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A stable numerical scheme for the finite element simulation

of dynamic crack propagation with remeshing

J. R�ethor�e, A. Gravouil, A. Combescure *

LaMCoS, Laboratoire de Me�canique des Contacts et des Solides, UMR 5514, INSA Lyon, Bat. Jean d’Alembert 18, 
20 rue des Sciences, 69621 Villeurbanne, France

This paper presents a general study of the stability of variable-mesh dynamic calculations using an energy approach.
This study, whose scope is limited to the calculation of dynamic crack propagation with remeshing, enables us to
establish the conditions which are necessary to ensure stability and allow control of energy transfers during the evo-
lution of the mesh. The problem of the implicit calculation of the crack length is also presented. The results obtained on
an sample problem are analyzed to illustrate the effectiveness of the proposed methods.
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1. Introduction

In many fields, one may have to perform calculations during which the topology of the structure changes

for various reasons. In some cases, it is necessary to apply remeshing procedures to represent large

deformations of the mesh properly. In a dynamic calculation, because the spatial discretization of the

problem varies with time and the time integration scheme requires the knowledge of the state vector at time

tn in order to obtain the solution at time tnþ1, the state vector at time tn must be projected onto the spatial

discretization at time tnþ1, for example to simulate the propagation of cracks. In 2D analysis, one can apply

nodes splitting methods, which do not present the problem mentioned above but have the drawback of

requiring a priori the knowledge of the path followed by the crack. The other methods involve an evolving

mesh. Furthermore, numerical instabilities due to the successive projection operations have been reported

in [1]. Therefore, later works focused on the quality of these projections. In [2], the authors formally de-

scribed the need for a change of discretization. Meshless methods were suggested as an interesting alter-

native to finite elements for the simulation of dynamic propagation [3,4]. However, the authors did not
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comment on the stability conditions of the time integration schemes, which is a more complex problem in

this case than in the case of finite elements methods.

In the present work, the problem of the instability of dynamic calculations with remeshing is taken

from an energy point of view. Dynamic fracture mechanics is used as a basis for this study, which is of a

completely general nature. First, we will redefine the continuous and discrete reference problems in order

to derive a calculation strategy for the crack growth. Then, we will address the problem of evolving

meshes in dynamics and attempt to express a stability condition, then to establish a discretized energy

balance. To solve the problem, we propose a technique called the ‘‘balance recovery method’’, which

guarantees both numerical stability and accuracy of the calculation for any type of projection used in

dynamic simulations with varying meshes, particularly in the case of dynamic crack growth with reme-

shing. Finally, we will present an example to illustrate the results obtained with the tools we developed.

The aim of this work is not to develop an efficient remeshing procedure with accurate projections. The

problem we deal with, is the numerical stability of the scheme and the uncontrolled transfer of energy

when projections are used. Consequently, we voluntary use a basic remeshing procedure and the pro-

jections are only linear interpolations to study the influence of such handlings on the stability and the

energy balance of the simulation.

2. The reference problem in dynamic fracture mechanics

2.1. The continuous problem

Here, we are presenting a general definition of dynamic crack growth problem with remeshing. In this

type of calculation, in addition to the usual unknowns, we are dealing with an additional unknown aðtÞ
representing a measure of the extent of the crack (its length in two dimensions). One can write the reference

problem as follows:

Reference problem: Given

uðM ; 0Þ
_uðM ; 0Þ
að0Þ

8

<

:

; find

uðM ; tÞ 2 U

rðM ; tÞ 2 S
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where XðtÞ is the domain being considered, oX1 the boundary on which displacements ud are prescribed and

oX2 the boundary on which forces Fd are prescribed; fd are the prescribed volume forces; r and e are the

symmetric stress and strain tensors; G and Ki are respectively the dynamic energy release rate, dynamic

stress intensity factors; C is the Hooke tensor, q the mass density and Gc the critical energy release rate; cr is

the celerity of Rayleigh waves in this material; _a and hðtÞ are the cylindrical coordinates of _a, the cracktip

speed in the crack tip coordinate system; U and S are the function spaces associated with the problem and

U0 the vector space of the virtual fields defined by

U0 ¼ fv=vðMÞ ¼ 0 8M 2 oX1 þ regularityg: ð4Þ

Remark 1. Here, the problem is presented in weak form. It is interesting to recall its underlying local

equations in order to pinpoint the boundary conditions being considered (Fig. 1):

u ¼ ud on oX1;

rðnÞ ¼ Fd on oX2;

rðnÞ ¼ 0 on Cþ and C�;

divðrÞ þ fd ¼ q€u in X:

8

>

>

>

>

<

>

>

>

>

:

ð5Þ

Remark 2. Although the domain was defined as time-dependent (XðtÞ), this evolution is carried out through

aðtÞ alone. We shall make the simplifying hypothesis that the initial and deformed configurations are the

same and assume small perturbations.

