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SHARP LIOUVILLE RESULTS FOR FULLY NONLINEAR
EQUATIONS WITH POWER-GROWTH NONLINEARITIES

SCOTT N. ARMSTRONG AND BOYAN SIRAKOV

Abstract. We study fully nonlinear elliptic equations such as

F (D2u) = up, p > 1,

in Rn or in exterior domains, where F is any uniformly elliptic, positively ho-

mogeneous operator. We show that there exists a critical exponent, depending
on the homogeneity of the fundamental solution of F , that sharply character-

izes the range of p > 1 for which there exist positive supersolutions or solutions

in any exterior domain. Our result generalizes theorems of Bidaut-Véron [6] as
well as Cutri and Leoni [11], who found critical exponents for supersolutions

in the whole space Rn, in case −F is Laplace’s operator and Pucci’s operator,

respectively. The arguments we present are new and rely only on the scaling
properties of the equation and the maximum principle.

1. Introduction and main results

Elliptic equations and systems with power-like zero order terms have been the
focus of great attention for many years. A model is the Emden-Fowler equation

(1.1) −∆u = up, p > 1,

which has important applications in physics and geometry as well as a rich mathe-
matical structure. In this paper, we study the more general equation

(1.2) F (D2u) = f(x, u)

where F is a uniformly elliptic operator and f has power-like dependence in u. In
particular, we study the existence of positive solutions and supersolutions of (1.2) in
unbounded domains of Rn, n ≥ 2. The only hypotheses on the nonlinear operator
F are uniform ellipticity and positive homogeneity; precisely, we require:

(H1) for some constants 0 < λ ≤ Λ and all real symmetric matrices M and N ,
with N nonnegative definite, we have

λ trace(N) ≤ F (M −N)− F (M) ≤ Λ trace(N), and

(H2) F (tM) = tF (M) for every t ≥ 0 and each symmetric matrix M .
An operator F satisfying (H1)-(H2) is called an Isaacs operator. If in addition F
is concave or convex, then F is often called a Hamilton-Jacobi-Bellman operator.
See the references in the next section for more on the the theory and applications
of Isaacs operators.
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The question we are concerned with has been extensively studied in the special
case F (D2u) = −∆u (when (H1) holds with λ = Λ = 1, and (H2) holds for
all t ∈ R), by using energy methods and the divergence-form structure of the
Laplacian. The following Liouville-type theorem is a particular case of results
obtained by Bidaut-Véron [6], and sharply characterizes the range of p > 1 for
which there exist positive (super)solutions of (1.1) in exterior domains, as well as
positive supersolutions in the whole space Rn. An exterior domain is a domain
Ω ⊂ Rn for which Rn \BR ⊆ Ω ⊆ Rn \ {0} for some R > 0, where BR denotes the
open ball of radius R centered at the origin.

Theorem 1.1 ([6]). Denote 2∗ := n/(n − 2) if n ≥ 3, and 2∗ := ∞ if n = 2. Let
p > 1. Then the Emden-Fowler equation (1.1) has no nontrivial nonnegative weak
supersolutions in any exterior domain of Rn, provided that p ≤ 2∗.

Note that it can be checked by a straightforward calculation the functions v(x) :=
cp|x|−2/(p−1) and u(x) := c̃p

(
1 + |x|2

)−1/(p−1) are respectively a solution of (1.1)
in Rn\{0} and a supersolution of (1.1) in the whole space Rn, provided that p > 2∗
and the constants cp, c̃p > 0 are chosen appropriately. Thus the previous theorem
states that 2∗ is the critical exponent for both the existence of positive solutions
or supersolutions of (1.1) in any exterior domain, and positive supersolutions of
(1.1) in the whole space Rn. Recall that the famous result of Gidas and Spruck [16]
states that the critical exponent for existence of positive solutions of (1.1) in Rn is
different, namely 2∗ := (n + 2)/(n − 2). The delicate proof of this deep fact relies
on special geometric properties and symmetries of the Laplacian.

Theorem 1.1 has been extended to various quasilinear equations in divergence
form, like −∆mu = up, see [6], as well as to more general divergence form equations
such as −div(A(Du, u, x)) = 0, provided that A possesses the appropriate growth
in u and Du. For more results in this direction, see [18, 22, 5, 25].

In this paper, we study the corresponding problem for certain fully nonlinear
elliptic equations. Consequently, all differential (in)equations appearing here are
to be interpreted in the viscosity sense, which is the appropriate notion of weak
solution for elliptic equations in nondivergence form. Our model equation is

(1.3) F (D2u) = up,

where p > 1 and F satisfies (H1) and (H2). The arguments we give are com-
pletely different from the ones in the above quoted works, since energy methods
are obviously inapplicable to the study of (1.3). Instead, our approach relies on
the maximum principle, and makes essential use of the following result we recently
obtained with Smart [3] on the existence and properties of fundamental solutions
of fully nonlinear equations.

Theorem 1.2 ([3]). Assume F satisfies (H1) and (H2). The equation F (D2u) = 0
in Rn \ {0} has a non-constant solution that is bounded below in B1 and bounded
above in Rn \B1. Moreover, the set of all such solutions is {aΦ + b | a > 0, b ∈ R},
where Φ ∈ C1,δ

loc (Rn \ {0}) can be chosen to satisfy one of the following homogeneity
relations: for all σ > 0,

(1.4) Φ(x) = Φ(σx)+ log σ or
{

Φ(x) = σα
∗
Φ(σx)

α∗Φ(x) > 0
for x ∈ Rn \{0},



SHARP LIOUVILLE RESULTS FOR FULLY NONLINEAR EQUATIONS 3

for some unique number α∗ = α∗(F ) ∈ (−1,∞) \ {0} which depends only on F and
n (we set α∗(F ) = 0 in case the first alterantive in (1.4) occurs). We call α∗(F )
the scaling exponent of F , and we call Φ the fundamental solution of F .

