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We present a Hamiltonian derivation of a class of reduced plasma two-dimensional fluid models,
an example being the Charney-Hasegawa-Mima equation. These models are obtained from the same
parent Hamiltonian model, which consists of the ion momentum equation coupled to the continuity
equation, by imposing dynamical constraints. It is shown that the Poisson bracket associated with
these reduced models is the Dirac bracket obtained from the Poisson bracket of the parent model.
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I. INTRODUCTION

Modelling plasma dynamics, with kinetic or fluid approaches, often amounts to investigating reduced, relatively

tractable, models that capture the essential ingredients of the phenomenon under consideration while neglecting, for

example, irrelevant spatial or temporal scales. Obtaining valuable reduced models provides a practical computational

advantage when numerical simulations of a phenomenon have to be carried out. Reduced models are sometimes derived

from parent models through a well-defined reduction procedure that amounts to approximation directly at the level of

the model equations, after having introduced some ordering based on physical arguments. Ideally, the reduced model

should inherit some essential properties from the parent model. It has been recognized that the ideal part of such

parent models possess a Hamiltonian (although noncanonical) character, consisting of a Hamiltonian functional, which

can be identified as the total energy of the system, and a noncanonical Poisson bracket [1]. Paradigmatic examples

are the Vlasov-Maxwell equations [2–4] and the ideal MHD equations [5], which both possess such a Hamiltonian

structure. If one starts a derivation from a Hamiltonian parent model, then the final reduced model should also

possess a Hamiltonian structure. If this were not the case, some faulty dissipation would enter the reduced model,

and lead to qualitatively different interpretation of physical behavior. For instance, numerical simulations of a reduced

model with spurious dissipative terms might converge to attracting states, which would be ruled out if the Hamiltonian

structure were present.

When the physical arguments invoked to reduce the parent model take the form of constraints on the dynamics,

the method of Dirac brackets (see, e.g. Ref. [6–9]), provides a systematic method for obtaining a Hamiltonian reduced
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model from a Hamiltonian parent model. This method is general and works in the case of noncanonical Hamiltonian

systems, which is the type of systems that arises when the models are formulated in terms of Eulerian variables,

frequently used in plasma physics. Dirac brackets have proven to be useful for both finite and infinite-dimensional

[10–12], for the derivation of balance models in geophysical fluid dynamics [13, 14], as a numerical (simulated annealing)

method for calculating vortex states [15], and also for describing the dynamics of fluids with free boundaries [16]. The

purpose of the present paper is to show how a class of reduced models, which will be Hamiltonian by construction,

can be obtained from a Hamiltonian fluid parent model. Relevant examples of reduced models belonging to this class

include the Charney-Hasegawa-Mima equation [17, 18], describing the propagation of drift waves in plasma, and the

Euler equation for an incompressible fluid.

Here a slab geometry with Cartesian coordinates is adopted and the dynamics of a plasma is confined to a plane

transverse to an imposed magnetic field. Given a uniform and constant magnetic field B = Bẑ, the parent model

describes the ion fluid dynamics in terms of its density and velocity fields. This model has a noncanonical Hamiltonian

form [5]. The question addressed is how to derive reduced models describing the evolution of a few fields (for instance,

the density or the electrostatic potential), given some physical constraints dictated by experimental relevance, while

preserving the Hamiltonian character of the parent model. In order to perform the reduction, two constraints are

considered: First an incompressibility assumption on the ion fluid, and second a relation between the density and

the electrostatic potential (or equivalently of the streamfunction of the incompressible part of the ion velocity field).

This last constraint can eventually be ascribed to a relation that couples the ion and the electron fluid through a

quasi-neutrality assumption. We show using Dirac brackets that the Poisson bracket of the reduced fluid models can

be constructed and the noncanonical Hamiltonian structure of these reduced models are recovered in a systematic

way.

