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In this paper, we obtain a new abstract formula relating eigenvalues of a self-adjoint operator to two families of symmetric and skew-symmetric operators and their commutators. This formula generalizes earlier ones obtained by Harrell, Stubbe, Hook, Ashbaugh, Hermi, Levitin and Parnovski. We also show how one can use this abstract formulation both for giving different and simpler proofs for all the known results obtained for the eigenvalues of a power of the Laplace operator (i.e. the Dirichlet Laplacian, the clamped plate problem for the bilaplacian and more generally for the polyharmonic problem on a bounded Euclidean domain) and to obtain new ones. In a last paragraph, we derive new bounds for eigenvalues of any power of the Kohn Laplacian on the Heisenberg group.

Introduction

Let Ω be a bounded domain of an n-dimensional Euclidean space R n and consider the following eigenvalue problem for the polyharmonic operator :

   (-∆) l u = λu in Ω,

u = ∂u ∂ν = • • • = ∂ l-1 u ∂ν l-1 = 0 on ∂Ω, (1.1) 
where ∆ is the Laplace operator and ν is the outward unit normal.

It is known that this eigenvalue problem has a discrete spectrum,

0 < λ 1 < λ 2 ≤ • • • ≤ λ k ≤ . . . → +∞
In this paper we will be interested in "Universal"(i.e. not depending on the domain) inequalities for the eigenvalues of such a polyharmonic problem and especially we will show how to derive them from a general abstract algebraic formula in the spirit of the work of Harrell, Stubbe, Ashbaugh and Hermi. Let us begin by giving a short and non-exhaustive presentation of the known results in this field.

The first result concerns the Dirichlet Laplacian (i.e. when l = 1). In this case, Polya, Payne and Weinberger (henceforth PPW) proved in 1955 the following bound (see [START_REF] Payne | On the ratio of consecutive eigenvalues[END_REF] for dimension 2 and [START_REF] Thompson | On the ratio of consecutive eigenvalues in N -dimensions[END_REF] for all dimensions), for k = 1, 2, . . .

λ k+1 -λ k ≤ 4 nk k i=1 λ i , (1.2) 
This result was improved in 1980 by Hile and Protter [START_REF] Hile | Inequalities for eigenvalues of the Laplacian[END_REF] (henceforth HP) who showed that, for k = 1, 2, . . .

nk 4 ≤ k i=1 λ i λ k+1 -λ i . (1.3) 
In 1991, H.C.Yang (see [START_REF] Yang | An estimate of the difference between consecutive eigenvalues[END_REF] and more recently [START_REF] Cheng | Estimates on eigenvalues of laplacian[END_REF]) proved

k i=1 (λ k+1 -λ i ) 2 ≤ 4 n k i=1 λ i (λ k+1 -λ i ), (1.4) 
which is, until now, the best improvement of the PPW inequality. From inequality (1.4), we can infer a weaker form

λ k+1 ≤ (1 + 4 n ) 1 k k i=1 λ i . (1.5) 
We shall refer to inequality (1.4) as Yang's first inequality (or simply Yang inequality) and to inequality (1.5) as Yang's second inequality.

The comparison of all these inequalities (see [START_REF] Ashbaugh ; Hile-Protter | The universal eigenvalue bounds of Payne-Pólya-Weinberger[END_REF]) can be summarized in Yang 1 =⇒ Yang 2 =⇒ HP =⇒ PPW When l = 2, the eigenvalue problem (1.1) for the bilaplacian is the clamped plate problem. In the same paper as before [START_REF] Payne | On the ratio of consecutive eigenvalues[END_REF], Polya, Payne and Weinberger proved the following analog of the formula (1.2)

λ k+1 -λ k ≤ 8(n + 2) n 2 k k i=1 λ i . (1.6) 
And as was noticed by Ashbaugh (see [START_REF] Ashbaugh | Isoperimetric and universal inequalities for eigenvalues[END_REF] inequality (3.56)), there is a better inequality which was implicit in the PPW work,

λ k+1 -λ k ≤ 8(n + 2) n 2 k 2 k i=1 λ 1 2 i 2 .
In 1984, Hile and Yeh [START_REF] Hile | Inequalities for eigenvalues of the biharmonic operator[END_REF] extended the approach used for the Laplacian in [START_REF] Hile | Inequalities for eigenvalues of the Laplacian[END_REF] and proved the sharpest bound

n 2 k 3 2 8(n + 2) ≤ k i=1 λ 1 2 i λ k+1 -λ i k i=1 λ i 1 2
.

(1.7)

Then in 1990, Hook [START_REF] Hook | Domain-independent upper bounds for eigenvalues of elliptic operators[END_REF], Chen and Qian [START_REF] Chen | Estimates for discrete spectrum of the laplacian operator with any order[END_REF] proved independently the following stronger inequality which was again implicit in the work of Hile and Yeh (see also [START_REF] Ashbaugh | Isoperimetric and universal inequalities for eigenvalues[END_REF], [START_REF] Chen | On the difference of consecutive eigenvalues of uniformly elliptic operators of higher orders[END_REF], [START_REF] Chen | On the upper bound of eigenvalues for elliptic equations with higher orders[END_REF] and [START_REF] Chen | Hile-Yeh estimates of eigenvalues of polyharmonic operators[END_REF])

n 2 k 2 8(n + 2) ≤ k i=1 λ 1 2 i λ k+1 -λ i k i=1 λ 1 2 i . (1.8) 
Using Chebyshev inequality, Ashbaugh (see [START_REF] Ashbaugh | Isoperimetric and universal inequalities for eigenvalues[END_REF] inequality (3.60)) deduces from the preceding inequality (1.8), the following HP version which is weaker and more esthetically appealing,

n 2 k 8(n + 2) ≤ k i=1 λ i λ k+1 -λ i . (1.9) 
Recently, Cheng and Yang [START_REF] Cheng | Inequalities for eigenvalues of a clamped plate problem[END_REF] established the following Yang version

k i=1 (λ k+1 -λ i ) ≤ 8(n + 2) n 2 1 2 k i=1 λ i (λ k+1 -λ i ) 1 2 .
(1.10)

For any l, the PPW inequality is given by

λ k+1 -λ k ≤ 4l(2l + n -2) n 2 k 2 k i=1 λ 1 l i k i=1 λ l-1 l i .
Its HP improvement was proved independently by Hook [START_REF] Hook | Domain-independent upper bounds for eigenvalues of elliptic operators[END_REF] and Chen and Qian [START_REF] Chen | Estimates for discrete spectrum of the laplacian operator with any order[END_REF], it reads

n 2 k 2 4l(2l + n -2) ≤ k i=1 λ 1 l i λ k+1 -λ i k i=1 λ l-1 l i . (1.11)
As in the case l = 2 (inequality (1.9)), this reduces to the weaker form

n 2 k 4l(2l + n -2) ≤ k i=1 λ i λ k+1 -λ i . (1.12)
In 2007, Wu and Cao [START_REF] Wu | Estimates for eigenvalues of Laplacian operator with any order[END_REF] generalized the inequality (1.10) of Cheng and Yang to the polyharmonic problem and obtained

k i=1 (λ k+1 -λ i ) ≤ (1.13) 1 n (4l(n + 2l -2)) 1 2 k i=1 (λ k+1 -λ i ) 1 2 λ l-1 l i 1 2 k i=1 (λ k+1 -λ i ) 1 2 λ 1 l i 1 2
.