Remark 1.3. Of course, the fundamental solution of the Laplacian is Φ(x) =
|x|2−n, if n ≥ 3, and Φ(x) = − log |x|, if n = 2, so the scaling exponent of −∆ is
α∗(−∆) = n − 2. For a general F satisfying (H1) and (H2), the scaling exponent
can be any number between λ

Λ (n−1)−1 and Λ
λ (n−1)−1. For more on fundamental

solutions and scaling exponents, we refer to [3].

Equation (1.3) has another “scaling exponent”, given by the interplay between
the 1-homogeneity of the elliptic operator and the p-homogeneity of the right-hand
side in (1.3). If u is a (sub/super)solution of (1.3) in the exterior domain Rn \BR,
then it is easy to check that the rescaled function uσ, defined for each σ > 0 by

uσ(x) := σβ
∗
u(σx), β∗ = β∗(p) :=

2
p− 1

,

is also a (sub/super)solution of (1.3) in the domain Rn \BR/σ. In order to compare
with (1.4), note that Φσ ≡ Φ when α∗ = β∗.

Put briefly, our main result for (1.3) asserts that the answer to the question of
whether there exists a positive (super)solution in exterior domains, or a positive
supersolution in the whole space Rn, is determined by which of the numbers α∗(F )
and β∗(p) is greater.

Theorem 1.4. Assume that F satisfies (H1) and (H2), and p > 1. Then the
generalized Emden-Fowler equation (1.3)

(i) has no nontrivial nonnegative supersolution in any exterior domain of Rn,
if α∗(F ) ≤ β∗(p);

(ii) has a positive supersolution in the whole Rn, if α∗(F ) > β∗(p).
(iii) has a positive solution in Rn \ {0}, if α∗(F ) > β∗(p).

This result extends Theorem 1.1 to arbitrary Isaacs operators, and provides
a new perspective on this theorem by embedding the Laplacian in the family of
positively homogeneous, uniformly elliptic operators. From our point of view, the
condition p ≤ n/(n−2) is better written as n−2 ≤ 2/(p−1), which emphasizes the
competition between the homogeneity of the fundamental solution of the Laplacian
and the scaling exponent β∗(p) = 2/(p− 1) for equation (1.1). Of course, we may
also write the inequality α∗(F ) ≤ β∗(p) in terms of p as

(1.5) p ≤ 2∗(F ) :=

{
α∗(F )+2
α∗(F ) if α∗(F ) > 0,

∞ if α∗(F ) ≤ 0.

To our knowledge, there are no previous results concerning the nonexistence of
positive solutions of fully nonlinear equations and inequalities in exterior domains.
Theorem 1.4 implies (1.3) has no positive singular supersolutions, with singularities
contained in a bounded set, provided that α∗ ≤ β∗.

In the special case that (1.3) is posed in the whole space Rn, and F is a Pucci
extremal operator (see Section 2 for a definition of these operators), problem (1.3)
was studied and Theorem 1.4 was proved by Cutri and Leoni [11]. Their result
was extended to a class of rotationally invariant operators1 in a recent paper by

1rotationally invariant means that F (M) depends only on the eigenvalues of M .
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Felmer and Quaas [14]. Note that for rotationally invariant operators the existence
statements (ii) and (iii) in Theorem 1.4 are trivial. For such operators, just as for
(1.1), it can be checked by a direct computation that if α∗ > β∗, then the functions
v(x) := c|x|−2/(p−1) and u(x) := c̃

(
1 + |x|2

)−1/(p−1) are respectively a solution of
(1.3) in Rn \ {0} and a supersolution of (1.3) in the whole space Rn, for suitably
chosen constants c̃, c > 0. The proofs of the nonexistence statements in [11] and
[14] depend heavily on the rotational invariance of F , in particular on the existence
of radial fundamental solutions for F .

Theorem 1.4 generalizes these results first by dropping the assumption of rota-
tional invariance and considering an arbitrary fully nonlinear operator satisfying
(H1) and (H2), and second by requiring only that the equation hold in an exterior
domain, which yields a Liouville statement for singular solutions. Our proof of The-
orem 1.4 is (necessarily) accomplished through a different argument than the one
given in both [11] and [14]. The proof of part (i) makes use of the scaling properties
of the equation and of the maximum principle to compare a positive supersolution
of (1.3) with the fundamental solution Φ of F . To prove part (ii), we show that
the ellipticity estimates imply that some power of the fundamental solution of F
is a supersolution of (1.3), which permits us to construct a solution of (1.3) in the
whole space by a truncation-type argument.

Finally, Theorem 1.4(iii) is proved with the help of Krasnoselskii degree theory
(see Theorem 3.5 in Section 3), a tool which became popular in elliptic PDE with
the well-known works of Amann (see e.g. [1]). An essential step in the application
of degree theoretic results lies in estabishing a priori bounds. The classical blow-
up argument, introduced by Gidas and Spruck [17] and de Figueiredo, Lions and
Nussbaum [12], has been employed many times in the last thirty years to obtain
a priori bounds and hence existence results for nonlinear problems in bounded
domains. In the fully nonlinear setting this approach was first used in [23].