The paper is organized as follows: In Sec. II we recall the Hamiltonian structure of the parent model and introduce

new dynamical variables that are particularly convenient for the problem under consideration. In Sec. III the essential

elements of Dirac’s theory of constrained Hamiltonian systems are briefly reviewed and the explicit derivation of the

Dirac bracket for the reduced models is carried out. In Sec. IV we focus on the specific examples of the Euler equation

for an incompressible fluid and the Charney-Hasegawa-Mima equation. We also discuss here the model derived by

Terry and Horton [19]. Conclusions are drawn in Sec. V.
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II. EXPANSION OF THE ION FLUID DYNAMICS AROUND EQUILIBRIUM

We start the derivation from a parent model with two dynamical equations: one describing the transverse dynamics

of the ion velocity field v(x, y, t) and the other describing the dynamics of the ion density field n(x, y, t):

v̇ + (v · ∇)v = −∇ϕ+ v ×B, (1)

ṅ = −∇ · (nv), (2)

where the dot indicates the partial derivative with respect to time t. We have used units such that the ion mass is

M = 1, its charge e = 1, and the amplitude of the magnetic field B = 1. The total energy of the ions, given by the

sum of their kinetic energy plus the potential energy provided by the electrostatic potential ϕ, is a conserved quantity

that is also a good candidate for the Hamiltonian of the system of Eqs. (1-2), viz.

H [n,v] =

∫

d2x

[

n
v2

2
+ nϕ

]

. (3)

The dynamics is determined by the Poisson bracket [5, 21]

{F,G} = −

∫

d2x

[

Fv · ∇Gn −∇Fn ·Gv −

(

∇× v + ẑ

n

)

· Fv ×Gv

]

, (4)

where we denote the functional derivatives of a given observable F [n,v] by subscripts, i.e. Fv = δF/δv and Fn =

δF/δn. In our context we assume that the electrostatic potential ϕ is determined by the dynamics of the electrons

which leads to a function ϕ(ne), where ne is the electron density. From the quasi-neutrality condition, n = ne, the

Hamiltonian becomes

H [n,v] =

∫

d2x

[

n
v2

2
+ ψ(n)

]

, (5)

where ψ′(n) = ϕ(n). We notice that for an external potential ϕ, we obtain ψ(n) = nϕ as in Eq. (3). Another example

is obtained by neglecting the inertia of the electrons so that their density obeys a Boltzmann law ne = n0 expϕ, where

n0 = n0(x, y) = 1 − λ(x, y) is the electron density at equilibrium, given by a constant plus a space dependent part

that we will later assume to be small. Hence, ϕ(n) = log(n/(1− λ)) and consequently ψ(n) = n(log(n/(1− λ))− 1).

We perform the following change of variables (n,v) 7→ (ñ, φ,D) defined by

ñ = n,

∆φ = ẑ · ∇ × v,

∆D = ∇ · v ,
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where ∆ denotes the Laplacian. For simplicity, we use n instead of ñ in what follows. In terms of the new variables

(n, φ,D), Hamiltonian (5) becomes

H [n, φ,D] =

∫

d2x

[

n

(

|∇φ|2 + |∇D|2

2
+ [φ,D]

)

+ ψ(n)

]

, (6)

where [f, g] = ẑ · ∇f ×∇g, and the bracket (4) becomes

{F,G} =

∫

d2x
(

FnGD − FDGn +
∆φ+ 1

n

(

[∆−1Fφ,∆
−1Gφ]

+[∆−1FD,∆
−1GD] +∇∆−1FD · ∇∆−1Gφ −∇∆−1Fφ · ∇∆−1GD

)

)

.

We first assume that the variables evolve slowly with time, which is equivalent to adding a prefactor of 1/ǫ to

the Hamiltonian, and we introduce an ǫ-ordering for the dynamical variables. The hypothesis is that the system of

interest is near an equilibrium state whose spatial variations are of order ǫ:

n = 1 + ǫn1,

φ = ǫφ1,

D = ǫD1.