This inequality is sharper than inequality (1.11)(see [START_REF] Wu | Estimates for eigenvalues of Laplacian operator with any order[END_REF]). Very recently, Cheng, Ichikawa and Mametsuka [START_REF] Cheng | Inequalities for eigenvalues of laplacian with any order[END_REF] derived the following Yang type inequality for the polyharmonic operator (i.e. such that for l = 1, we have the Yang inequality (1.4))

k i=1 (λ k+1 -λ i ) 2 ≤ 4l(2l + n -2) n 2 k i=1 (λ k+1 -λ i )λ i . (1.14)
All the classical proofs of these inequalities are based on tricky and careful choices of trial functions. For a more comprehensive and general approach, it is important to see if all these inequalities can be deduced using purely algebraic arguments involving eigenvalues and eigenfunctions of an abstract self-adjoint operator acting on a Hilbert space. In the case of the Laplacian (i.e. l = 1), this was done by Harrell [START_REF] Harrell | General bounds for the eigenvalues of Schrödinger operators[END_REF][START_REF] Evans | Some geometric bounds on eigenvalue gaps[END_REF], Harrell and Michel [START_REF] Harrell | Erratum to: "Commutator bounds for eigenvalues, with applications to spectral geometry[END_REF][START_REF] Harrell | Commutator bounds for eigenvalues of some differential operators[END_REF], Harrell and Stubbe [START_REF] Harrell | On trace identities and universal eigenvalue estimates for some partial differential operators[END_REF], and Ashbaugh and Hermi [START_REF] Ashbaugh | A unified approach to universal inequalities for eigenvalues of elliptic operators[END_REF]. For the polyharmonic problem (i.e. general l), Hook [START_REF] Hook | Domain-independent upper bounds for eigenvalues of elliptic operators[END_REF] generalized the argument of Hile and Protter [START_REF] Hile | Inequalities for eigenvalues of the Laplacian[END_REF] in an abstract setting. Later, this abstract formulation of Hook was simplified and improved by Ashbaugh and Hermi [START_REF] Ashbaugh | Universal inequalities for higher-order elliptic operators[END_REF]. In fact, they obtained the following inequality relating eigenvalues of a self-adjoint operator A, to two families of symmetric operators B ′ p s, skew-symmetric operators T ′ p s, p = 1, . . . , n and their commutators (for a precise statement with detailed assumptions, see Theorem 2.2 of [START_REF] Ashbaugh | Universal inequalities for higher-order elliptic operators[END_REF]), .15) But this abstract inequality, as was observed by Ashbaugh and Hermi in the end of the third paragraph of their article [START_REF] Ashbaugh | Universal inequalities for higher-order elliptic operators[END_REF], could not recover more than the HP version of the universal inequalities (i.e. inequalities (1.11) and (1.12)).

1 4 k i=1 n p=1 [B p , T p ]u i , u i 2 k i=1 n p=1 [A, B p ]u i , B p u i ≤ k i=1 n p=1 T p u i , T p u i λ k+1 -λ i . ( 1 
The main goal of the present paper is to prove the following abstract inequality (with the same assumptions as those for the Ashbaugh-Hermi inequality (1.15))which generalizes (1.15) and fills this gap

k i=1 n p=1 f (λ i ) [T p , B p ]u i , u i 2 (1.16) ≤ 4 k i=1 n p=1 g(λ i ) [A, B p ]u i , B p u i k i=1 n p=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) T p u i 2 ,
where f and g are two functions satisfying some functional conditions (see Definition (2.1)). The family of such couples of functions is large and particular choices for f and g give many of the known universal inequalities. For instance, in the case of the polyharmonic problem, if we take f (x) = g(x) = (λ k+1x) 

k i=1 n p=1 f (λ i ) [A, B p ]u i , B p u i 2 ≤ k i=1 n p=1 g(λ i ) [A, B p ]u i , B p u i k i=1 n p=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) [A, B p ] u i 2 .
(1.17)

Using this last inequality, with particular choices of f and g as before, one can recover many of the known universal inequalities for eigenvalues of Laplace or Schrödinger operators.

In the last section of this paper, we show how one can use the inequality (1.16) to derive new universal bounds, of Yang type, for eigenvalues of the Kohn Laplacian on the Heisenberg group, with any order. These bounds are stronger than the earlier bounds obtained by Niu and Zhang in [START_REF] Niu | Payne-Polya-Weinberger type inequalities for eigenvalues of nonelliptic operators[END_REF].

The abstract formulation

Before stating the main result of this section, we introduce a special family of couples of functions which will play an important role in our formulation.

Definition 2.1. Let λ > 0. A couple (f, g) of functions defined on ]0, λ[ belongs to ℑ λ provided that 1. f and g are positive, 2. f and g satisfy the following condition, for any x, y ∈]0, λ[ such that x = y,

f (x) -f (y) x -y 2 + f (x) 2 g(x)(λ -x) + f (y) 2 g(y)(λ -y) g(x) -g(y)
xy ≤ 0.

(2.1)

A direct consequence of our definition is that g must be nonincreasing. If we multiply f and g of ℑ λ by positive constants the resulting functions are also in ℑ λ . In the case where f and g are differentiable, one can easily deduce from (2.1) the following necessary condition:

ln f (x) ′ 2 ≤ -2 λ -x ln g(x) ′ .
This last condition helps us to find many couples (f, g) satisfying the conditions 1) and 2) above. Among them, we mention 1, (λx) α / α ≥ 0 ,

(λ -x), (λ -x) β / β ≥ 1 2 , (λ -x) δ , (λ -x) δ / 0 < δ ≤ 2 .
and (λx) α , (λx) β / α < 0, 1 ≤ β, and α 2 ≤ β .

Let H be a complex Hilbert space with scalar product ., . and corresponding norm . . For any two operators A and B, we denote by [A, B] their commutator, defined by [A, B] = AB -BA.