Remark 3. We assume the material to be homogeneous with linear isotropic behavior. Therefore, the

problem falls within the framework of linear dynamic fracture mechanics in which one can define the

dynamic energy release rate G and the dynamic stress intensity factors Ki [5–7]. The dynamic energy release

rate is equivalent to the dynamic Rice J integral [8] and can be related, in plane strain assumption, to

dynamic stress intensity factors by Eq. (7) where fi are universal function of the crack tip speed (see [7]).

G ¼
Z

C

ðrkluk;l

h

� q _uk _ukÞd1j � 2rijui;1 � 2 _aq _uiui;1d1j

i

njdl1 dsþ
Z

AðCÞ
2
d

dt
½q _ui _ui;1�dl1 dS; ð6Þ

G ¼ 1� m2

E
f1ð _aÞðK1Þ2

�

þ f2ð _aÞðK2Þ2
�

: ð7Þ

Here, the crack tip speed _a is calculated with a criterion based on the critical energy release rate [4,7]

considering that the material toughness is independent of the crack speed [9]. The crack growth direction

calculated using Eq. (3) corresponds to the maximum hoop stress [10].

+

–

1
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Fig. 1. Notation used for the different parts of domain X.
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2.2. The discrete problem

Prior to discretizing the problem, let us look at the particular case of a two dimensional straight crack

solicited in pure Mode 1. The space discretization is performed using finite elements. For the time dis-

cretization, we use a Newmark-type scheme with constants c and b for the second-order Eq. (10) and a

generalized trapezoidal scheme with constant a for the first-order Eq. (11). As the discretization of the

problem changes with time (because of crack growth), the time integration scheme requires that the

components of the state vector at time tn be known in order to calculate the solution at time tnþ1. Therefore,

the state vector at time tn must be projected onto the space discretization at time tnþ1. Let us denote X
j
i the

discretization of a first-order tensor calculated at time ti onto the discretization at time tj. Then, one can

define the projection operator Pi;j as

X i
i ¼ Pi;jX

j
i : ð8Þ

For the second-order tensors, let us denote the mass and stiffness matrices as

M
j
i ¼ PT

i;jM
i
iPi;j;

K
j
i ¼ PT

i;jK
i
iPi;j:

ð9Þ

As shown in Fig. 2, there are two possible strategies to calculate the solution at time tnþ1. The remeshing

step requires the determination of X nþ1
n . This stage will be detailed in the following section.

Now, we can define the discretized reference problem:

Discretized reference problem: Given
U n

n ;
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n ;

€U n
n

an; _an
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find
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n ; _U nþ1

n ; €U nþ1
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nþ1 ; _U

nþ1
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nþ1

anþ1; _anþ1

8

>

>

<

>

>

:

such that:

Mnþ1
nþ1
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nþ1U
nþ1
nþ1 ¼ F nþ1

nþ1 ; ð10Þ

_anþ1 ¼
0 if G6Gc;

cr 1� Gc

G

� �

otherwise;
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Fig. 2. Calculation strategy.
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U nþ1
nþ1 ¼ U nþ1

n þ Dt _U nþ1
n þ Dt2 1

2
� b

� �

€U nþ1
n þ Dt2b €U nþ1

nþ1 ;

_U nþ1
nþ1 ¼ _U nþ1

n þ Dtð1� cÞ €U nþ1
n þ Dtc €U nþ1

nþ1 ;

8

<

:

ð12Þ

anþ1 ¼ an þ 1ð � aÞDt _an þ aDt _anþ1: ð13Þ
The quantities U nþ1

n , _U nþ1
n and €U nþ1

n are unknowns of the problem at each time step. We will detail their

calculation in Section 3. The resolution strategy presented here is implicit. Indeed, in order to determine anþ1

(if a 6¼ 0), one must know the velocity _anþ1 at the end of the time step. To obtain this quantity, one iterates on

Loop 1 defined in Fig. 2. Here, we consider first-order scheme coupled with the crack growth equation Eq.

(14). This problem is highly nonlinear problem because of the dependency ofGwhich is not known explicitly.

