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Abstract

The NSCD method has shown its e�ciency in the simulation of granular media. Since the number of par-
ticles and contact increases, the shape of the discrete elements becomes more complicated and the simulated 
problems becomes more complex, the numerical tools need to be improved in order to preserve reasonable 
elapsed CPU time. In this paper we present a parallelization approach of the NSCD algorithm and we in-
vestigate its inuence on the numerical behaviour of the method. We illustrate the e�ciency on an example 
made of hard disks: a free surface compaction.
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1. Introduction

The present work deals with the simulation of granular media which concern a wide range of

practical engineering applications. One can �nd many examples as concrete, monuments, geomaterials

(blocky rocks), powders (composites, grains, etc.), etc. All these materials are composed of particles

between which local mechanical interactions de�ne the behaviour of the medium at a macroscopic

scale.

The development and the improvement of numerical methods devoted to the simulation of multi-

body contact problem is of great interest and the NSCD method has shown its e�ciency in this area

[9,10].
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This implicit time stepping method relates to a nonlinear Gauss–Seidel like algorithm, and

di�ers from the widely used smoothed time-stepping approach [5] and from the event driven

ones [6].

Because the number of particles (np) increases (up to 40 000) and therefore the number of contacts

increases (nc ˙ 2 ∗ np in 2D and nc ˙ 3 ∗ np in 3D), or the shapes of discrete elements may be

more complicated (polygons or polyhedrons), or the simulated processes more complex, the tools

need to be improved in order to preserve reasonable elapsed CPU time.

An extreme example is the railway ballast fatigue simulation. To be realistic it needs up to

30 000 polyhedrons and about 1 million of loading cycles. Each loading cycle needs 1000 time steps

which takes about 2 h of CPU time. Nevertheless in this work, we will present results on examples

involving a moderate number of discrete elements.

In this way, parallel computation is one possibility. Various experiences have been made for the

simulation of granular material, but all are based on domain decomposition methods. For example

Jean et al. [3] used a static geometrical domain decomposition method (using the NSCD algorithm)

or Owen et al. [8] used a topological dynamic domain decomposition method based on a smooth

discrete element method approach (DEM). All these works have shown that a correct load balancing

is di�cult to perform.

As a matter of fact it is important to keep in mind that, in simulation of granular media, all com-

putational e�orts come from the interaction computation (contact detection and contact behaviour),

which have an erratic nature even in quasistatic simulations. This is quite di�erent from problems

involving deformable bodies [1] where the computational e�ort comes from volumic behaviour com-

putations which stay globally constant.

Therefore our approach will be quite di�erent, and is encouraged by the availability of shared mem-

ory computers. It consists in parallelizing the NSCD algorithm itself, independently of any geometric

or topologic information. Technically this is performed using OpenMP (http://www.openmp.org [7])

directives. It presents major advantages: its use is transparent, and its implementation allows to keep

the same source code for parallel or scalar use.

2. CPU time analysis

The �rst part of this work consists in identifying the main CPU time consuming portions of the

code (as contact detection, contact solver). But this identi�cation strongly depends on geometry and

intrinsic property of the sample, and we show a relationship between the CPU time consuming

rates of the di�erent parts of the code and the mechanical properties of the sample. The granular

media can be considered as a gaz (mixing), as a liquid (avalanche, rotative drum, granular ows)

or a solid (quasi-static evolution, compaction, shear test) according to the process. Three di�erent

examples have been chosen to illustrate the principal �elds of application, such as, a mixing, a free

surface compaction and a rotative drum. Each simulation takes into account 1000 “poly-disperse”

disks, with elastic shocks for mixing and an inelastic shocks for the other simulations [4]. Fig. 1

shows the contact network in each case. This network does not exist in the mixing case, because

of the permanent agitation of the material: each particle move in ballistic ight between two im-

pacts. Nevertheless, it is more important in the two other cases which involve dense material. The

percentage of elapsed time given in the Table 1 con�rms this argument: the solver of the nonlinear
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Fig. 1. Three characteristic examples (with contact network).

Table 1

Repartition of elapsed time taken by subroutine (%)

Problem Solver (%) Convergence (%) Detection (%)

Mixing 18.6 2.9 47.44

Compaction 84.68 2.43 5.82

Drum 85.68 2.52 1.89

contact equations consumes the major part of the CPU time for the two last examples, although the

detection of the pairs is the more expansive for the mixing case.

