for H n i.e

H n = {x = (x 1 , x 2 , . . . , x n ) ∈ R n ; x n > 0}
with the standard metric

ds 2 = dx 2 1 + dx 2 2 + . . . + dx 2 n x 2 n .
We note that in terms of the coordinates (x i ) n i=1 , the Laplacian of H n is given by

∆ = x 2 n n j=1 ∂ 2 ∂x j ∂x j + (2 -n)x n ∂ ∂x n . Theorem 4.1. For any k ≥ 1 such that λ k+1 > λ k , the eigenvalues λ ′ i s of the clamped problem (1.1) on the bounded domain Ω of H n must satisfy, for any (f, g) ∈ ℑ λ k+1 , k i=1 f (λ i ) ≤ k i=1 g(λ i ) 6λ 1 2 i -(n -1) 2 1 2 × k i=1 (f (λ i )) 2 g(λ i )(λ k+1 -λ i ) 4λ 1 2 i -(n -1) 2 1 2 , (4.1) 
Proof. Theorem 2.1 remains valid for A = ∆ 2 , B p = F = ln x n and T p = [∆, F ], for all p = 1, . . . , n. Thus, denoting by u i the eigenfunction corresponding to λ i , we have

k i=1 f (λ i ) [[∆, F ], F ]u i , u i L 2 2 ≤ 4 k i=1 g(λ i ) [∆ 2 , F ]u i , F u i L 2 k i=1 (f (λ i )) 2 g(λ i )(λ k+1 -λ i ) [∆, F ]u i 2 L 2 . (4.2)
Let us start by the calculation of

[[∆, F ], F ]u i , u i L 2 = Ω [∆, F ](F u i ) -F [∆, F ]u i u i = Ω ∆(F 2 u i ) -2F ∆(F u i ) + F 2 ∆u i u i .
We note that ∆F = 1n and |∇F | 

  F ], F ]u i , u i L 2 = 2 , F ]u i =∆ 2 (F u i ) -F ∆ 2 u i =∆(∆F u i + 2∇F.∇u i + F ∆u i ) -F ∆ 2 u i =2(1n)∆u i + 2∆(∇F.∇u i ) + 2∇F.∇∆u i ,

	On the other hand, using again identities (4.3), we obtain
	[∆, F ]u i	2 L 2 =	(∆F u i + 2∇F.∇u i ) 2
		Ω				
		=	(∆F ) 2 u 2 i + 4	(∇F.∇u i ) 2 + 4	∆F u i ∇F.∇u i
		Ω			Ω		Ω	(4.5)
		=(1 -n) 2 + 4	
							(4.6)
	But					
							u 2 i ∆F,
							Ω
	hence			Ω	u i ∇F.∇u i =	n -1 2	.	(4.7)
							1	1
							u 2 i	2	(-∆u i ) 2	2	(4.8)
						Ω	Ω
		=4λ	1 2 i -(n -1) 2		(4.9)
	Now,					
	[∆ 2 (4.10)
	thus					
					[∆ 2 , F ]u i , F u i L 2
	= 2(1 -n)				
							2 = 1.	(4.3)
	Thus a direct calculation gives	
		[[∆, Ω	|∇F | 2 u 2 i = 2.	(4.4)

Ω (∇F.∇u i ) 2 + 4(1n) Ω u i ∇F.∇u i . Ω u i ∇F.∇u i = -Ω u i ∇F.∇u i -

Then we infer, from (4.3), (4.6) and (4.7),

[∆, F ]u i 2 L 2 ≤ -(n -1) 2 + 4 Ω |∇F | 2 |∇u i | 2 = -(n -1) 2 + 4 Ω |∇u i | 2 = -(n -1) 2 + 4 Ω u i (-∆u i ) ≤ -(n -1) 2 + 4 Ω F u i ∆u i + 2 Ω F u i ∆(∇F.∇u i ) + 2 Ω F u i ∇F.∇∆u i = 2(1n) Ω F u i ∆u i + 2 Ω ∆(F u i )∇F.∇u i -2 Ω div(F u i ∇F )∆u i = 2 Ω ∆F u i ∇F.∇u i + 4 Ω (∇F.∇u i ) 2 -2 Ω |∇F | 2 u i ∆u i .

We infer, from (4.3) and (4.7),

Inequality (4.2) along with (4.4), (4.9) and (4.11) gives the statement of the theorem.

Remark 4.1.

• It will be interesting to look for an extension of Theorem 4.1 to domains of hyperbolic submanifolds.

• Note that our method works for any bounded domain Ω of a Riemannian manifold admitting a function such that |∇h| is constant and |∆h| ≤ C, where C is a constant. • As before, we observe that we have the same statement as in Theorem 4.1 for the operator ∆ 2 + q (it suffices to replace λ