The stability analysis of this scheme is delicate and we chose aP 0:5 based on the results for the linear case.

anþ1 ¼ an þ ð1� aÞDt _an þ aDt _anþ1;

_anþ1 ¼
0 if G6Gc;

cr 1� Gc

G

� �

otherwise:

8

<

:

8

>

>

<

>

>

:

ð14Þ

Remark 4. The discretized problem presented here leads to five equations with eight unknowns, which

means that three projections are needed for its resolution.

Remark 5. If one considers only problems in which no crack growth is required, Eqs. (11) and (13) are

irrelevant and the problem is much simpler.

Remark 6. Here, boundary conditions are taken into account through the Lagrange multiplier technique,

wherein F incorporates both Neumann and Dirichlet boundary conditions.

Remark 7. Dynamic energy release rate and stress intensity factors are computed using Gh and Mh

methods developed by [11,12]. Gh was first developed for static cases then extended for dynamic simula-

tions. To evaluate numerically M and G integrals, both approaches convert them in path independent

integrals thanks to h field (also called virtual crack extension). Crack auxiliary fields are used in the Mh

method for mixed mode separation. We finally obtain (real fields are u and ru, auxiliary v and rv):

Mh ¼ 1

2

Z

X

ð�rv
ij;1ui::þ ru

ijvi;1Þh;j þ q _ui _vih;1 þ _aq _uivi;1ð þ _viui;1Þh;1 þ
d

dt
qð _uivi;1 þ _viui;1Þh

�

dS:

	

ð15Þ

3. The remeshing procedure: stability analysis and discretized energy balance

Section 2 enabled us to develop a calculation strategy for the simulation of dynamic crack growth. As a

consequence, the geometry and the discretization of the problem depend on time. In this context, we

propose a stability study using the energy method (see [13,14]). Then, we will study its application to dy-

namic fracture mechanics and present a method to improve the stability and accuracy during changes of

discretization. At first, we will present the theoretical tools involved for problems with no remeshing , then

expand them to the case of problems with time-varying discretization.

3.1. Study of the numerical scheme

There are two possible approaches to the resolution of the equations of dynamics: modal superposition

and time integration. We have chosen the second approach in which we use a scheme of the Newmark

5



family to perform the integration of the equilibrium equations discretized in time and space. For a linear

elastic material subjected to small perturbations, these equations can be written as follows:

M €Un þ KUn ¼ Fn; ð16Þ

where Un designates the discretized displacement vector at time tn, _Un the velocity, €Un the acceleration, M

and K the mass and stiffness matrices respectively.

We define the properties of a numeric scheme by the concepts of stability, consistency and convergence.

Stability ensures that a perturbation yields a non-increasing modification of the solution. The scheme is

called consistent if the local truncation error is bounded by cDtk, where Dt ¼ tnþ1 � tn is the time step and k

the convergence rate. Convergence enables to define that the limit of Un as Dt tends toward 0 is the true

displacement field u at the time considered.

From now on, we will focus on the study of the Newmark scheme and their stability, as an instability is a

sufficient condition of non-convergence. Thus, we will be interested in the energy method which enable us to

evaluate the stability, then the quality of the results obtained. The method we are referring to is presented in

[13,14]. First, we will review this method in order to detail the notations being used and the consequences

they imply.

We consider the Newmark numerical scheme defined by two parameters b and c:

Unþ1 ¼ Un þ Dt _Un þ Dt2 1
2
� b

� �

€Un þ Dt2b €Unþ1;
_Unþ1 ¼ _Un þ Dtð1� cÞ €Un þ Dtc €Unþ1:

(

ð17Þ

Let us use the following notations for the average and the difference of a quantity between times tn and tnþ1:

hX i ¼ 1
2
ðXnþ1 þ XnÞ

½X � ¼ Xnþ1 � Xn




ð18Þ

with the property:

hX iT½X � ¼ 1
2
½X TX �:

Using these operators, one can rewrite Eq. (17) as follows:

½U � ¼ Dth _Ui þ Dt2

2
ð2b� cÞ½ €U �;

½ _U � ¼ Dth €Ui þ Dt c� 1
2

� �

½ €U �:

8

<

:

ð19Þ

Let us consider first the equilibrium equations discretized at times tn and tnþ1. Since the stability of the

scheme is not dependent on external loads [15] (as the scheme must be stable regardless of the problem), we

will consider a problem with no external loads:

M €Un þ KUn ¼ 0;

M €Unþ1 þ KUnþ1 ¼ 0:

(

ð20Þ

By premultiplying these two equations by ½ _U �, taking the difference of the two quantities obtained and using

the relations defined by the scheme, we end up with

6



1
2
½ €UTA €U þ _UTK _U � ¼ � c

�

� 1
2

�

½ €U �TA½ €U �; ð21Þ

where

A ¼ M þ Dt2

2
ð2b� cÞK:

This leads to the following theorem [13]:

Theorem 8. If cP 1
2
and A is positive definite, then €Unþ1 and _Unþ1 are bounded.