It is less typical for a priori estimates and degree theory to be used to establish
existence results in unbounded domains, and their application hides some specifici-
ties. In particular, we deduce an a priori estimate by an argument which is different
than the one typically used in the literature (for example in [12, 17]). In fact, we
will prove the following result, which implies Theorem 1.4(iii) and deserves to be
stated separately.

Theorem 1.5. Assume β∗(p) < α∗(F ). Then at least one of the following holds:

(i) equation (1.3) has a bounded positive solution in the whole space Rn, or
(ii) equation (1.3) has a positive solution u in the domain Rn \ {0} which is

(−β∗(p))-homogeneous, that is, uσ ≡ u for all σ > 0.

In Section 3 we give an extended discussion of our arguments and compare them
to those of previous papers on the subject. Let us mention here another advan-
tage of our approach, which is that it easily adapts to more general nonlinearities
f = f(x, u) as in (1.2). An extension of our results to equation (1.2) is given in
Theorem 3.1, which roughly states that analogous conclusions as in Theorem 1.4
(i)-(ii) hold for (1.2), provided f is positive, behaves like |x|−γup for large |x| and
small u, and satisfies a mild global hypothesis.

It remains an interesting open question whether the result of Gidas and Spruck
[16] can be extended to fully nonlinear equations. For more details on this question,
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we refer to Felmer and Quaas [13], who used ODE techniques to study the existence
and nonexistence of radial solutions in Rn for rotationally invariant operators.

In the next section, we very briefly describe some notation and results from the
theory of viscosity solutions of fully nonlinear equations. Our main result is proved
in Section 3.

2. Some notations and results on viscosity solutions of elliptic PDE

This short section is meant for readers who are not familiar with the theory of
fully nonlinear equations and the concept of viscosity solutions.

We denote the set of n-by-n real symmetric matrices by Sn, and In ∈ Sn is
the identity matrix. If x, y ∈ Rn, we denote by x ⊗ y the symmetric matrix with
entries 1

2 (xiyj +xjyi). For M,N ∈ Sn, we write M ≥ N if M −N has nonnegative
eigenvalues. The Pucci extremal operators are defined by

P+
λ,Λ(M) := sup

A∈Jλ,ΛK
[− trace(AM)] and P−λ,Λ(M) := inf

A∈Jλ,ΛK
[− trace(AM)] ,

for each M ∈ Sn and 0 < λ ≤ Λ, where Jλ,ΛK ⊆ Sn is the subset of Sn consisting
of the matrices A for which λIn ≤ A ≤ ΛIn. The following equivalent definition of
the Pucci extremal operators is often more convenient for calculations:

(2.1) P+
λ,Λ(M) = −λ

∑
µj>0

µj−Λ
∑
µj<0

µj and P−λ,Λ(M) = −Λ
∑
µj>0

µj−λ
∑
µj<0

µj ,

where µ1, . . . , µn are the eigenvalues of M . See Caffarelli and Cabre [9] for more on
these operators (to avoid confusion with the notations in [9], note that P+

λ,Λ(M) =
−M−(M,λ,Λ) and P−λ,Λ(M) = −M+(M,λ,Λ), where M± are as in [9]).

An equivalent way of writing (H1) is
(H1) there exist 0 < λ ≤ Λ such that for every M,N ∈ Sn,

P−λ,Λ(M −N) ≤ F (M)− F (N) ≤ P+
λ,Λ(M −N).

Observe that (H1) and (H2) are satisfied for both F = P−λ,Λ and F = P+
λ,Λ, and

these hypotheses imply P−λ,Λ(M) ≤ F (M) ≤ P+
λ,Λ(M) for each M ∈ Sn.

Furthermore, an equivalent way of stating (H1) and (H2) is to assume F is of
the form

(2.2) F (D2u) = sup
α∈A

inf
β∈B

(
−aα,βij ∂iju

)
or F (D2u) = inf

α∈A
sup
β∈B

(
−aα,βij ∂iju

)
,

where α, β are indices that belong to some sets A and B, and the symmetric ma-
trices Aα,β = (aα,βij ) satisfy the inequality λI ≤ Aα,β ≤ ΛI. This is the form of
general Isaacs operators, which are fundamental in the theory of two-player zero-
sum stochastic differential games. In the particular case card(B) = 1, the operator
F in (2.2) is called a Hamilton-Jacobi-Bellman operator – these have many uses
in applied mathematics, and arise in the theory of stochastic optimal control. We
refer to Cabre [7] as well as Fleming and Soner [15] for references and more on
Hamilton-Jacobi-Bellman and Isaacs equations.

Suppose that Ω is an open subset of Rn, F satisfies (H1), and f ∈ C(Ω). A
continuous function u ∈ C(Ω) is a viscosity subsolution (resp. supersolution) of the
equation

(2.3) F (D2u) = f(x) in Ω,
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if, for every point x0 ∈ Ω and test function ϕ ∈ C2(Ω) such that x 7→ u(x)− ϕ(x)
has a local maximum (resp. minimum) at x0, we have

F (D2ϕ(x0)) ≤ (resp. ≥) f(x0).

We say that u is a viscosity solution of (2.3) if it is both a viscosity subsolution
and supersolution of (2.3).

Below we mention some standard results from the theory of viscosity solutions
which will be used in this article. All differential operators F , G, H, appearing
below are assumed to satisfy only (H1).