The expansion of the Poisson bracket up to order O(ǫ0) is given by

{F,G} =
1

ǫ2

∫

d2x
(

Fn1
GD1

− FD1
Gn1

− FD1
∆−1Gφ1

+ Fφ1
∆−1GD1

)

−
1

ǫ

∫

d2x
(

Fφ1
∆−1L∆−1Gφ1

+ FD1
∆−1L∆−1GD1

− FD1
∆−1Λ∆−1Gφ1

+ Fφ1
∆−1Λ∆−1GD1

)

, (7)

with the linear operators L and Λ defined by

Lf = [∆φ1 − n1, f ] ,

Λf = −∇ · ((∆φ1 − n1)∇f) ,

where we omit their dependence on ∆φ1 − n1. Observe, L is anti-self-adjoint (L† = −L), while Λ is self-adjoint

(Λ† = Λ).

In the next section, we impose constraints on the Poisson bracket (7) and compute the associated Dirac bracket.

III. DIRAC BRACKETS

First we recall few basic facts about Dirac brackets in infinite dimensions. If we impose N Eulerian constraints

Φα(x) = 0 for α = 1, . . . , N on a Hamiltonian system with a Hamiltonian H and a Poisson bracket {·, ·}, the Dirac
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bracket is obtained from the matrix C defined by the Poisson bracket between the constraints

Cab(x,x
′) = {Φa(x),Φb(x

′)} ,

where note Cαβ(x,x
′) = −Cβα(x

′,x). The Dirac bracket is defined by

{F,G}∗ = {F,G} −

∫

d2x

∫

d2x′ {F,Φα(x)}C
−1

αβ (x,x
′){Φβ(x

′), G}, (8)

where the C−1

αβ (x,x
′) are defined by

∫

d2x′ C−1

αβ (x,x
′)Cβγ(x

′,x′′) =

∫

d2x′ Cαβ(x,x
′)C−1

βγ (x
′,x′′) = δαγδ(x− x

′′),

which implies C−1

αβ (x,x
′) = −C−1

βα (x
′,x).

Dirac obtained (8) from a modified Hamiltonian with Lagrange multipliers associated with each constraint:

H ′ = H +

∫

d2xµα(x)Φα(x).

The computation of the dynamical equation associated with this new Hamiltonian gives

{F,H ′} = {F,H}+

∫

d2xµα{F,Φα}+

∫

d2xΦα{F, µα},

which is equal to

{F,H ′} ≈ {F,H}∗ ≡ {F,H}+

∫

d2xµα{F,Φα},

where the symbol ≈ means equality after the constraints are imposed. The coefficients µα are obtained by demanding

that Φα are Casimir invariants of the bracket {·, ·}∗, which leads to the definition of the bracket (8).

We impose two constraints on the dynamics. The first one is incompressibility, which translates here into

Φ1(x) = D1 = 0,

and the second one is an assumption relating the electron density to the electrostatic field. This assumption takes the

form

Φ2(x) = n1 −N(φ1) = 0,

where N is, in general a nonlinear pseudo-differential function of φ1, i.e. a function of φ1 and its derivatives to arbitrary

order. The functional derivative of Φ2 with respect to φ1 is given by

δΦ2(x)

δφ1(x′)
= −N̂ †δ(x′ − x),
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where N̂ is the Fréchet derivative of N defined by

N̂δφ1 =
d

dε
N(φ1 + εδφ1)

∣

∣

∣

∣

ε=0

.