Theorem 2.1. Let A : D ⊂ H -→ H be a self-adjoint operator defined on a dense domain D, which is semibounded below and has a discrete spectrum λ 1 ≤ λ 2 ≤ λ 3 .... Let {T p : D -→ H} n p=1 be a collection of skew-symmetric operators, and {B p : T p (D) -→ H} n p=1 be a collection of symmetric operators, leaving D invariant. We denote by {u i } ∞ i=1 a basis of orthonormal eigenvectors of A, u i corresponding to λ i . Let k ≥ 1 and assume that λ k+1 > λ k . Then, for any

(f, g) in ℑ λ k+1 k i=1 n p=1 f (λ i ) [T p , B p ]u i , u i 2 (2.2) ≤ 4 k i=1 n p=1 g(λ i ) [A, B p ]u i , B p u i k i=1 n p=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) T p u i 2 .
Proof of Theorem 2.1. For each i, we consider the vectors φ p i , given by

φ p i = B p u i - k j=1 a p ij u j
where a p ij := B p u i , u j , p = 1, ..., n. We have

φ p i , u j = 0, (2.3) 
for all j = 1, ..., k. Taking φ p i as a trial vector in the Rayleigh-Ritz ratio, we obtain

λ k+1 ≤ Aφ p i , φ p i φ p i , φ p i . (2.4) 
Since B p is symmetric, for all p = 1, ..., n, we have a p ij = a p ji . Moreover, using the orthogonality conditions (2.3), we obtain

φ p i 2 = φ p i , B p u i - k j=1 a p ij u j = φ p i , B p u i = B p u i - k j=1 a p ij u j , B p u i = B p u i 2 - k j=1 a p ij B p u i , u j = B p u i 2 - k j=1 a p ij 2 (2.5)
and

Aφ p i , φ p i = AB p u i - k j=1 λ j a p ij u j , φ p i = AB p u i , φ p i = AB p u i , B p u i - k j=1 a p ij AB p u i , u j = [A, B p ]u i , B p u i + B p Au i , B p u i - k j=1 λ j a p ij 2 = [A, B p ]u i , B p u i + λ i B p u i 2 - k j=1 λ j a p ij 2 . (2.6)
Hence, inequality (2.4) reduces to

λ k+1 φ p i 2 ≤ [A, B p ]u i , B p u i + λ i B p u i 2 - k j=1 λ j a p ij 2 .
(2.7)

On the other hand, we observe that, for p = 1,

• • • , n, -2 T p u i , φ p i = -2 T p u i , B p u i + 2 T p u i , k j=1 a p ij u j = 2 u i , T p B p u i + 2 k j=1 a p ij T p u i , u j = 2 u i , T p B p u i + 2 k j=1 a p ij c p ij , (2.8) 
where

c p ij = T p u i , u j . Note that, since T p is skew-symmetric, we have c p ij = -c p ji for 1 ≤ p ≤ n.
Therefore, using (2.3) and taking the real part of both sides of (2.8), we obtain, for any constant

α i > 0, 2Re T p B p u i , u i + 2 k j=1 Re a p ij c p ij = -2Re φ p i , T p u i = 2Re φ p i , -T p u i + k j=1 c p ij u j ≤ α i φ p i 2 + 1 α i -T p u i + k j=1 c p ij u j 2 = α i φ p i 2 + 1 α i T p u i 2 - k j=1 c p ij 2 .
(2.9)

Multiplying (2.9) by f (λ i ) and taking

α i = α(λ k+1 -λ i )g(λ i ) f (λ i )
, where α is a positive constant and i ≤ k, we infer from (2.7)

2f (λ i ) Re T p B p u i , u i + k j=1 Re a p ij c p ij ≤ α i f (λ i ) φ p i 2 + 1 α i f (λ i ) T p u i 2 - k j=1 c p ij 2 = α(λ k+1 -λ i )g(λ i ) φ p i 2 + 1 α f (λ i ) 2 (λ k+1 -λ i )g(λ i ) T p u i 2 - k j=1 c p ij 2 ≤ αg(λ i ) [A, B p ]u i , B p u i + αg(λ i )λ i B p u i 2 -αg(λ i ) k j=1 λ j a p ij 2 -αg(λ i )λ i φ p i 2 + 1 α f (λ i ) 2 (λ k+1 -λ i )g(λ i ) T p u i 2 - k j=1 c p ij 2 .
(2.10)

Summing over i = 1, • • • , k and using (2.5), we get

2 k i=1 f (λ i )Re T p B p u i , u i + 2 k i,j=1 f (λ i )Re a p ij c p ij ≤ α k i=1 g(λ i ) [A, B p ]u i , B p u i + α k i=1 λ i g(λ i ) B p u i 2 -α k i,j=1 λ j g(λ i )|a p ij | 2 -α k i=1 λ i g(λ i ) φ p i 2 + 1 α k i=1 f (λ i ) 2 (λ k+1 -λ i )g(λ i ) T p u i 2 - k j=1 |c p ij | 2 = α k i=1 g(λ i ) [A, B p ]u i , B p u i + α k i,j=1 (λ i -λ j )g(λ i )|a p ij | 2 + 1 α k i=1 f (λ i ) 2 (λ k+1 -λ i )g(λ i ) T p u i 2 - k j=1 |c p ij | 2 . (2.11) 
Since a p ij = a p ji and c p ij = -c p ji , we have

2Re k i,j=1 f (λ i )a p ij c p ij = Re k i,j=1 (f (λ i ) -f (λ j ))a p ij c p ij (2.12) Using that |c p ij | 2 = |c p ji | 2 , we find - 1 α k i,j=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) |c p ij | 2 = -1 2α k i,j=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) + f (λ j ) 2 g(λ j )(λ k+1 -λ j ) |c p ij | 2 .
(2.13) Moreover,

α k i,j=1 g(λ i )(λ i -λ j )|a p ij | 2 = α 2 k i,j=1 g(λ i ) -g(λ j ) (λ i -λ j )|a p ij | 2 .
(2.14)

Thus we infer from (2.11),(2.12),(2.13) and (2.14)

2 k i=1 f (λ i )Re T p B p u i , u i + k i,j=1 f (λ i ) -f (λ j ) Re a p ij c p ij ≤ α k i=1 g(λ i ) [A, B p ]u i , B p u i + 1 α k i=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) T p u i 2 + α 2 k i,j=1 g(λ i ) -g(λ j ) (λ i -λ j )|a p ij | 2 - 1 2α k i,j=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) + f (λ j ) 2 g(λ j )(λ k+1 -λ j ) |c p ij | 2 . (2.15) But k i,j=1 f (λ j ) -f (λ i ) Re a p ij c ij ≤ α 2 k i,j=1 g(λ j ) -g(λ i ) (λ i -λ j )|a p ij | 2 + 1 2α k i,j=1 f (λ j ) -f (λ i ) 2 (λ i -λ j ) 2 λ i -λ j g(λ j ) -g(λ i ) |c p ij | 2 .
(2.16)

From the condition (2.1) satisfied by f and g, we infer

k i=1 f (λ j )-f (λ i ) Re a p ij c p ij ≤ α 2 k i,j=1 g(λ j ) -g(λ i ) (λ i -λ j )|a p ij | 2 + 1 2α k i,j=1 (f (λ i )) 2 g(λ i )(λ k+1 -λ i ) + (f (λ j )) 2 g(λ j )(λ k+1 -λ j ) |c p ij | 2 .
(2.17)