• Maximum principle and strong maximum principle ([9, Proposition 4.9,
Theorem 5.3] and Theorem 3.3 in [10] together with the remarks in Ex-
ample 3.6 and section 5.C in that paper). Suppose that Ω is bounded and
u, v ∈ C(Ω̄), f ∈ C(Ω) satisfy F (D2u) ≤ f ≤ F (D2v) in Ω and u ≤ v on
∂Ω . Then u ≤ v in Ω. If u(x0) = v(x0) at some point x0 ∈ Ω, then u ≡ v
in Ω.
• Transitivity of inequalities in the viscosity sense ([9, Theorem 5.3] and [2,

Lemma 3.6]). Assume F (M) + G(N) ≥ H(M + N) for each M,N ∈ Sn.
If u, v, f, g ∈ C(Ω) are such that F (D2u) ≤ f and G(D2v) ≤ g in Ω, then
the function w := u+ v satisfies H(D2w) ≤ f + g in Ω.
• Local Hölder estimates ([9, Theorem 4.10]). Suppose that u, f ∈ C(Ω)

satisfy the inequalities P−λ,Λ(D2u) ≤ |f | and P+
λ,Λ(D2u) ≥ −|f | in Ω.

Then there is a constant 0 < γ < 1, γ = γ(n, λ,Λ), such that for each
compact subset K ⊆ Ω we can find C = C(n,Λ, λ,K,Ω) for which

‖u‖Cγ(K) ≤ C
(
‖u‖L∞(Ω) + ‖f‖Ln(Ω)

)
.

• The infimum of a family of supersolutions which is uniformly bounded
below is a supersolution. ([9, Proposition 2.7]).

The book [9] is a nice introduction to the theory of viscosity solutions of fully
nonlinear, uniformly elliptic equations. See also Crandall, Ishii, and Lions [10].

3. Further remarks and proofs

3.1. Discussion and more general results. To put our main result and its
proof in a proper context, we begin this section with a discussion. First, all earlier
results concerning linear and quasilinear operators in divergence form use the weak
formulation of the equation in terms of integrals, a feature which operators in non-
divergence form do not have. For example, a simple way to prove a nonexistence
result for (1.1) is to replace u by its spherical mean, which is a supersolution too,
by Jensen’s inequality. It is then enough to study radial supersolutions, which can
be reduced to an ODE problem (see for example Guedda and Véron [18]).

A different approach is required in the nondivergence setting. It was noticed by
Labutin [21] as well as in [11] and [14] that for certain rotationally invariant fully
nonlinear operators F , such as the Pucci extremal operators, there exists a unique
number α = α∗(F ) ∈ (−1,∞) for which the function ξα defined by

(3.1) ξα(x) :=

 |x|
−α if α > 0,

− log |x| if α = 0,
−|x|−α if α < 0,
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is a smooth solution of F (D2ξα) = 0 in Rn \ {0}. This is easy to verify by a direct
computation. For the Pucci maximal operator P+

λ,Λ we have α∗(P+
λ,Λ) = Λ

λ (n−1)−1,
while the Pucci minimal operator P−λ,Λ has scaling exponent α∗(P−λ,Λ) = λ

Λ (n−1)−1.
It is then shown in [11, 14] that (1.3) has no positive supersolutions in the whole

space Rn if and only if (1.5) holds. The argument used in these papers relies on
the fact that any solution of F (D2u) ≥ 0 in Rn satisfies min∂Br u = minB̄r u by the
maximum principle, so the function r 7→ m(r) = min∂Br u is decreasing. Together
with the radial symmetry of the fundamental solution, this permits one to prove
an analogue of Hadamard’s three spheres theorem, which in turn implies that the
function rα

∗(F )m(r) is increasing. Finally, with the help of a judiciously chosen
test function, one obtains the inequality m(r)p ≤ Cr2m(r/2), which contradicts
properties of m(r). This approach cannot be used if the operator is not rotationally
invariant, or if the domain is not Rn.

In addition to being more general, our proof of the corresponding Liouville-
type result, Theorem 1.4(i), is actually simpler. It has two central ideas. First,
we observe that a nontrivial solution of F (D2u) ≥ 0 in an exterior domain must
be greater than a constant multiple of the fundamental solution, according to the
maximum principle. Second, thanks to the scaling properties of (1.3), we will
see that in the case α∗(F ) ≤ β∗(p) the existence of a nontrivial solution of (1.3)
contradicts the finiteness of the first half-eigenvalue of F in an annular domain.

The existence statement (ii) in Theorem 1.4 is obtained by “bending” the fun-
damental solution, that is, by showing that some power of Φ is a supersolution in
Rn \{0} of the inequality we want to solve. Then a supersolution in Rn is obtained
by truncating this function around the origin in a suitable way.

The proof of Theorem 1.4(iii) is based on a well-known theorem by Krasnoselskii,
which asserts the existence of a nonzero fixed point of any compact map which sends
a convex cone into itself, under some conditions on its behavior on two distinct
spheres. The precise statement of this theorem is given in Theorem 3.5 below. To
apply it, we show that an appropriate map can be defined on the cone of nonnegative
(−β∗)-homogeneous functions whenever β∗ < α∗. We verify that its fixed points
are solutions of (1.3), and that it satisfies the conditions of Krasnoselskii’s theorem
under the assumption that (1.3) does not have bounded positive solutions in the
whole space Rn. On the other hand, if (1.3) has a positive solution in Rn, then of
course this solution is also a solution in Rn \ {0}, so we have nothing to prove.

As we noted in the introduction, we can easily extend our results to more general
nonlinearities f(x, u). The next theorem generalizes our statements on supersolu-
tions, that is, Theorem 1.4 (i) and (ii). We denote

β∗ = β∗(p, γ) :=
2− γ
p− 1

,

for each γ < 2 and p > 1.

Theorem 3.1. Assume that the operator F satisfies (H1) and (H2), R0 > 0, and
f : (Rn \ BR0) × (0,∞) → (0,∞) is a continuous function (note f needs not be
defined at u = 0).