Consequently to this observation the programming e�ort is carried out on the solver itself. There-

fore the sample tests considered in the following is only compaction (preferred to drum). The mixing

does not fall into our priority.

3. Non smooth contact dynamics

3.1. Method description

The starting point of the method is the dynamic equations. After linearization it is written as

M
i(q̇i+1 − q̇i) = Rifree + hR

i+1; (1)

where i denotes the time step number, Mi is the matrix of the system (mass and inertial components),

q the con�guration parameter, Rifree the residue omitting contact reactions, hRi+1 the mean contact

impulsions and h the time step. Since the mass matrix is easily invertible, we can re-write Eq. (1)

as

q̇i+1 = q̇ifree + (M−1)ihRi+1; where q̇ifree = q̇i + (M−1)iRifree: (2)

According to the de�nition of Rifree, q̇ifree notes the “free velocity”.

The interaction problem is solved at the local level, and our equations need to be written in terms

of local variables: v� the relative velocity, r� the contact impulse (� denotes the contact number).

One obtains after

(v�)i+1 = (v�free)
i + h

nc
∑

�=1

w��(r�)i+1; (3)
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where w�� = H�∗(qi)(M−1)iH�(qi) and (v�free)
i = H�∗(qi)q̇ifree. The w

�� computation can be made

with standard global condensation, or block standard global condensation, or with a numerical con-

densation (for rigid collection). H denotes a linear mapping from the local frame to the global

one.

The local solution is made through a contact-by-contact like nonlinear Gauss–Seidel method. So

we consider the contact � and suppose that the others are �xed: the index i of time increment is

omitted. The iterative scheme is de�ned as follows (iteration k + 1):

(v�)k+1 − hw��(r�)k+1 = (v�free) + h
∑

�¡�

w��(r�)k+1 + h
∑

�¿�

w��(r�)k ;

law�[(v
�)k+1; (r�)k+1] = true: (4)

The local solution of this problem consists in �nding the couple (v�; r�) satisfying Eq. (4), where

law�[(v
�)k+1; (r�)k+1] = true expresses the frictional contact law (Signorini–Coulomb law) at the

local level has to be satis�ed. The right-hand side of the �rst equation in (4) is noted b�. In

a bi-dimensional description, it can be solved by looking for an a�ne graph intersection. In a

tri-dimensional description we must use a generalized Newton method as explained by Alart and

Curnier [2]. Scheme of the solver
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Evaluating q̇i+1 (using (2))

3.2. Multithreading procedure

Since NSCD is a nonlinear Gauss–Seidel method with a sequential structure, it is not a priori

well suited for a parallel treatment. Indeed a blind parallelization of the algorithm modi�es the

course of the operations regarding the contact scanning order and to memory access conicts. A

preliminary study on the linear Gauss–Seidel method [11] seems to show a weak inuence of the

contact scanning order on the numerical behaviour of the method.

The parallelization scheme consists in splitting the contact loop between P threads which may

be related to di�erent processors (multithreading procedure). This method which leads to a contact

loop renumbering, can generate a race condition which may be reduced with a weak bandwidth of

the matrix W (assembled from the w�� block matrix). The following numerical study consists in

evaluating the inuence of the multithreading on the e�ciency of the NSCD method in terms of the

number of iterations but also in terms of the quality of the solution.
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4. Results

4.1. Sample information

In this part we will discuss the results obtained on di�erent free surface compaction problem.

We put 1016 poly-disperse disks under gravity (for 95% average radius equal to 0:01 m and 5%

equal to 0:02 m) in a box.

For all disks, the mass coe�cient is 580 kg m−3. After the depot, the velocity of the lateral walls

is governed by the following law:

|vx| =
1

60

(

1 − cos
( �t

30

))

:

The process is performed using 10 000 time steps (h = 6 · 10−2 s). The compaction is performed

considering three situations. The �rst one (DAF) uses a friction coe�cient equal to 0.3 (0.5 with

walls). The second (DSF) is a frictionless case. In this two cases, each walls of the box is modelized

with a single rigid body. The last situation (DOSF) involves a zero friction coe�cient and the walls

of the box are described with a large collection of �xed disks.