Corollary 9. If, in addition, K�1 exists, then Unþ1 is bounded.

If these propositions are verified, then the scheme is stable. For this to be the case, the eigenvalues x of A

must verify:

1þ b
�

� c

2

�

ðxDtÞ2P 0:

Thus, we get back to the stability conditions of the Newmark scheme:

1

2
6 c6 2b unconditionally stable scheme;

1

2
6 c and 2b6 c stable scheme if Dt6

1

xmax

ffiffiffiffiffiffiffiffiffiffiffi

c

2
� b

r :

8

>

>

>

>

<

>

>

>

>

:

ð22Þ

In addition to this stability analysis, one can write a discretized energy balance. It involves numeric

dissipation terms due to the scheme. To develop this equation, one uses the same approach as in the

stability study to average the equilibrium equations and premultiply them by ½U �. One gets the following

equation:

1
2
½ _UTM _U þ UTKU � ¼ Wext �

Dt2

2
ð2b� cÞ½ €U �TMh €Ui

� Dt2

2
c� 1

2

� �

ð2b� cÞ½ €U �TM ½ €U � � cð � 1
2

�

½U �TK½U �; ð23Þ

where 1
2
½ _UTM _U þ UTKU � is the difference of total energy between times tn and tnþ1, Wext ¼

ðc� 1
2
Þ½U �T½F � þ ½U �ThF i the work of external forces, the remainder being dissipation terms due to the

scheme.

Remark 10. If one uses the implicit mean acceleration scheme (c ¼ 1
2
, b ¼ 1

4
), one gets the kinetic energy

theorem: the total energy 1
2
ð _UTM _U þ UTKUÞ remains constant in the absence of external forces.

Remark 11. If one uses the central difference explicit scheme (c ¼ 1
2
, b ¼ 0), what remains constant is not

the total energy, but 1
2
ð _UTM _U þ UTKU þ Dt2

2
ð2b� cÞ €UTM €UÞ.

Remark 12. Under no circumstance one can use the energy balance to prove the stability of a scheme.

Nevertheless, it can be used to verify the consistency of a calculation from an energy point of view.
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3.2. Case of a calculation with a variable mesh

3.2.1. Stability study

Let us now consider the case of a calculation with remeshing. If one extends the method presented in

[13,14] to this type of calculation, one can study the stability of the scheme. Let us use the notations defined

in Part 2. Working with two different discretizations requires that we rewrite:

• The equilibrium equations at times tn and tnþ1 on the same discretization:

Mnþ1
n

€U nþ1
n þ Knþ1

n U nþ1
n ¼ 0;

Mnþ1
nþ1

€U nþ1
nþ1 þ Knþ1

nþ1U
nþ1
nþ1 ¼ 0:

(

ð24Þ

• The Newmark scheme:

U nþ1
nþ1 ¼ U nþ1

n þ Dt _U nþ1
n þ Dt2 1

2
� b

� �

€U nþ1
n þ Dt2b €U nþ1

nþ1 ;

_U nþ1
nþ1 ¼ _U nþ1

n þ Dtð1� cÞ €U nþ1
n þ Dtc €U nþ1

nþ1 :

8

<

:

ð25Þ

• The operators Ææ and ½�:
hX i ¼ 1

2
ðX nþ1

nþ1 þ X nþ1
n Þ;

½X � ¼ X nþ1
nþ1 � X nþ1

n :




ð26Þ

Using the approach developed previously and observing that

½M €U � ¼ Mnþ1
nþ1 ½ €U � þ ½M � €U nþ1

n

and

½KU � ¼ Knþ1
nþ1 ½U � þ ½K�U nþ1

n ;

we obtain the stability condition:

h €UiTAnþ1
nþ1½ €U � þ h _UiTKnþ1

nþ1 ½ _U � ¼ � c� 1
2

� �

½ €U �TAnþ1
nþ1½ €U � � 1

Dt
½ _U �Tð½M � €U nþ1

n þ ½K�U nþ1
n Þ ð27Þ

with

Anþ1
nþ1 ¼ Mnþ1

nþ1 þ
Dt2

2
ð2b� cÞKnþ1

nþ1 :