Hence, taking sum on p, from 1 to n, in (2.15), we find

2 k i=1 n p=1 f (λ i )Re T p B p u i , u i ≤ α k i=1 n p=1 g(λ i ) [A, B p ]u i , B p u i + 1 α k i=1 n p=1 f (λ i ) 2 (λ k+1 -λ i )g(λ i ) T p u i 2 .
(2.18)

Since B p is symmetric and T p is skew-symmetric, we have for all p ≤ n,

2Re T p B p u i , u i = T p B p u i , u i + T p B p u i , u i = T p B p u i , u i -u i , B p T p u i = [T p , B p ]u i , u i and inequality (2.18) becomes k i=1 n p=1 f (λ i ) [T p , B p ]u i , u i ≤ α k i=1 n p=1 g(λ i ) [A, B p ]u i , B p u i + 1 α k i=1 n p=1 f (λ i ) 2 (λ k+1 -λ i )g(λ i ) T p u i 2 , (2.19) 
or equivalently

α 2 k i=1 n p=1 g(λ i ) [A, B p ]u i , B p u i -α k i=1 n p=1 f (λ i ) [T p , B p ]u i , u i + k i=1 n p=1 f (λ i ) 2 (λ k+1 -λ i )g(λ i ) T p u i 2 ≥ 0.
(2.20)

To prove inequality (2.2), it suffices to show that

k i=1 n p=1 g(λ i ) [A, B p ]u i , B p u i ≥ 0. (2.21) 
In fact, if this is the case, the discriminant of the quadratic polynomial (2.20) must be nonpositive, i.e.

k i=1 n p=1 f (λ i ) [T p , B p ]u i , u i 2 -4 k i=1 n p=1 g(λ i ) [A, B p ]u i , B p u i k i=1 n p=1 f (λ i ) 2 (λ k+1 -λ i )g(λ i ) T p u i 2 ≤ 0. (2.22)
which yields the theorem. We note that if we replace T p by -T p , inequality (2.20) holds. Thus we can deduce that it holds for all real α and not only α > 0 proving that the coefficient of the quadratic term, i.e.

k i=1 n p=1 g(λ i ) [A, B p ]u i , B p u i , is nonnegative. If it is equal to zero, then k i=1 n p=1 f (λ i ) [T p , B p ]u i , u i
is also equal to 0 and the theorem trivially holds.

Remark 2.1.

• In the definition of ℑ λ , the functions f and g can be defined only on a discrete set of eigenvalues.

• One can formulate Theorem 2.1 as in [START_REF] Harrell | On trace identities and universal eigenvalue estimates for some partial differential operators[END_REF] for z ∈]λ k , λ k+1 ] (it suffices to replace, in the hypothesis and in the inequality, λ k+1 by z).

• The result of Theorem 2.1 can also be stated, as in [START_REF] Harrell | On trace identities and universal eigenvalue estimates for some partial differential operators[END_REF] or [START_REF] Harrell | Universal bounds and semiclassical estimates for eigenvalues of abstract schrödinger operators[END_REF], in the general situation where the spectrum of A is not purely discrete and its point spectrum is nonempty.

• Taking f = g = 1 in (2.
2), we obtain inequality (1.15) 

λ i . If for k ≥ 1 we have λ k+1 > λ k , then for any (f, g) ∈ ℑ k , k i=1 n p=1 f (λ i ) [A, B p ]u i , B p u i 2 ≤ k i=1 n p=1 g(λ i ) [A, B p ]u i , B p u i k i=1 n p=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) [A, B p ] u i 2 .
(2.23)

Remark 2.2.

• As for Theorem 2.1, Corollary 2.1 can be stated in the general case where the spectrum of A is not totally discrete.

• For f (x) = g(x) = (λ k+1x) 2 , inequality (2.23) becomes the abstract inequality which gives the Yang type inequalities for Laplacians and Schrödinger operators (see [START_REF] Ashbaugh | A unified approach to universal inequalities for eigenvalues of elliptic operators[END_REF], [START_REF] Soufi | Universal inequalities for the eigenvalues of laplace and schrodinger operators on submanifolds[END_REF], [START_REF] Harrell | On trace identities and universal eigenvalue estimates for some partial differential operators[END_REF] and [START_REF] Levitin | Commutators, spectral trace identities, and universal estimates for eigenvalues[END_REF]). • For f (x) = g(x) = (λ k+1 -x) α , with α ≤ 2, we recover a Harrell and Stubbe inequality ( [START_REF] Harrell | On trace identities and universal eigenvalue estimates for some partial differential operators[END_REF], [START_REF] Ashbaugh | On harrell-stubbe type inequalities for the discrete spectrum of a self-adjoint operator[END_REF])).

• We can easily deduce from the inequality (2.23) new universal inequalities in many different geometric situations (Dirichlet

Laplacian on domains of Submanifolds of Euclidean (or symmetric) spaces as in [START_REF] Soufi | Universal inequalities for the eigenvalues of laplace and schrodinger operators on submanifolds[END_REF], Hodge de Rham Laplacian or the square of a Dirac operator,and more generally a Laplacian acting on sections of a Riemannian vector bundle on a submanifold of a Euclidean (or symmetric) space).

Application to the polyharmonic operators

In this section, using Theorem 2.1, we will show how to derive universal inequalities for the eigenvalues of a polyharmonic problem. For a power of the Laplacian and with a particular choice of f and g, one can derive inequality (1.13) and inequality (1.14).

In fact, throughout this section we assume that A = Q l , such that Q is a symmetric self-adjoint operator given by

Q = - n p=1 T 2 p ,
where T p are skew-symmetric operators for p = 1, ..., n, with [Q, T p ] = 0 and [T m , B p ] = δ mp .

First we need to calculate the following expressions

n p=1 [A, B p ]u i , B p u i (3.1)
and

n p=1 T p u i , T p u i = Qu i , u i . (3.2)
For this purpose the following two results of Hook (see proposition 3 in [START_REF] Hook | Domain-independent upper bounds for eigenvalues of elliptic operators[END_REF] and Theorem 1 in [START_REF] Hook | Inequalities for eigenvalues of self-adjoint operators[END_REF]) will be useful.

The first one is Lemma 3.1. Under the circumstances stated above, we have

[A, B p ] = [Q l , B p ] = -2lQ l-1 T p and n p=1 [B p , [A, B p ]] = 2l(2l + n -2)Q l-1 .
And the second one is the following Theorem 3.1. Let V be a real or complex inner product space with inner product ., . . Let D be a linear submanifold of V and let Q : D -→ V be a linear operator in V . Suppose l is a positive integer and u is a fixed vector such that for all 0 ≤ r ≤ q ≤ l,

| Q q u, u | = | Q q-r u, Q r u |.
Then, for all integers 0 ≤ r ≤ q ≤ l, when q is even, we have

| Q r u, u | ≤ | Q q u, u | r/q u, u 1-r/q . (3.3)
This inequality is satisfied for q odd and 0 ≤ r ≤ q ≤ l, if in addition to the above, there is a family of operators {T p } n p=1 such that

| Q q u, u | = | n p=1 T p Q q-r u, T p Q r-1 u |
holds for all 0 ≤ r ≤ q ≤ l.