The Poisson brackets between the constraints are given by:

C11(x,x
′) = −

1

ǫ
∆−1L∆−1δ(x − x

′), (9)

C12(x,x
′) = −

1

ǫ2

(

1−∆−1N̂ † + ǫ∆−1Λ∆−1N̂ †
)

δ(x− x
′), (10)

C21(x
′,x) =

1

ǫ2

(

1− N̂∆−1 + ǫN̂∆−1Λ∆−1

)

δ(x − x
′), (11)

C22(x,x
′) = −

1

ǫ
N̂∆−1L∆−1N̂ †δ(x − x

′). (12)

We take the convention that the linear operators act on the first mentioned independent variable, e.g., N̂δ(x − x
′)

involves the derivatives with respect to x, while Lδ(x′ − x) involves the derivatives with respect to x
′. The elements

of C−1 are determined by the following four relations: The first two determine C−1

11
(x,x′) and C−1

21
(x,x′):

∫

d2x′
[

C11(x,x
′)C−1

11
(x′,x′′) + C12(x,x

′)C−1

21
(x′,x′′)

]

= δ(x− x
′′),

∫

d2x′
[

C21(x,x
′)C−1

11
(x′,x′′) + C22(x,x

′)C−1

21
(x′,x′′)

]

= 0 ,

which upon using Eqs. (9-12) become

−ǫ∆−1L∆−1C−1

11
− (1 −∆−1N̂ † + ǫ∆−1Λ∆−1N̂ †)C−1

21
= ǫ2δ(x − x

′),

(1 − N̂∆−1 + ǫN̂∆−1Λ∆−1)C−1

11
− ǫN̂∆−1L∆−1N̂ †C−1

21
= 0.

The expansion of the solution of the above equations, up to order O(ǫ4), is given by

C−1

11
(x,x′) = −ǫ3(1 − N̂∆−1)−1N̂∆−1L∆−1N̂ †(1−∆−1N̂ †)−1δ(x− x

′) +O(ǫ4),

C−1

21
(x,x′) = −ǫ2(1 −∆−1N̂ †)−1δ(x− x

′) + ǫ3(1 −∆−1N̂ †)−1∆−1Λ∆−1N̂ †(1 −∆−1N̂ †)−1δ(x− x
′) +O(ǫ4).

In the same way we obtain the expansions for C−1

22
(x,x′) and C−1

12
(x,x′):

∫

d2x′
[

C22(x,x
′)C−1

22
(x′,x′′) + C21(x,x

′)C−1

12
(x′,x′′)

]

= δ(x− x
′′),

∫

d2x′
[

C12(x,x
′)C−1

22
(x′,x′′) + C11(x,x

′)C−1

12
(x′,x′′)

]

= 0,

which upon using Eqs. (9)–(12) leads to

C−1

22
(x,x′) = −ǫ3(1−∆−1N̂ †)−1∆−1L∆−1(1− N̂∆−1)−1δ(x− x

′) + O(ǫ4),

C−1

12
(x,x′) = ǫ2(1 − N̂∆−1)−1δ(x− x

′)− ǫ3(1− N̂∆−1)−1N̂∆−1Λ∆−1(1 − N̂∆−1)−1δ(x− x
′) +O(ǫ4).



7

Now, using the above and the following expressions:

{F,Φ1(x)} =
1

ǫ2
(

Fn1
+∆−1Fφ1

− ǫ∆−1Λ∆−1Fφ1
+ ǫ∆−1L∆−1FD1

)

,

{F,Φ2(x)} = −
1

ǫ2

(

(1 − N̂∆−1)FD1
+ ǫN̂∆−1L∆−1Fφ1

+ ǫN̂∆−1Λ∆−1FD1

)

,

we get

∫

d2x

∫

d2x′ {F,Φ1(x)}C
−1

11
(x,x′){Φ1(x

′), G} =

1

ǫ

∫

d2x (Fn1
+∆−1Fφ1

)(1− N̂∆−1)−1N̂∆−1L∆−1N̂ †(1−∆−1N̂ †)−1(Gn1
+∆−1Gφ1

),

∫

d2x

∫

d2x′ {F,Φ1(x)}C
−1

12
(x,x′){Φ2(x

′), G} =
1

ǫ2

∫

d2x (Fn1
+∆−1Fφ1

)GD1

−
1

ǫ

∫

d2x
(

(∆−1Λ∆−1Fφ1
−∆−1L∆−1FD1

)GD1
− (Fn1

+∆−1Fφ1
)(1− N̂∆−1)−1N̂∆−1L∆−1Gφ1

)