We recognize on the right-hand side the term in c� 1
2
which governs the stability of the scheme for a

calculation with constant discretization, whose stability conditions are: ð1
2
6 c6 2b unconditionally stable

scheme; 1
2
6 c and 2b6 c stable scheme if Dt6 1

xmax

ffiffiffiffiffiffi

c
2
�b

p Þ.
However, the presence of a supplementary term involving ½M � and ½K� voids the stability conditions

expressed in the previous case. Indeed, the stability depends on the sign of the right-hand side of Eq. (27). If

this term is always negative or zero, then the calculation is stable, whereas if it is always positive the

calculation is unstable.

In the particular cases of the central difference scheme c ¼ 1
2
; b ¼ 0

� �

or the mean acceleration scheme

c ¼ 1
2
; b ¼ 1

4

� �

, the term � c� 1
2

� �

½ €U �TAnþ1
nþ1½ €U � is zero. Then, stability depends on � 1

Dt
½ _U �Tð½M � €U nþ1

n þ
½K�U nþ1

n Þ, whose sign is not known. Only a numerical study in a particular case would enable us to conclude

about the stability of the calculation during remeshing. The method presented here enables us to perform

8



the stability study when going from state X nþ1
n to state X nþ1

nþ1 . To treat the problem for the whole time step,

one must study the transition X n
n , X

nþ1
nþ1 . For this purpose, one writes

1
2
½ €U nþ1T

nþ1 Anþ1
nþ1

€U nþ1
nþ1 þ _U nþ1T

nþ1 Knþ1
nþ1

_U nþ1
nþ1 � � 1

2
½ €U nT

n An
n
€U n
n þ _U nT

n Kn
n
_U n
n �

¼ � c� 1
2

� �

½ €U �TAnþ1
nþ1½ €U � � 1

Dt
½ _U �Tð½M � €U nþ1

n þ ½K�U nþ1
n Þ ð28Þ

Remark 13.Here, the term which governs stability does not depend on the parameters of the scheme which,

therefore, cannot be the culprit in case of instability. Such instability is caused by the evolutions of

the mesh. It is for that reason that we referred earlier to an unstable calculation rather than an unstable

scheme.

3.2.2. The discretized energy balance

The energy balance can be rewritten with the notations above in the same way as the stability study was.

We get

½ _U �TMnþ1
nþ1 h _Ui þ ½UT�Knþ1

nþ1 hUi ¼ Wext �
Dt2

2
ð2b� cÞ½ €U �TMnþ1

nþ1 h €Ui

� Dt2

2
c� 1

2

� �

ð2b� cÞ½ €U �TMnþ1
nþ1 ½ €U � � c� 1

2

� �

½U �TKnþ1
nþ1 ½U �

� ðc� 1Þ½U �Tð½M � €U nþ1
n þ ½K�U nþ1

n Þ: ð29Þ

Again, these are the equations of a problem with no mesh evolution completed with a term involving ½M �
and ½K�.

Eq. (29) enables one to express an energy balance between the energies of states X nþ1
n and X nþ1

nþ1 . Finally,

one must calculate the balance between X n
n and X nþ1

nþ1 , i.e.

1
2
½ _U nþ1T

nþ1 Mnþ1
nþ1

_U nþ1
nþ1 þ U nþ1T

nþ1 Knþ1
nþ1U

nþ1
nþ1 � � 1

2
½ _U nT

n Mn
n
_U n
n þ U nT

n Kn
nU

n
n �

¼ Wext �
Dt2

2
ð2b� cÞ½ €U �TMnþ1

nþ1 h €Ui � Dt2

2
c� 1

2

� �

ð2b� cÞ½ €U �TMnþ1
nþ1 ½ €U �

� c� 1
2

� �

½U �TKnþ1
nþ1 ½U � � ðc� 1Þ½U �Tð½M � €U nþ1

n þ ½K�U nþ1
n Þ: ð30Þ

Remark 14. In this expression, the variation of the total energy between states X n
n and X nþ1

n is taken into

account. Since this change of discretization takes place at time tn, the external forces produce no work and

Wext designates the work done by these forces between X nþ1
n and X nþ1

nþ1 , whose expression is

Wext ¼ c� 1
2

� �

½U �T½F � þ ½U �ThF i.