(i) Suppose there exist ε0, c0, C0 > 0, p > 1, γ < 2 such that α∗(F ) ≤ β∗(p, γ),

(3.2) f(x, s) ≥ c0|x|−γsp in (Rn \BR0)× (0, ε0), and
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(3.3)
f(x, s)
s

≤ C0
f(x, t)
t

for all t > 0, s ∈ (0,min{t, ε0}), |x| ≥ R0.

Then (1.2) has no positive supersolution in any exterior domain.
(ii) Suppose that there exist constants ε0, C0 > 0, p > 1 and γ < 2 such that

α∗(F ) > β∗(p, γ) and

(3.4) f(x, s) ≤ C0|x|−γsp in (Rn \BR0)× (0, ε0).

Then there exists a positive supersolution of (1.2) in Rn \ BR0 . If in
addition γ ≤ 0 and (3.4) holds in Rn × (0, ε0), then (1.2) has a positive
supersolution in the whole space Rn.

Remark 3.2. The number β∗(p, γ) defined in this theorem is the scaling exponent
of the equation

(3.5) F (D2u) = |x|−γup.

That is, if u is a (sub/super)solution of (3.5) in Rn \BR, then the rescaled function

(3.6) uσ(x) := σβ
∗
u(σx), β∗ =

2− γ
p− 1

,

is also a (sub/super)solution of (3.5) in Rn \BR/σ.

Remark 3.3. In the case f = f(s) does not depend on x, conditions (3.2) and
(3.4) in Theorem 3.1 suggest that it is the behaviour of f(s) near s = 0 that
determines whether there exist positive supersolutions of (1.2) in exterior domains.
While condition (3.3) is a global hypothesis, it is not very restrictive. In fact,
hypothesis (3.3) turns out to be necessary only for the method of proof we employ.
We have recently discovered another approach which permits us to replace (3.3)
by an optimal hypothesis, and yields nonexistence results for sublinear equations
(p < 1) as well as for systems of Lane-Emden type. This alternative method, based
on some results from the regularity theory of Krylov and Safonov (c.f. [20]), will
be described in a forthcoming article.

3.2. Proof of the nonexistence result. The existence of fundamental solutions
of quasilinear equations provides a lower bound on positive supersolutions, as ob-
served for example in [25, Lemma 2.3] and [5, Proposition 2.6]. The following
lemma states that the same is valid for uniformly elliptic operators of Isaacs type.
Its simple proof needs only Theorem 1.2 and the maximum principle.

Lemma 3.4. Suppose that R1 > 0 and u ∈ C(Rn \ BR1) is a positive solution of
F (D2u) ≥ 0 in Rn \ B̄R1 . Then for some c > 0,

(3.7) u(x) ≥ c|x|−α in Rn \BR1 , where α := max{0, α∗(F )}.

Proof. We first consider the case α∗(F ) > 0. By Theorem 1.2, the fundamental
solution Φ of F is such that Φ > 0 and Φ(x)→ 0 as |x| → ∞. Select c > 0 so small
that u ≥ cΦ on ∂BR1 . Then for each ε > 0, there exists R̄ = R̄(ε) > R1 such that
u+ ε ≥ ε ≥ Φ in Rn \BR̄. Applying the maximum principle to

F (D2(u+ ε)) ≥ 0 = F (D2Φ)

in BR \BR1 , for each R > R̄(ε), we conclude that u+ ε ≥ Φ in Rn \BR1 . Letting
ε → 0 we obtain u ≥ Φ in Rn \ BR1 . This implies (3.7) by the homogeneity of Φ,
since Φ(x) = |x|−α∗(F )Φ(x/|x|) for every x ∈ Rn \ {0}.
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In the case α∗(F ) ≤ 0, we have Φ(x)→ −∞ as |x| → ∞. Setting

c := (1/2) min
∂BR1

u > 0,

we observe that u ≥ εΦ + c on ∂(BR \BR1), for each 0 < ε < c/(max∂BR1
Φ), and

each R > R̄(ε) sufficiently large. By the maximum principle, we have u ≥ εΦ + c
in Rn \BR1 . By passing to the limit ε→ 0, we deduce that u ≥ c. �

Proof of Theorem 3.1 (i). Assume first that there exists u > 0 which is a superso-
lution of (1.2) with f(x, u) = |x|−γup, that is,

(3.8) F (D2u) ≥ |x|−γup

in some exterior domain Rn \BR1 . We can assume R1 > 1. We will argue that the
number β∗ defined in (3.6) is such that β∗ < α∗(F ).

In what follows c, C denote positive constants which may change from line to
line, and depend only on F and n.

By Remark 3.2, for each σ ≥ R1 the function uσ given by (3.6) is a supersolution
of (3.8) in Rn \B1, and hence

(3.9) F (D2uσ) ≥ |x|−γupσ ≥ min{1, 2−γ}upσ in B2 \B1.

By applying Lemma 3.4 to u and expressing (3.7) in terms of uσ, we obtain

(3.10) uσ(x) = σβ
∗
u(σx) ≥ cσβ

∗−α|x|−α for every σ ≥ 1 and |x| ≥ R1/σ,

where α := max{0, α∗(F )}. Thus for every σ ≥ R1, we have uσ(x) ≥ cσβ
∗−α in

B2 \B1. Hence by (3.9),

(3.11) F (D2uσ) ≥ cσ(β∗−α)(p−1) uσ in B2 \B1.