4.2. Performance analysis

Time simulations are given in Table 2. Table 2 shows that the NSCD solver is slightly perturbed

by the parallelization. Indeed, the number of extra iterations does not exceed 12% of the sequential

iterations number. In some cases the iterations number may decrease, specially when friction occurs.

When we use a collection of disks to modelize the wall of the box, the iterations number is more

stable. It may be related to the smaller bandwidth of the matrix W in this case, although the contacts

number is bigger.

To appreciate the e�ciency of the parallel software, we have to evaluate, in addition to the

iterations number, the computer performance related to the parallel architecture (here shared memory)

and the OpenMP directives. The Code runs on a SUNFIRE 880 with six UltraSparc III (750 MHz)

processors. We use a relative speed-up for P processors, SP, as follows:

SP =
Tseq

Itseq

ItP

TP
; (5)

Table 2

Performance analysis for di�erent simulations with 1,2,4 and 6 processors

Processors problem 1 2 4 6

TS 〈it:〉 TS � TS � TS �

DAF 21531 335 10535 −6 5425 −3 3874 −9

DSF 28722 382 14174 +15 7782 +48 5780 +54

DOSF 37000 441 18064 +1 9483 −3 6945 +5

TS gives the CPU time elapsed in the solver, 〈it:〉 represents the average iteration number of the sequential computing,

whereas, � is the gain or loss of average iteration number of the parallel computing with respect to 〈it:〉.
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Fig. 2. Speed-up for di�erent simulations on the same computer (left) and for a simulation on two di�erent computers

(right).
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Fig. 3. Contacts number evolution for DAF (up), DSF (down-left) and DOSF (down-right).

where TP and ItP represent, respectively, the computing time and the iterations number with P

processors (Tseq = T1). If SP = P, the parallelization is e�cient. Fig. 2 shows the evolution of

SP versus P for the test problems. We can see some values greater than one. This phenomenon,

called superlinear behaviour, could be due to the activity of the computer during the computing

times, to memory e�ect or to optimized compilation. The main result of Fig. 3 is the decrease of

the performance when the number of processor increases. But this decrease is not too strong and

similarly on di�erent computer (SUNFIRE 880 and SGI origin 3800—CINES France). We can then
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think that the method stays still e�cient with more processors for simulation with a larger number

of particles.

4.3. Inuence on the solution

It is interesting to see how do the solutions di�er. The solutions obtained with di�erent number

of processors are not always identical in terms of the distribution of the big grains and of the local

contact network. The evolution of granular medium is an erratic process with multiple possible paths;

at each time step the distribution of the contact forces does not have a unique solution. The way

the contact loop is performed determines one solution among several admissible ones. However, we

can compare the solutions at the macroscopic level of the whole granular medium by considering

the evolution of the total contacts number and the distribution of normal contact orientations (fabric

tensor). Even if the contacts number in the di�erent computations is not the same, its evolution

is similar in each case. We can observe that the uctuation of contacts number increases with the

velocity (Fig. 3) that is to say in the middle of the computation where the velocity is maximal. On

the other hand in a quasi-static evolution, these perturbations should be reduced.

In frictionless simulations, more stable than frictional ones, the normal contact orientations for se-

quential and parallel computing keep the same characteristics (cf. Figs. 4 and 5) where the directions

0◦, 60◦ and 120◦ are preponderant; this texture is related to the way we prepare the sample before

the process. We can note the same property with frictional simulations, but it is less pronounced

(cf. Fig. 6).
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5. Conclusion

In the case of evolution of dense granular media, the parallelization method seems to give con-

cordant macroscopic results with sequential one and gives reasonable elapsed times. In general, the

principal problem is to �nd macroscopic comparison criterions (less di�cult in quasi-static evolution

than in granular ow), so we look for benchmarks in order to validate the method.

A parallel development of other portions of the code is in progress, but are intrinsically parallel

as the contacts detection. Larger tests should be performed to show if the conclusions obtained from

this preliminary results are inuenced by the size of the samples.

We hope to use other implementation of the method and other algorithms, more e�cient and less

sensitive to parallelization than Gauss–Seidel method, in order to increase the size of our samples.
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