3.3. Application to fracture mechanics: the balance recovery method

Let us now consider the calculation of dynamic crack growth. In this particular case, we know what

physical phenomenon causes the change of geometry. Let us assume a crack growth Da between times tn
and tnþ1. The state vector at time tn can be in equilibrium on this new geometry only if a distribution of

forces Fþ is applied on the crack extension to close it. By making the residual defined by (31) vanish, the

balance recovery method guarantees the balance of the state vector projected onto the new discretization

(assuming that there are no external forces):

9



R ¼ Mnþ1
nþ1

€U nþ1
n þ Knþ1

nþ1U
nþ1
n � F nþ1

þ : ð31Þ
Thus, we have the following relations:

½U �Tð½M � €U nþ1
n þ ½K�U nþ1

n Þ ¼ ½U �TF nþ1
þ ; ð32Þ

½ _U �Tð½M � €U nþ1
n þ ½K�U nþ1

n Þ ¼ ½ _U �TF nþ1
þ ; ð33Þ

where ½U �TF nþ1
þ and ½ _U �TF nþ1

þ correspond to the power and the work of the force distribution F nþ1
þ

respectively. But we know that these two terms are, from a physical standpoint, respectively equal to
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�2GDa and �2G _a (G being the energy release rate and _a the crack velocity) [5]. In our algorithm, the

balance recovery stage is performed after the state vector at time tn has been projected onto the new mesh.

This enables one to verify the relations:

½U �Tð½M � €U nþ1
n þ ½K�U nþ1

n Þ ¼ �2GDa; ð34Þ

½ _U �Tð½M � €U nþ1
n þ ½K�U nþ1

n Þ ¼ �2G _a: ð35Þ
Let us return to the stability study and energy balance described above. The calculation of

In ¼ �½ _U �Tð½M � €U nþ1
n þ ½K�U nþ1

n Þ � 2G _a enables one to quantify the instability actually introduced at the

transition between state X nþ1
n and state X nþ1

nþ1 . In what follows, concerning the energy balance, we will focus

on the influence of the balance recovery on the two stages performed during the time step ½tn; tnþ1�. The term
D X nþ1

nþ1 ;X
n
n

� �

denotes the complete energy balance obtained as the difference between the left-hand side and

the right-hand side of Eq. (30) taking Eq. (34) into account. D X nþ1
nþ1 ;X

nþ1
n

� �

is obtained as the difference

between the left-hand side and the right-hand side of Eq. (29) taking (34) into account and D X nþ1
n ;X n

n

� �

is

defined by

DðX nþ1
n ;X n

n Þ ¼ 1
2
½ _U nþ1T

n Mnþ1
n

_U nþ1
n þ U nþ1T

n Knþ1
n U nþ1

n � � 1
2
½ _U nT

n Mn
n
_U n
n þ U nT

n Kn
nU

n
n �: ð36Þ

One can immediately write D X nþ1
nþ1 ;X

n
n

� �

¼ D X nþ1
nþ1 ;X

nþ1
n

� �

þ D X nþ1
n ;X n

n

� �

. D X nþ1
n ;X n

n

� �

is a measure of the

quantity of energy introduced or dissipated during the projection operations (from state X n
n to state X nþ1

n )

and D X nþ1
nþ1 ;X

nþ1
n

� �

when going from state X nþ1
n to state X nþ1

nþ1 .

Remark 15. This method enables us to set D X nþ1
nþ1 ;X

nþ1
n

� �

equal to zero a priori and, therefore, to minimize

the amount of energy introduced by the successive remeshing operations.

Remark 16. The balance takes into account the energy required to create new crack surfaces (2GDa). This

term appears naturally because of its relation with the work of the force distribution F nþ1
þ [5].

Remark 17. In practice, the residual (31) is zeroed thanks to the use of an iterative method. Thus, the

implementation of this balance recovery method into an explicit dynamic calculation code requires the

introduction of iterations to ensure equilibrium prior to resuming the dynamic calculation. These iterations

can be initialized by a projection of the displacements, velocities and accelerations of X n
n . Subsequently, the

residual defined by (31) is calculated, yielding the increments DU nþ1
n , D _U nþ1

n and D €U nþ1
n which verify:

DU nþ1
n ¼ Dt2bD €U nþ1

n ;

D _U nþ1
n ¼ DtcD €U nþ1

n ;

�R ¼ Mnþ1
nþ1D

€U nþ1
n þ Knþ1

nþ1DU
nþ1
n :

8

>

>

<

>

>

:

ð37Þ

A criterion based on the norm of the residual R is introduced in order to end the iterations. This procedure

converges rapidly and only a few iterations suffice to verify the criterion, which makes the increase in

calculation cost due to this method acceptable. This enables one to determine the three unknowns U nþ1
n ,

_U nþ1
n and €U nþ1

n required for the complete solution of the discretized problem.