The existence of a positive function uσ satisfying this inequality implies that the
first eigenvalue of F in the bounded regular domain B2 \ B1 is bounded below by
cσ(β∗−α)(p−1), for every σ ≥ R1. This is of course a contradiction if β∗ > α and
σ ≥ 2R1 is taken large enough, since the first eigenvalue λ+

1 (F,B2 \ B1) is finite.
For a simple proof2 of a finite upper bound on the first eigenvalue, which requires
only the maximum principle, see the definition of λ+

1 (F,Ω) as well as Lemma 3.7
in [2]. For more on first eigenvalues of fully nonlinear equations of Isaacs type, see
[24, 2] and the references therein.

We have left to rule out the critical case α = α∗(F ) = β∗ > 0. We first show
that in this case we can improve (3.10). Define w(x) := Φ(x) (log |x|) and observe
that by (H1) and (H2),

F (D2w) ≤ log |x|F (D2Φ) + 2P+
λ,Λ(D log |x| ⊗DΦ) + ΦP+

λ,Λ(D2 log |x|)
= 2|x|−2P+

λ,Λ (x⊗DΦ(x)) + Φ(x)P+
λ,Λ

(
|x|−2In − 2|x|−4x⊗ x

)
in Rn \BR1 , provided that Φ ∈ C2(Rn \BR1). We remark that differentiating the
equality Φ(x) = tαΦ(tx) with respect to x yields that the matrix H(x) = x⊗DΦ(x)

Φ(x)

satisfies H(tx) = H(x) for all t > 0. Thus P+
λ,Λ(H(x)) ≤ C = max∂B2 P+

λ,Λ(H(x))
in Rn \ B1. The latter is rigorous, since Φ is locally uniformly bounded in C1,

2In view of possible applications of this method to other problems, we note that this argument
does not depend on the existence of an eigenfunction.
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depending only on the constants λ, Λ, and n. Thus P+
λ,Λ (x⊗DΦ(x)) ≤ CΦ(x),

and since the eigenvalues of x⊗ x are 0 and |x|2, we obtain

(3.12) F (D2w) ≤ C|x|−2Φ(x) ≤ C|x|−α−2 in Rn \BR1 .

By performing an analogous calculation with a smooth test function, we confirm
that the differential inequality (3.12) holds rigorously in the viscosity sense, even
when Φ is only in C1,γ

loc but not in C2 (see for instance the proof of Lemma 3.3 in
[3]). According to Lemma 3.4 and (3.8), we also have

(3.13) F (D2u) ≥ |x|−γup ≥ c|x|−γ−pα = c|x|−α−2 in Rn \BR1 ,

since α = β∗. Note that Theorem 1.2 implies w = Φ(x) log |x| → 0 as |x| → ∞,
since α∗ = β∗ > 0. By (3.12), (3.13), and the maximum principle, we infer that

u+ ε ≥ cw in BR \BR1

for every ε > 0 and every R > R̄(ε) sufficiently large. Therefore by letting first
R→∞ and then ε→ 0 we obtain

u ≥ c|x|−α log |x| in Rn \BR1 ,

by the definition of w and Theorem 1.2. Rescaling, we find that for σ ≥ R1,

uσ ≥ c log σ in B2 \B1.

Thus for all σ ≥ R1,

F (D2uσ) ≥ |x|−γupσ ≥ c(log σ)p−1uσ in B2 \B1.

As above, this shows that the first eigenvalue of F in B2 \B1 is bounded below by
c3(log σ)p−1. Sending σ → ∞ yields a contradiction. This completes the proof of
Theorem 3.1(i) in the case that f(x, u) = |x|−γup.

Finally, we remark that in the case of general nonlinearity f satisfying the hy-
potheses of Theorem 3.1 the problem can be reduced to the particular case we have
just studied. Namely, with the help of Lemma 3.4 we obtain

(3.14)
f(x, u)
up

≥ f(x, c|x|−α)
up−1c|x|−α

≥ c|x|−γ−α(p−1)

up−1
= c|x|−γ

(
c|x|−α

u

)p−1

≥ c|x|−γ

in Rn \ BR1 . The first inequality in (3.14) follows from Lemma 3.4 and (3.3) (if
necessary, we take larger R1, so that R1 ≥ R0 and c|x|−α ≤ ε0 in Rn \ BR1), the
second inequality is a consequence of (3.2), and the last inequality follows again
from Lemma 3.4. Hence the nonexistence statement in Theorem 3.1 follows from
what we already proved.

3.3. Proof of Theorem 3.1 (ii). We suppose 0 < (2− γ)/(p− 1) = β∗ < α∗(F ).
Define v := Φτ where τ := β∗/α∗(F ) ∈ (0, 1). In the case Φ ∈ C2, we have

D2v = τΦτ−1D2Φ− τ(1− τ)Φτ−2 (DΦ⊗DΦ) ,

so by (H1) and (H2) we obtain

F (D2v) ≥ τΦτ−1F (D2Φ) + τ(1− τ)Φτ−2 P−λ,Λ(−DΦ⊗DΦ)

= λτ(1− τ)Φτ−2|DΦ|2

in Rn \ {0}. This is routine to confirm in the viscosity sense in the case Φ 6∈ C2.
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By differentiating Φ(x) = σαΦ(σx) with respect to σ, we see that x ·DΦ = −αΦ,
hence |DΦ| ≥ α|x|−1Φ. Therefore,

F (D2v) ≥ c|x|−2Φτ ≥ c|x|−τα
∗−2 in Rn \ {0}.