,

∫

d2x

∫

d2x′ {F,Φ2(x)}C
−1

21
(x,x′){Φ1(x

′), G} = −
1

ǫ2

∫

d2xFD1
(Gn1

+∆−1Gφ1
)

+
1

ǫ

∫

d2xFD1
(∆−1Λ∆−1Gφ1

−∆−1L∆−1GD1
)− N̂∆−1L∆−1Fφ1

(1−∆−1N̂ †)−1(Gn1
+∆−1Gφ1

),

∫

d2x

∫

d2x′ {F,Φ2(x)}C
−1

22
(x,x′){Φ2(x

′), G} =
1

ǫ

∫

d2xFD1
∆−1L∆−1GD1

.

By summing these contributions and subtracting the result from the Poisson bracket (7), as per (8), we obtain the

following Dirac bracket:

{F,G}∗ = −
1

ǫ

∫

d2x (∆− N̂ †)−1(Fφ1
+ N̂ †Fn1

)L(∆− N̂ †)−1(Gφ1
+ N̂ †Gn1

).

If we define F̄ for any functional F [φ1, n1, D1] as

F̄ [φ1] = F [φ1, N(φ1), 0],

the functional derivative of F̄ with respect to φ1 is given by

F̄φ1
= Fφ1

+ N̂ †Fn1
.

Therefore, the Dirac bracket becomes

{F,G}∗ =
1

ǫ

∫

d2x (∆φ1 −N(φ1))
[

(∆− N̂ †)−1F̄φ1
, (∆− N̂ †)−1Ḡφ1

]

. (13)

Finally, if we perform the following change of variables

q1 = ∆φ1 −N(φ1),
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the Dirac bracket achieves the compact form

{F,G}∗ =
1

ǫ

∫

d2x q1[Fq1 , Gq1 ], (14)

as obtained in Ref. [21]. In particular, we notice that the Poisson bracket (14) does not depend explicitly on the

constraint function N . Therefore, all the models with constraints of the form n1 = N(φ1) share the same Poisson

bracket when expressed in terms of the generalized vorticity variable q1.

IV. HAMILTONIANS

Having obtained a common Poisson bracket for our class of systems, we now obtain Hamiltonians for various cases.

A. 2D Euler equation

When the electrostatic potential is set to zero, the expansion of Hamiltonian (6) is given by

H1[n1,v1] =
ǫ

2

∫

d2x v2
1
,

which in terms of the variables φ1 and D1 is

H1 =
ǫ

2

∫

d2x
(

|∇φ1|
2 + |∇D1|

2
)

.

As constraints we choose a constant density, i.e., N = 0, and incompressibility, i.e., D1 = 0. The resulting Dirac

bracket is given by

{F,G}∗ =
1

ǫ

∫

d2x∆φ1[∆
−1F̄φ1

,∆−1Ḡφ1
].

This corresponds to the Hamiltonian and the Poisson bracket of the two-dimensional Euler equation, which was given

in [23, 24] in terms of the vorticity variable q1 = ∆φ1:

H1 = −
1

2

∫

d2x q1∆
−1q1,

and

{F,G}∗ =

∫

d2x q1[Fq1 , Gq1 ] .