4. Examples

4.1. Dynamic crack growth under prescribed displacement

In order to illustrate the effectiveness of the methods presented above, we calculate the dynamic prop-

agation of a crack in a plate with remeshing (see Fig. 4). The specimen consists of a homogeneous and

11



isotropic linear elastic material. It is subjected to a prescribed vertical displacement of 0.0025 m at the ends.

The evolution of this loading is of the Heaviside step function, with a rising time of 0.1 ms. The additional

data are c ¼ 0:01 m, b ¼ 0:05 m, a
b
¼ 0:4 for the geometry and E ¼ 186 GPa, m ¼ 0:3, q ¼ 8000 kgm�3,

K1c ¼ 110 MPa
ffiffiffiffi

m
p

for the material properties.

With this example we want to show the effectiveness of the method. The remeshing scheme and the

projection procedure are voluntary basic and not efficient if the balance recovery method is not used. This

simulation is programmed into the finite element code CASTEM 2000. The remeshing scheme can be

described as follows: when the criterion for crack advance (see Section 2) is checked a new crack front is

created, the old crack front node is splited and a new mesh is automatically generated (see Fig. 5). Then

fields (displacement, velocity and acceleration) are linearly approximated from the old mesh to the new one.

Path independent integrals are used to calculate the energy release rate [11,12]. For time integration, the

Newmark mean acceleration scheme is used (c ¼ 1
2
, b ¼ 1

4
). In a first time we will use a very coarse mesh as

shown in Fig. 11, and then we will compare with the results obtained with a fine mesh.

4.1.1. Influence of the balance recovery method

First, we studied the influence of the balance recovery method on the results obtained in the calculation

defined above. Fig. 6 shows the evolutions of the crack length in calculations with and without recovery.

Without balance recovery, the time at rupture was divided approximately by two (the calculation was

terminated when a
b
¼ 0:7).

Energy balance can be plotted for each of these calculations to explain these differences. In Fig. 7, T is

the kinetic energy, W the strain energy. Next the work of the external forces and balance designates the

term DðX nþ1
nþ1 ;X

n
n Þ defined above (see Eq. (36)). Without balance recovery, the energy imbalance is so large

that given the scale of the graph one cannot distinguish the energy levels involved at the onset of the

calculation. To evaluate the effectiveness of the balance recovery method, we compared the cumulated lack

of balance D ¼
Pn

i¼0 DðX iþ1
i ;X i

i Þ on Fig. 8. The balance recovery performed on the projected fields has the

a

c

b

ud

Fig. 4. Definition of the initial geometry.

a

old front

new front

old mesh

splited node

new mesh

crack faces

Fig. 5. Remeshing procedure.
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double advantage of reducing DðX nþ1
n ;X n

n Þ and zeroing DðX nþ1
nþ1 ;X

nþ1
n Þ for a final energy imbalance which

was negligible compared to that obtained with classical remeshing. Indeed, in the absence of remeshing, the

amount of energy introduced through repeated remeshing impairs the accuracy of the calculation and raises

doubts about its stability.

Regarding stability, we plotted the cumulated instability I ¼
Pn

i¼0 Ii during the propagation of the crack.

In the absence of balance recovery, even though the calculation does not diverge completely, one can see on

Fig. 9 that instability indeed occurs.

This example clearly shows the quality of the results obtained with the balance recovery method in terms

of both energy conservation and stability. Compared to a calculation without balance recovery, these re-

sults explain the differences in the evolution of the crack length observed in Fig. 6. Therefore, this method

leads to a stable calculation during which energy conservation is respected.

4.1.2. Study of the time integration strategy for the propagation of the crack

We will now consider the time integration of the equation which yields the crack length given its velocity

(see (14)). Let us analyze the results obtained using the algorithm defined by the first calculation strategy

presented in Section 2. This algorithm is sketched in Fig. 3.

One can observe that if one chooses a ¼ 0 the calculation is identical to that which was made in the

previous subsection, using only the balance recovery method and an explicit integration of crack velocity.

To make the results even more significant, we stopped the calculations at a
b
¼ 0:9.