Since 0 < c|x|−β∗ ≤ v(x) ≤ C|x|−β∗ and −β∗p− γ = −τα∗ − 2, we deduce that

(3.15) F (D2v) ≥ c|x|−γvp in Rn \ {0}.
Suppose in addition that γ ≤ 0. For a > 0, let w ∈ C(B̄1) be the unique solution

of the Dirichlet problem {
F (D2w) = a in B1,

w = 0 on ∂B1.

The ABP inequality ([9, Theorem 3.6]) provides us the estimate 0 < w ≤ Ca. Thus
if a > 0 is sufficiently small, the function w satisfies

(3.16) F (D2w) ≥ |x|−γwp in B1.

By multiplying v = Φτ by a small constant, if necessary, we may assume without
loss of generality that v satisfies (3.15) and v < w in B1/2 \B1/4. Since v(x)→∞
as |x| → 0, there exists δ > 0 such that w < v in B2δ. Now define the function

u(x) :=


w(x) x ∈ Bδ,
min{v(x), w(x)} x ∈ B1/3 \Bδ,
v(x) x ∈ Rn \B1/3.

By construction, u is a supersolution of (3.5) in the whole space Rn, since the
minimum of two supersolutions is also a supersolution. This completes the proof
of Theorem 3.1 (ii), in the special case f(x, u) = |x|−γup.

Moreover, inequalities (3.15) and (3.16) continue to hold if we replace v (resp.
w) by av (resp. aw), for any a ≤ 1. Since we can find a so small that av ≤ ε0

in Rn \ {B1/3} (resp. aw ≤ ε0 in B1), Theorem 3.1 (ii) follows from the existence
result we just established. �

3.4. Proof of Theorem 1.5. It is convenient to define the space

Xα := {u ∈ C(Rn \ {0}) : u(x) = σαu(σx) for every x ∈ Rn \ {0}, σ > 0}
for every α > 0, as well as

Hα := {x ∈ Xα : u ≥ 0} and H+
α := {u ∈ Xα : u > 0} .

Observe that Xα is a Banach space under the norm ‖u‖Xα = max∂B1 |u|, and Hα

is a closed convex cone in Xα with interior H+
α .

Our argument is based on the following well-known fixed point theorem, due to
Krasnoselskii (see [19]). It also appears in the appendix of Benjamin [4], and is
applied to semilinear elliptic equations in [12].

Theorem 3.5 (Krasnoselskii). Let X be a Banach space, and C a closed convex
cone in X with vertex at the origin. Consider a compact map A : C → C which
satisfies A(0) = 0. Suppose there exist 0 < r̄ < R̄ and ξ ∈ C \ {0} such that:

(i) u 6= tA(u) for every 0 ≤ t ≤ 1 and ‖u‖X = r̄, and
(ii) u 6= A(u) + tξ for every t ≥ 0 and ‖u‖X = R̄.

Then there exists u ∈ C satisfying A(u) = u and r̄ < ‖u‖X < R̄.
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In this subsection we set β = β∗(p), where p > 1 is fixed such that β < α∗(F ).
We are going to apply Theorem 3.5 using the nonlinear map A : Hβ → Hβ which
is defined for each v ∈ Hβ by A(v) := u, where u ∈ Hβ is the unique solution of
the equation

F (D2u) = vp in Rn \ {0}.
That A is well-defined is a consequence of [3, Lemma 3.8], our assumption that
0 < β < α∗(F ), and the relation between β and p. Precisely, the number β has
the property that if βp = β + 2, and therefore if v ∈ Hβ , then vp ∈ Hβ+2. Now [3,
Lemma 3.8] asserts that if 0 < α < α∗(F ) and f ∈ Hα, then the equation

F (D2u) = f in Rn \ {0}

has a unique solution u ∈ Hα. It follows that A : Hβ → Hβ is well-defined.
Clearly A(0) = 0, while the strong maximum principle implies that A(v) ∈ H+

α

for every v ∈ Hα\{0}. By the Hölder regularity result which we quoted in the previ-
ous section, and since viscosity solutions are stable under local uniform convergence
(see for example [8, Theorem 3.8]), the map A is compact and continuous.

In the next lemma we verify that hypothesis (i) in Theorem 3.5 holds for A, that
is, we find our inner radius r̄ > 0.

Lemma 3.6. Suppose that u ∈ Hβ, u 6≡ 0, is a solution of u = tA(u) for some
0 ≤ t ≤ 1. Then there exists a constant r̄ > 0, which does not depend on u, such
that

(3.17) ‖u‖Xβ > r̄.

Proof. The equation u = tA(u) means that u ∈ Hβ is a solution of the equation

F (D2u) = tup in Rn \ {0}.

Note that t = 0, that is, F (D2u) = 0 in Rn \ {0} is excluded by Theorem 1.2 and
our assumptions u 6≡ 0 and β < α∗(F ). Hence u ∈ H+

β by the strong maximum
principle.

By [3, Lemma 3.8] there exists a function v ∈ H+
β satisfying

F (D2v) = |x|−β−2 in Rn \ {0}.

Since −β− 2 = −βp, we may set w := av for some small 0 < a < 1 to discover that

F (D2w) ≥ 2wp in Rn \ {0}.

Set r̄ := min∂B1 w and suppose that (3.17) fails. Then w ≥ u, and so by multiplying
w by a positive constant at most 1, we may assume that min∂B1(w−u) = 0, which
by the homogeneity of u and w means that minRn\{0}(w − u) = 0. By the strong
maximum principle, we deduce that w ≡ u, which is impossible since t ≤ 1. �

In the next lemma, we find the outer radius R̄ > 0 in Theorem 3.5. Here we set

ξ = ξβ = |x|−β ∈ H+
β .