Applying Lemma 3.1, we obtain

n p=1 [A, B p ]u i , B p u i = 1 2 n p=1 [B p , [A, B p ]]u i , u i = l(2l + n -2) Q l-1 u i , u i .
Therefore, if l is odd, then we have

n p=1 [A, B p ]u i , B p u i = l(2l + n -2) Q l-1 2 u i 2 and if l is even, then n p=1 [A, B p ]u i , B p u i = l(2l + n -2) n p=1 T p Q l-2 2 u i 2
The conditions of Theorem 3.1 are satisfied by our operator Q. So inequality (3.3) is valid for all 0 ≤ r ≤ q ≤ l without parity condition on q. Applying this inequality (3.3) with r = l -1 and q = l, we obtain

n p=1 [A, B p ]u i , B p u i = l(2l + n -2) Q l-1 u i , u i ≤ l(2l + n -2) Q l u i , u i l-1 l u i , u i 1-l-1 l = l(2l + n -2)λ l-1 l i (3.4)
and with r = 1 and q = l, we obtain

n p=1 T p u i 2 = Qu i , u i ≤ Q l u i , u i 1 l u i , u i 1-1 l ≤ λ 1 l i . (3.5) Since [T p , B p ] = 1, one gets [T p , B p ]u i , u i = 1. (3.6) 
Then using inequalities (3.4), (3.5) and (3.6) together with inequality (2.2), we obtain

n 2 k i=1 f (λ i ) 2 ≤ 4l(2l + n -2) k i=1 g(λ i )λ l-1 l i k i=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) λ 1 l i or equivalently k i=1 f (λ i ) ≤ 2 n l(2l + n -2) k i=1 g(λ i )λ l-1 l i 1 2 k i=1 f (λ i ) 2 g(λ i )(λ k+1 -λ i ) λ 1 l i 1 2
.

(3.7)

Now the operators A = (-∆) l , Q = -∆, B p = x p , p = 1, . . . , n, where x 1 , . . . , x n are Euclidean coordinates, and T p = ∂ ∂xp fit the setup of this section. Thus, taking f (x) = g(x) 2 = (λ k+1x), we can obtain inequality (1.13) of Wu and Cao. Remark 3.1. For the special case l = 2 (i.e the clamped plate problem) and the same values of f and g as above, we obtain inequality (1.10) of Cheng and Yang. We observe that this inequality can also be obtained easily by a simple calculation from our inequality (2.2). In fact, taking A = ∆ 2 , B p = x p , p = 1, . . . , n and T p = ∂ ∂xp , we first observe that [T p , B p ] = 1. Hence, we have

n p=1 [T p , B p ]u i , u i = n, (3.8 
)

moreover [A, B p ]u i = [∆ 2 , x p ]u i = 4 ∂ ∂x p ∆u i . Then [B p , [A, B p ]]u i = 4[x p , ∂ ∂x p ∆]u i = -4 ∆ + 2 ∂ ∂x p 2 u i . It follows that n p=1 [A, B p ]u i , B p u i = 1 2 n p=1 [B p , [A, B p ]]u i , u i = 2(n + 2) -∆u i , u i ≤ 2(n + 2) ∆u i 2 u i 2 1 2 (3.9) = 2(n + 2)λ 1 2 i . (3.10) Now n p=1 T p u i , T p u i = -∆u i , u i ≤ λ 1 2 i , (3.11) 
where we used the Cauchy-Schwarz inequality to derive (3.9) and (3.11). Substituting On the other hand, if we take f (x) = g(x) = (λ k+1x) 2 , in (3.7), we get the following inequality obtained in [START_REF] Cheng | Inequalities for eigenvalues of laplacian with any order[END_REF] (see inequality (2.27) therein)

k i=1 (λ k+1 -λ i ) 2 2 ≤ 4l(2l + n -2) n 2 k i=1 (λ k+1 -λ i ) 2 λ l-1 l i k i=1 (λ k+1 -λ i )λ 1 l i . (3.12)
Using the following variant of Chebyshev inequality (see Lemma 1 in [START_REF] Cheng | Inequalities for eigenvalues of laplacian with any order[END_REF]), one can deduce a generalized Yang inequality

Lemma 3.2. Let A i , B i and C i , i = 1, . . . , k, verify A 1 ≥ A 2 ≥ . . . ≥ A k ≥ 0, 0 ≤ B 1 ≤ B 2 ≤ . . . ≤ B k and 0 ≤ C 1 ≤ C 2 ≤ . . . ≤ C k , respectively. Then, we have k i=1 A 2 i B i k i=1 A i C i ≤ k i=1 A 2 i k i=1 A i B i C i .
In fact if we apply this Lemma to the right side of inequality (3.12),

with

A i = λ k+1 -λ i , B i = λ l-1 l i and C i = λ 1 l i , we obtain, k i=1 (λ k+1 -λ i ) 2 ≤ 4l(n + 2l -2) n 2 k i=1 (λ k+1 -λ i )λ i . (3.13)
which, in the case where A = (-∆) l , Q = -∆, B p = x p , p = 1, . . . , n and T p = ∂ ∂xp , gives us inequality (1.14) of Cheng, Ichikawa and Mametsuka (see inequality (1.11) in [START_REF] Cheng | Inequalities for eigenvalues of laplacian with any order[END_REF]). Finally, we note that considering other choices of values for the couple (f, g) lead to many new inequalities.

Applications to the Kohn Laplacian on the Heisenberg group

In this section, we consider the 2n + 1-dimensional Heisenberg group H n , which is the space R 2n+1 equipped with the non-commutative group law

(x, y, t)(x ′ , y ′ , t ′ ) = x + x ′ , y + y ′ , t + t ′ + 1 2 ( x ′ , y R n -x, y ′ R n ),
where x, x ′ , y, y ′ ∈ R n , t and t ′ ∈ R. We denote by H n its Lie algebra, it has a basis formed by the following vector fields T = ∂ ∂t ,

X p = ∂ ∂xp + yp 2 ∂ ∂t and Y p = ∂ ∂yp -xp 2 ∂
∂t . We note that the only non-trivial commutators are [Y p , X q ] = T δ pq . Let ∆ H n denote the real Kohn-Laplacian in the Heisenberg group H n . It is given by

∆ H n = n p=1 X 2 p + Y 2 p = ∆ R 2n xy + 1 4 (|x| 2 + |y| 2 ) ∂ 2 ∂t 2 + ∂ ∂t n p=1 y p ∂ ∂x p -x p ∂ ∂y p .
We are concerned here with the following eigenvalue problem:

   (-∆ H n ) l u = λu in Ω, u = ∂u ∂ν = . . . = ∂ l-1 u ∂ν l-1 = 0 on ∂Ω, (4.1)
where Ω is a bounded domain in H n , with smooth boundary ∂Ω, ν is the unit outward normal to ∂Ω and l ≥ 1 is any positive integer. We denote by We orthonormalize the eigenfunctions u i so that; ∀ i, j ≥ 1,

L = -∆ H n and ∇ H n = (X 1 , . . . , X n , Y 1 , . . . , Y n ). We let 0 < λ 1 ≤ λ 2 ≤ . . . ≤ λ k ≤ . . . → +∞ denote the eigenvalues of problem (4.1) with corresponding eigenfunc- tions u 1 , u 2 , . . . , u k , . . . in S l,2 0 (Ω). Here S l,2 (Ω) is the Hilbert space of the functions u in L 2 (Ω) such that X p u, Y p u, X 2 p u, Y 2 p u, . . . , X l p (u), Y l p (u) ∈ L 2 (Ω),
u i , u j L 2 = Ω u i u j dxdydt = δ ij .
In all this paragraph, our results can be stated in a general form using functions f and g ∈ ℑ λ k+1 as in the first part of this paper, but we limit ourselves to the case f (x) = g(x) = (λ k+1x) 2 . This gives us new bounds of the Yang type for eigenvalues of problem (4.1) which improve earlier ones obtained by Niu and Zhang [START_REF] Niu | Payne-Polya-Weinberger type inequalities for eigenvalues of nonelliptic operators[END_REF]. We also note that we must treat the three following cases independently: the case when l = 1, the case when l = 2 and the case when l ≥ 3. This is essentially due to the difference of the calculations in these three cases.

4.1. The case when l = 1. In this subsection, we are concerned with the case where l = 1. The result we obtain is a result proved earlier by the first author, El Soufi and Harrell in [START_REF] Soufi | Universal inequalities for the eigenvalues of laplace and schrodinger operators on submanifolds[END_REF] and for which we give here a different proof, more easily adapted to the other cases l = 2 and l ≥ 3. 

(λ k+1 -λ i ) 2 ≤ 2 n k i=1 (λ k+1 -λ i )λ i . (4.2) 
Proof. We will prove this theorem by applying inequality (2.2) with

A = L = -∆ H n , B 1 = x 1 , . . . , B n = x n , B n+1 = y 1 , . . . , B 2n = y n , T 1 = X 1 , . . . , T n = X n , T n+1 = Y 1 , . . . , T 2n = Y n and f (x) = g(x) = (λ k+1 -x) 2 , namely, n p=1 k i=1 (λ k+1 -λ i ) 2 [X p , x p ]u i , u i L 2 + [Y p , y p ]u i , u i L 2 2 ≤ 4 n p=1 k i=1 (λ k+1 -λ i ) 2 [L, x p ]u i , x p u i L 2 + [L, y p ]u i , y p u i L 2 × n p=1 k i=1 (λ k+1 -λ i ) X p u i 2 L 2 + Y p u i 2 L 2 . (4.3)
By a straightforward calculation, we obtain [L,

x p ]u i = -2X p u i and [L, y p ]u i = -2Y p u i . Hence [L, x p ]u i , x p u i L 2 = -2 Ω X p u i .x p u i = 2 Ω u i .X p (x p u i ) = 2 Ω u 2 i + 2 Ω x p u i .X p u i and [L, y p ]u i , y p u i L 2 = -2 Ω Y p u i .y p u i = 2 Ω u i .Y p (y p u i ) = 2 Ω u 2 i + 2 Ω y p u i .Y p u i , then [L, x p ]u i , x p u i L 2 = [L, y p ]u i , y p u i L 2 = 1. (4.4) 
On the other hand, we have

[X p , x p ]u i = [Y p , y p ]u i = u i (4.5)
and

n p=1 X p u i 2 L 2 + n p=1 Y p u i 2 L 2 = Ω |∇ H n u i | 2 = λ i . (4.6) 
Thus incorporating (4.4), (4.5) and (4.6) in (4.3), we obtain (4.2).

Remark 4.1. Inequality (4.2) improves the following inequality proved by Niu and Zhang in [START_REF] Niu | Payne-Polya-Weinberger type inequalities for eigenvalues of nonelliptic operators[END_REF] (see Remark 5.1 in [START_REF] Soufi | Universal inequalities for the eigenvalues of laplace and schrodinger operators on submanifolds[END_REF])

λ k+1 -λ k ≤ 2 nk k i=1 λ i .
4.2. The case when l = 2. In this subsection, we will derive the following Theorem 4.2. We have, for each k = 1, 2, . . .,

k i=1 (λ k+1 -λ i ) 2 ≤ 2 √ n + 1 n k i=1 (λ k+1 -λ i )λ 1 2 i 1 2 k i=1 (λ k+1 -λ i ) 2 λ 1 2 i 1 2
.

(4.7)

Proof. The key observation here is to apply Theorem 2.1 with

A = L 2 = (-∆ H n ) 2
, and as before

B 1 = x 1 , B 2 = x 2 , • • • , B n = x n , B n+1 = y 1 , • • • , B 2n = y n , T 1 = X 1 , • • • , T n = X n , T n+1 = Y 1 , • • • , T 2n = Y n and f (x) = g(x) = (λ k+1 -x) 2 . Thus we have n p=1 k i=1 (λ k+1 -λ i ) 2 [X p , x p ]u i , u i L 2 + [Y p , y p ]u i , u i L 2 2 ≤ 4 n p=1 k i=1 (λ k+1 -λ i ) 2 [L 2 , x p ]u i , x p u i L 2 + [L 2 , y p ]u i , y p u i L 2 × n p=1 k i=1 (λ k+1 -λ i ) X p u i 2 L 2 + Y p u i 2 L 2 (4.8) but n p=1 X p u i 2 L 2 + n p=1 Y p u i 2 L 2 = Ω |∇ H n u i | 2 = Ω Lu i .u i ≤ Ω u 2 i 1 2 Ω Lu i 2 1 2 = λ 1 2 i , (4.9) 
thus

n p=1 k i=1 (λ k+1 -λ i ) X p u i 2 L 2 + Y p u i 2 L 2 = k i=1 (λ k+1 -λ i )λ 1 2
i . (4.10) Using (4.5), we get

[X p , x p ]u i , u i L 2 = [Y p , y p ]u i , u i L 2 = 1. (4.11) 
Thus,

n p=1 k i=1 (λ k+1 -λ i ) 2 ( [X p , x p ]u i , u i L 2 + [Y p , y p ]u i , u i L 2 ) 2 (4.12) = 4n 2 k i=1 (λ k+1 -λ i ) 2 2 .
On the other hand

[L 2 , x p ]u i = L 2 (x p u i ) -x p L 2 u i = L(x p Lu i -2X p u i ) -x p L 2 u i = -2X p Lu i -2L(X p u i ) (4.13)
and the same identity holds with y p and Y p . We infer, using identities (