Since ǫ does no longer play a role in the discussion, we drop it in what follows.
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B. Charney-Hasegawa-Mima equation

Now we assume a linear adiabatic response of the electrons. Upon expanding ϕ(n) = log(n/(1 − ǫλ)), this gives

N(φ1) = φ1 − λ and N̂ = 1. The Dirac bracket becomes

{F,G}∗ =

∫

d2x (∆φ1 − φ1 + λ)
[

(∆− 1)−1F̄φ1
, (∆− 1)−1Ḡφ1

]

,

which is exactly the Poisson bracket found in Ref. [20] and derived in Ref. [21]. The expansion of Hamiltonian (6) is

given by [21]

H1 =
1

2

∫

d2x
(

|∇φ1|
2 + |∇D1|

2 + n2

1
+ 2λn1

)

,

which becomes

H1 =
1

2

∫

d2x
(

|∇φ1|
2 + φ21

)

,

when introducing the constraints n1 = N(φ1) and D1 = 0.

We notice that for N(φ1) = φ1/η where η is small, we recover the Hamiltonian structure of the asymptotic model

given in Ref. [22].

C. General setting

We consider a Hamiltonian which is given by the sum of a kinetic energy plus a potential part

H =

∫

d2x
|∇φ1|

2

2
+ V [N(φ1)], (15)

where

V [n] =

∫

d2xψ(n) , (16)

is a quite general functional of the density n and ψ is arbitrary. With this Hamiltonian and the bracket of (13) or

(14), the equation of motion for φ1 is given by

(∆− N̂)φ̇1 = −
[

∆φ1 −N(φ1), (∆− N̂ †)−1H̄φ1

]

,

where

H̄φ1
= −∆φ1 + N̂ †Vn.
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This equation which originates from a Hamiltonian system is valid for any constraint N and any potential V . As

stated above, all these models share the same Poisson bracket (in the generalized vorticity variable). They differ in

their Hamiltonian. For V given by Eq. (16) and for ψ such that

ψ′(N(φ1)) = φ1,

this equation simplifies,

(∆− N̂)φ̇1 = [∆φ1 −N(φ1), φ1] ,

which is verified for the two cases described above, the 2D Euler and the CHM equations. As a consequence of our

ordering, this choice of ψ is equivalent to the condition mentioned in Sec. II, namely that ψ′(n) = ϕ(n).

The question now becomes whether or not it is possible to construct a potential V for a dynamical equation or an

electron response of interest. A rigorous answer is determined for the dynamical equation for the electric potential

ϕ generated by the electrons. For example, in the nonlinear drift wave model derived by Terry and Horton [19] (see

also [25, 26]), the electric potential is not only a function of n but of all its derivatives, namely,

ϕ(n) = N−1(n),

where N−1 is the inverse of the relation n = N(φ). In particular, N(ϕ) = (1 +Oa)ϕ− λ, where Oa = δ0(c1 +∆)∂y

is an anti-self-adjoint operator. For such cases, the potential function ψ with ψ′ = ϕ cannot be constructed. General

potential functions of the form of that of (15), such that

Vn = ϕ(n)

can only be solved if N̂ is a self-adjoint operator. Thus the Terry-Horton model is not a Hamiltonian model in our

class.

V. CONCLUSIONS

We have shown how the theory of constrained Hamiltonian systems, developed by Dirac, provides an effective way

to include constraints into a Hamiltonian system while preserving the Hamiltonian character. In particular, we have

applied this theory to a case relevant for plasma physics, by adopting as the parent model a fluid system consisting

of the ion momentum equation and the continuity equation, where the electron dynamics determines the electrostatic
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potential as a function of the density. We derived the Poisson bracket for the Euler and the Charney-Hasegawa-Mima

equations as the Dirac bracket of this dynamics, obtained by considering an incompressibility condition and a general

relation between the density and the velocity field as constraints. Given the bracket thus obtained, different choices

for the Hamiltonian functional lead to different models, and in this way a general class of systems was derived, all of

which preserve the constraints and are Hamiltonian by construction.

We emphasize that the technique presented here is general, and can be applied to derive new reduced Hamiltonian

models from more general parent models, models for which the Hamiltonian structure becomes directly available.
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