Lemma 3.7. Assume that equation (1.3) has no bounded positive solutions. Sup-
pose that u ∈ Hβ satisfies u = A(u) + tξ for some t ≥ 0. Then there exists a
constant R̄ > 0, which does not depend on u and t, such that

(3.18) ‖u‖Xβ < R̄.
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Proof. We can assume that u 6≡ 0. The equation

(3.19) u = A(u) + tξ

means that the function w := u− tξ is in Hβ and satisfies the equation

F (D2w) = up in Rn \ {0}.

In particular w = u− tξ ≥ 0. By the strong maximum principle w ∈ H+
β and hence

u ∈ H+
β .

Put m := min∂B1 u > 0. We first claim that there exists T > 0, which does not
depend on u and t, such that t ≤ m ≤ T . Notice u ≥ tξ ≥ 0 implies t ≤ m.

Recall βp = β + 2. Let v ∈ H+
β be the solution of

F (D2v) = ξp.

Set a = min∂B1 v > 0 and notice that a depends only on F and n. Then we have

F (D2w) = up ≥ mpξp = F (mpv)

in Rn \ {0}, so that [3, Proposition 3.2(iii)] implies w ≥ mpv in Rn \ {0}. In
particular,

u− t = w ≥ amp on ∂B1.

Thus
m ≥ m− t ≥ amp > 0.

Hence t ≤ m ≤ a−1/(p−1) =: T , and we have the claim.
We now prove the bound (3.18) by contradiction. If it fails, then for each k ≥ 1

there exist 0 ≤ tk ≤ T and uk ∈ H+
β such that the function wk := uk − tkξ satisfies

F (D2wk) = upk in Rn \ {0},

but
‖uk‖Xβ = max

∂B1
uk ≥ k.

For each k, select xk ∈ ∂B1 such that uk(xk) = ‖uk‖Xβ . Observe that by the
homogeneity of u,

(3.20) uk(yk) = 1, yk := ‖uk‖1/βXβ
xk.

Moreover,

(3.21) uk ≤ 2 in BRk(yk), Rk := ‖uk‖1/βXβ

(
1− 2−1/β

)
.

Define vk(z) := uk(yk + z), and observe that vk satisfies vk(0) = 1, 0 ≤ vk ≤ 2 in
BRk(0), and the equation

(3.22) F (D2vk(z)− tkD2ξ(yk + z)) = vpk in Rn \ {−yk} ⊇ BRk(0).

Observe that
D2ξ(z) = β(β + 2)|z|−β−4z ⊗ z − β|z|−β−2In.

Since |yk| → ∞ and 0 ≤ tk ≤ T , we deduce that tkD2ξ(yk+z)→ 0 locally uniformly
in z ∈ Rn as k →∞. We also have Rk →∞ as k →∞.

We will now argue that we may pass to limits in (3.22) in order to find a function
v satisfying 0 ≤ v ≤ 2, v(0) = 1, and the equation

F (D2v) = vp in Rn.
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First, observe that using (3.22) and (H1), we have that for |z| ≤ Rk,

P−λ,Λ(D2vk(z)) ≤ F (D2vk(z)− tkD2ξ(yk + z))− F (−tkD2ξ(yk + z))

≤ (vk(z))p + CT |yk + z|−β−2

≤ (vk(z))p + CT (|yk| − |z|)−β−2

≤ 2p + CT

(
1
2
‖uk‖Xβ

)−(β+2)/β

using also that |yk| = ‖uk‖1/βXβ
. Similarly, we have

P+
λ,Λ(D2vk) ≥ −CT

(
1
2
‖uk‖Xβ

)−(β+2)/β

in BRk(0).

Applying local Hölder estimates quoted in the previous section and using that
‖uk‖Xβ →∞ and Rk →∞ as k →∞, we have the bound

sup
k≥1
‖vk‖Cα(BR(0)) ≤ C(R) <∞

for every R > 0. Therefore, by passing to a subsequence we may assume that
vk → v ∈ C(Rn) locally uniformly in Rn. It is clear from (3.20) and (3.21) that
0 ≤ v ≤ 2 and v(0) = 1. If we define the operator

Fk(M, z) := F (M − tkD2ξ(yk + z)),

then Fk(M, z) → F (M) locally uniformly in Sn × Rn as k → ∞, since the matrix
tkD

2ξ(yk+z) tends to 0 locally uniformly in z ∈ Rn. Thus we may use [8, Theorem
3.8] to pass to limits in (3.22) and obtain

F (D2v) = vp in Rn.

Since v(0) = 1, the strong maximum principle implies that v > 0 in Rn. We have
obtained our desired contradiction, since we had assumed in our hypothesis that
this equation has no bounded positive solutions. �

Proof of Theorem 1.5. If equation (1.3) has a no bounded positive solution in Rn,
then Lemmas 3.6 and 3.7 assert that the map A : Hβ → Hβ satisfies the hypotheses
of Theorem 3.5. Therefore there exists u ∈ Hα \ {0} satisfying A(u) = u, that is, u
is a solution of (1.3) in Rn \{0}. The strong maximum principle implies u > 0. �
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[9] Luis A. Caffarelli and Xavier Cabré. Fully nonlinear elliptic equations, vol-
ume 43 of American Mathematical Society Colloquium Publications. American
Mathematical Society, Providence, RI, 1995.

[10] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide to
viscosity solutions of second order partial differential equations. Bull. Amer.
Math. Soc. (N.S.), 27(1):1–67, 1992.

[11] Alessandra Cutr̀ı and Fabiana Leoni. On the Liouville property for fully non-
linear equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 17(2):219–245,
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