[L 2 , x p ]u i , x p u i L 2 = -2 Ω X p Lu i .x p u i -2 Ω L(X p u i ).x p u i = -2 Ω X p Lu i .x p u i -2 Ω X p u i .x p Lu i + 4 Ω X p u i .X p u i = 2 Ω Lu i .X p (x p u i ) -2 Ω x p X p u i .Lu i -4 Ω X 2 p u i .u i =2 Ω Lu i .u i -4 Ω X 2 p u i .u i . 4.5) and (4.13) 
Similarly, we have 

[L 2 , y p ]u i , y p u i L 2 = 2 Ω Lu i .u i -4 Ω Y 2 p u i .u i . (4.15) Since - n p=1 Ω X 2 p u i .u i - n p=1 Ω Y 2 p u i .u i = n p=1 X p u i 2 L 2 + n p=1 Y p u i 2 L 2 = Ω Lu i .u i , we have n p=1 k i=1 (λ k+1 -λ i ) 2 [L 2 , x p ]u i , x p u i L 2 + [L 2 , y p ]u i , y p u i L 2 = 4(n + 1) k i=1 (λ k+1 -λ i ) 2 Ω Lu i .u i ≤ 4(n + 1) k i=1 (λ k+1 -λ i ) 2 Ω u 2 i 1 2 Ω Lu i 2 1 2 = 4(n + 1) k i=1 (λ k+1 -λ i ) 2 λ 1 2 i . ( 4 
(λ k+1 -λ i ) 2 ≤ 4(n + 1) n 2 k i=1 (λ k+1 -λ i )λ i . (4.17) 
Proof. Inequality (4.7) is equivalent to

k i=1 (λ k+1 -λ i ) 2 2 ≤ 4(n + 1) n 2 k i=1 (λ k+1 -λ i )λ 1 2 i k i=1 (λ k+1 -λ i ) 2 λ 1 2
i .

Now applying Lemma 3.2 with

A i = λ k+1 -λ i and B i = C i = λ 1 2
i , we obtain inequality (4.17). Remark 4.2. Inequality (4.7) is sharper than the following one found by Niu and Zhang [START_REF] Niu | Payne-Polya-Weinberger type inequalities for eigenvalues of nonelliptic operators[END_REF] 

λ k+1 -λ k ≤ 4(n + 1) n 2 k 2 k i=1 λ 1 2 i 2 .
Proof. We infer from inequality (4.7) and the Chebyshev inequality

k i=1 (λ k+1 -λ i ) 2 2 ≤ 4(n + 1) n 2 k 2 k i=1 (λ k+1 -λ i ) k i=1 (λ k+1 -λ i ) 2 k i=1 λ 1 2 2 , or equivalently k i=1 (λ k+1 -λ i ) 2 ≤ 4(n + 1) n 2 k 2 k i=1 (λ k+1 -λ i ) k i=1 λ 1 2 2 . Thus k i=1 (λ k+1 -λ i ) (λ k+1 -λ i ) - 4(n + 1) n 2 k 2 k i=1 λ 1 2 i 2 ≤ 0. (4.18)
Hence, since λ i ≤ λ k , for all i ≤ k, we can easily deduce the inequality of Niu and Zhang from (4.18).

4.3.

The case when l ≥ 3. We are now concerned with the problem (4.1) for any l ≥ 3. The result depends on the parity of l. In fact, we prove the following Theorem 4.3. For any odd l ≥ 3, we have

k i=1 (λ k+1 -λ i ) 2 ≤ 1 n k i=1 (λ k+1 -λ i )λ 1 l i 1 2 × k i=1 (λ k+1 -λ i ) 2 2l(n + l -1) λ l-1 l i + c 1 (n, l) λ i + λ l-2 l i 1 2 (4.19) 
and for any even l ≥ 4, we have

k i=1 (λ k+1 -λ i ) 2 ≤ 1 n k i=1 (λ k+1 -λ i )λ 1 l i 1 2 × k i=1 (λ k+1 -λ i ) 2 2ln + 4(l -1) λ l-1 l i + c 2 (n, l)λ l-1 l i 1 2 , (4.20) 
where c 1 (n, l) and c 2 (n, l) are two constants depending on n and l.

Proof. If we apply inequality (2.2) with

A = L l = (-∆ H n ) l , B 1 = x 1 , . . . , B n = x n , B n+1 = y 1 , . . . , B 2n = y n , T 1 = X 1 , . . . , T n = X n , T n+1 = Y 1 , . . . , T 2n = Y n and f (x) = g(x) = (λ k+1 -x) 2 , then we obtain k i=1 n p=1 (λ k+1 -λ i ) 2 [X p , x p ]u i , u i L 2 + [Y p , y p ]u i , u i L 2 2 ≤ 4 k i=1 n p=1 (λ k+1 -λ i ) 2 [L l , x p ]u i , x p u i L 2 + [L l , y p ]u i , y p u i L 2 × k i=1 n p=1 (λ k+1 -λ i ) X p u i 2 L 2 + Y p u i 2 L 2 . (4.21)
And as before, we have

[X p , x p ]u i , u i L 2 = [Y p , y p ]u i , u i L 2 = 1. (4.22)
On the other hand, to calculate n p=1

X p u i 2 L 2 + Y p u i 2 
L 2 , we need the following result obtained by Niu and Zhang (see Lemma 2.3 in [START_REF] Niu | Payne-Polya-Weinberger type inequalities for eigenvalues of nonelliptic operators[END_REF]) inspired by that of Chen and Qian [START_REF] Chen | Estimates for discrete spectrum of the laplacian operator with any order[END_REF] for the Laplacian: Lemma 4.1. For any d ≥ 1, we have

Ω |∇ d H n u i | 2 1 d ≤ Ω |∇ d+1 H n u i | 2 1 d+1 (4.23) where ∇ d = L d 2 if d is even, ∇ H n L d-1 2 if d is odd.
And as a consequence (see Corollary 2.1 in [START_REF] Niu | Payne-Polya-Weinberger type inequalities for eigenvalues of nonelliptic operators[END_REF]), we can easily obtain, for any d ≥ 1

Ω |∇ H n u i | 2 ≤ Ω |∇ d H n u i | 2 1 d . ( 4.24) 
Therefore we have

n p=1 X p u i 2 L 2 + Y p u i 2 L 2 = Ω Lu i .u i ≤ Ω L l u i .u i 1 l = λ 1 l i . (4.25) Now we have to calculate n p=1 [L l , x p ]u i , x p u i L 2 + [L l , y p ]u i , y p u i L 2 .
For this purpose, we use the following lemma also obtained by Niu and Zhang in [START_REF] Niu | Payne-Polya-Weinberger type inequalities for eigenvalues of nonelliptic operators[END_REF] Lemma 4.2. For any positive integer d, 1 ≤ d ≤ l, we have

L d (x p u i ) = x p L d u i -2 d q=1 L d-q X p L q-1 u i , i = 1, . . . , k, p = 1, . . . ,
n. This is also true for y p and Y p . We infer, using Lemma 4.2,