Fig. 10 shows the results obtained by a calculation without balance recovery, a calculation with a ¼ 0

and a calculation with a ¼ 0:6. One can observe that the calculation without balance recovery predicts a

rapid failure of the specimen; with a ¼ 0 rupture takes about twice as long and with a ¼ 0:6 the test piece

never breaks. Furthermore, we observe a bifurcation in the evolutions of the crack lengths predicted with

a ¼ 0 and a ¼ 0:6 beyond 0.1 ms (i.e. when the loading reaches his final value). One can notice that in this

approach (see Eqs. (12) and (13)), the time step is the same for the integration of the balance of momentum

and the crack velocity. Consequently, we use an implicit scheme for the crack velocity integration because

an explicit time scheme (a ¼ 0) can be instable: the time step is larger than the critical time step corre-

sponding to the fastest crack velocity supposed to be the Rayleigh wave speed. When the time integration is

implicit (a ¼ 0:6), the scheme is stable and the numerical crack behavior reveals a deceleration when the

loading reaches his final value, until crack arrest.
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Fig. 8. Comparison of the cumulated energy out of balance: (i) without and (ii) with balance recovery.
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Now, let us focus on the influence of the value of a on the results obtained. Fig. 12 shows the evolution of

the crack length for different values of a. We observe that the differences are slight as long as a is greater

than 0.5. Finally, thanks to the tools developed above, we predict a crack arrest for the test case of a crack

growth under prescribed displacement. This result has been theoretically established in by Freund [7] and

has also been experimentally observed for DCB specimen by Kalthoff [16].

4.2. Dynamic crack growth under prescribed load

In this example, the crack propagation is theoretically unstable, which often happens in experimental

configurations. The specimen is a three point bending specimen and also consists of a homogeneous and

isotropic linear elastic material. It is subjected to a prescribed load of 25 N/m on the midspan of the beam.

The evolution of this load is of the Heaviside step function, with a rising time of 0.05 ms. The additional
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Fig. 10. Comparison of the evolutions of the crack length: (i) without balance recovery, (ii) a ¼ 0, (iii) a ¼ 0:6.
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data are c ¼ 0:2 m, b ¼ 0:05 m, a
b
¼ 0:4 for the geometry and E ¼ 4 GPa, m ¼ 0:3, q ¼ 1000 kgm�3,

K1c ¼ 10 MPa
ffiffiffiffi

m
p

for the material properties (Fig. 13).

On Fig. 15, we plot the evolution of the crack length for one simulation without the balance recovery

method and an other with the balance recovery method. As soon as the crack propagation is unstable in

this case, the difference between both results is not significant. The crack propagates at an approximately

constant speed and rapidly breaks the beam. Here with the refined mesh (15,000 elements (Fig. 14)) and the

use of a small time step, the numerical instability and the numerical energy introduced by remeshing and

projections are negligible. Hence in this case, the balance recovery method gives similar results.

Fig. 11. The mesh used for different simulations.
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Fig. 12. Comparison of the evolutions of the crack length for a 2 ½0; 1�.
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Fig. 13. Definition of the initial three point bending geometry.
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5. Conclusion

In the first section, we redefined the reference problem of dynamic fracture and identified an appropriate

calculation strategy for dynamic crack growth. Then, we focused on the numerical stability of dynamic

calculations with varying meshes. We proposed a theoretical study of the problem using an energy ap-

proach. This study led to the conditions required to guarantee the stability and accuracy of such calcu-

lations. Then, we considered the particular case of dynamic crack growth. We presented a balance recovery

method and the results obtained on an example. This method provides a general framework to ensure the

numerical stability of the calculation and control the transfers of energy during remeshing. It can be ex-

tended to any type of problem involving remeshing and used in any calculation code, implicit or explicit. To

be even more general, one can think of extending this method to problems in which the type and/or the

number of degrees of freedom depend on time. This would be the case, for example, with extended finite

elements methods. The results obtained here suggest that the difficulties encountered to simulate crack

arrest using the linear elastic fracture mechanics may come from numerical problems occurring during

remeshing and calculating the crack extension. It has been shown with the first example that using a coarse

mesh and a large time step, if projections are balanced and if the time integration scheme for the crack

length is stable, we can obtained accurate results from an energetical stand point. The second example

shows that, in most of usual applications using remeshing, the crack length history can be well predicted

without any control of the energy balance if the mesh is refined and especially if the remeshing procedure is

efficient.

Fig. 14. Mesh of three point bending specimen.

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0 20 40 60 80 100 120 140

Time  (µs)

a
/b

i
ii

Fig. 15. Comparison of the evolutions of the crack length: (i) without and (ii) with balance recovery.
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