[L l , x p ]u i = L l (x p u i ) -x p L l u i = -2 l q=1 L l-q X p L q-1 u i . Therefore [L l , x p ]u i , x p u i L 2 = -2 l q=1 Ω L l-q X p L q-1 u i .x p u i = -2 l q=1 Ω X p L q-1 u i .L l-q (x p u i ).
The same identities hold with y p and Y p . Hence we obtain 

n p=1 [L l , x p ]u i , x p u i L 2 + [L l , y p ]u i , y p u i L 2 = -2 n p=1 l q=1 Ω X p L q-1 u i .L l-q (x p u i )+ Ω Y p L q-1 u i .L l-q (y p u i ) . ( 4 
[L l , x p ]u i , x p u i L 2 + [L l , y p ]u i , y p u i L 2 = -2 n p=1 l q=1 Ω x p L l-q u i .X p L q-1 u i + 4 n p=1 l-1 q=1 Ω X p L l-q-1 u i .X p L q-1 u i + 4 n p=1 l-2 q=1 l-q-1 r=1 Ω L l-q-r X p L r-1 u i .X p L q-1 u i -2 n p=1 l q=1 Ω y p L l-q u i .Y p L q-1 u i + 4 n p=1 l-1 q=1 Ω Y p L l-q-1 u i .Y p L q-1 u i + 4 n p=1 l-2 q=1 l-q-1 r=1 Ω L l-q-r Y p L r-1 u i .Y p L q-1 u i . (4.27)
As in the proof of Theorem 5.1 in [START_REF] Niu | Payne-Polya-Weinberger type inequalities for eigenvalues of nonelliptic operators[END_REF] (see the calculation of the terms I 2 and I ′ 2 ), we can easily obtain, for any odd l ≥ 3,

n p=1 [L l , x p ]u i , x p u i L 2 + [L l , y p ]u i , y p u i L 2 ≤ 2l(n + l -1) λ l-1 l i +c 1 (n, l) λ i + λ l-2 l i (4.28)
and for any even l ≥ 4,

n p=1 [L l , x p ]u i , x p u i L 2 + [L l , y p ]u i , y p u i L 2 ≤ 2ln + 4(l -1) +c 2 (n, l) λ l-1 l i (4.29)
where c 1 (n, 3) = 4, (4.19) is not homogeneous in the eigenvalues λ i (i.e. it is not invariant under the change L → aL, λ i → a l λ i for a > 0). Therefore, using inequality (4.19) for a l L l , we obtain that for any a > 0, which is homogeneous on the eigenvalues λ i .

c 1 (n, l) = 2 l-2 q=1 l-q-1 r=1 l-q-r s=1 s odd 2 s nC s l-q-r (2n -1) s+1 2 + l-q-r s=2 s even 2 s C s l-q-r (2n -1) s 2 for any odd l ≥ 5 and c 2 (n, l) = 4 l-2 q=1 l-q-1 r=1 l-q-r s=1 s odd 2 s nC s l-q-r (2n -1) s+1 2 + l-q-r s=0 s even 2 s C s l-q-r (2n -
k i=1 (λ k+1 -λ i ) 2 ≤ 1 n k i=1 (λ k+1 -λ i )λ
As for the case when l = 2, we can deduce inequalities of Yang-type for l ≥ 3. Similarly, we prove that inequality (4.20) is sharper than (4.36).
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g(x) 2 =

 2 (3.8),(3.10) and(3.11) into (2.2) and taking f (x) = (λ k+1x), we obtain inequality(1.10).

2 Su| 2 +

 22 and S l,2 0 denotes the closure of C ∞ 0 (Ω) with respect to the Sobolev norm u |u| 2 dxdydt.

Theorem 4 . 1 .

 41 For any k ≥ 1 k i=1

for any odd l ≥ 3 .

 3 λ i ) 2 2l(n + l -1)λ l-1 l i + c 1 (n, l) aλ i +Optimising with respect to a, we find the following improvement of the inequality (4.[START_REF] Harrell | On trace identities and universal eigenvalue estimates for some partial differential operators[END_REF])k i=1 (λ k+1λ i ) 2 ≤ 1 n 2l(n + l -1) + c 1 (n, l)

Corollary 4 . 2 . 4 .

 424 We have, for any odd l ≥ 3, λ i ) 2l(n + l -1)λ i + c 1 (n, l) λ λ i ) 2 ≤ 2ln + 4(l -1) + c 2 (n, l) n 2 k i=1 (λ k+1λ i )λ i . (4.33)where c 1 (n, l) and c 2 (n, l) are explicit constants depending only on n and l.Proof. Applying Lemma 3.2 withA i = λ k+1λ i , B i = 2l(n + l -λ i ) 2 2l(n + l -λ i ) 2 k i=1 (λ k+1λ i ) 2l(n + l -1)λ i + c 1 (n, l) λ 32) can be deduced from (4.19) and (4.34), for any odd l ≥ 3. We proceed in the same way to obtain (4.33), i.e. applying Lemma3.2 but withA i = λ k+1λ i , B i = 2ln + 4(l -1) + c 2 (n, l) λ Inequalities (4.[START_REF] Harrell | On trace identities and universal eigenvalue estimates for some partial differential operators[END_REF]) and(4.20) are sharper than the following inequalities, proved byNiu and Zhang ([25]),λ k+1 -λ k ≤ if l ≥ 3 is odd and λ k+1λ k ≤ if l ≥ 4 is even, c 1 (n, l) and c 2 (n, l) are as in the proof of Theorem 4.3.Proof. By the Chebyshev inequality, we infer from (4.19), for any odd l -λ i ) λ k+1λ iimplies (4.35), since λ i ≤ λ k for i ≤ k.

  If the operators T p are chosen such thatT p = [A, B p ], then [T p , B p ] = [[A, B p ] , B p ]. Applying Theorem 2.1 in this context and using the obvious identity [A, B p ] u i , B p u i = -1 2 [[A, B p ] , B p ] u i , u i ,we obtain Corollary 2.1. Let A : D ⊂ H -→ H be a self-adjoint operator defined on a dense domain D, which is semibounded below and has a discrete spectrum λ 1 ≤ λ 2 ≤ λ 3 .... Let {B p : A(D) -→ H} n p=1 be a collection of symmetric operators, leaving D invariant. We denote by {u i } ∞ i=1 a basis of orthonormal eigenvectors of A, u i corresponding to

	of Ash-
	baugh and Hermi.

  Corollary 4.1. We have, for each k ≥ 1,
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	Incorporating (4.10), (4.12) and (4.16) in (4.8), we get the result.
	We can easily obtain from inequality (4.7) of Theorem 4.2 an in-
	equality of Yang-type.
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	Incorporating (4.22), (4.25) and (4.28) in (4.21), we obtain (4.19).
	Similarly, to obtain (4.20), we incorporate (4.22), (4.25) and (4.29)
	in (4.21).	
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