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SPECTRAL PROBLEMSIN ELASTICITY. SINGULAR BOUNDARY
PERTURBATIONS

S.A.NAZAROV AND J.SOKOLOWSKI

AsstracT. The three-dimensional spectral elasticity problem iglist in an anisotropic
and inhomogeneous solid with small defects, i.e., inchsiovoids, and microcracks.
Asymptotics of eigenfrequencies and the correspondirgieleigenmodes are constructed
and justified. New technicalities of the asymptotic analyaie related to variable ciie
cients of diterential operators, vectorial setting of the problem, ssabe of intrinsic inte-
gral characteristics of defects. The asymptotic formutaelaveloped in a form convenient
for application in shape optimization and inverse problems

Keywords: Singular perturbations; Spectral problem; Asymptoticgigenfunctions and eigneval-
ues; Elasticity boundary value problem
MSC:Primary 35C20, 35J25, 35B40; Secondary 35J20, 46E35,490QF15

1. INTRODUCTION.

1.1. Shape optimisation problemsfor eigenvalues. In the paper asymptotic analysis of
eigenvalues and eigenfunctions is performed with respesingular perturbations of geo-
metrical domains (see Fig. 1).

Fig. 1

The case of low frequencies is considered for elasticitgpkproblems in three spa-
tial dimensions. The results established here can be Biresed in some applications,
for example in inverse problems of identification of smalfed#s in the body based on
the observation of elastic eigenmodes. Compared to thérexi®sults in the literature,
the technical dficulties of the present paper mainly concern vectorialrsgtif boundary
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2 S.A.NAZAROV AND J.SOKOLOWSKI

value problems, anisotropy of physical properties, anihioée codficients of diferential
operators, i.e., inhomogeneity of elastic materials. iERrp results on elasticity problems
with singular perturbations of boundaries (see monogr§g®is41] and [18]) deal with
homogeneous, mainly isotropic elastic bodies. For a systedifferential equations, an
asymptotic analysis is required to be much more elaboratelddaect adopting of the
methods proper for scalar equations may lead to an unfagumistake (cf. [19] and cor-
rections in [1]). The known results are given in particular $ingular perturbations of
isolated points of the boundary (small holes in the domae, [&6], [17], [5], [1], [18],
[37] and others), perturbations of straight boundariekigiog perturbations by changing
the type of boundary conditions (cf. [2]-[3]), and the degence of the obtained results in
more general geometrical domains on the curvature is @diiifi [31, 32, 8] in the case of
scalar equations. The most of attention is paid in the ptgsgyer to derivation of explicit
formulae for solutions and extraction of principal chaeaistics of elastic fields and de-
fects which influence these formulae. To this end, we emplalrigicolumn notation, use
the notion of elastic polarization matrix (tensor), andfpen certain additional technical
calculations which are not needed in the case of homogenisou®pic elastic materials.

Small defects can be regarded as singular perturbationseointerior piece of the
boundary of the body. In this way we can consider e.g., théefinumber of isolated
points which approximate small cavities. More generalyrieans of asymptotic analysis
we can model the creation of caverns, i.e., some piece ofriabi® taken ¢f from the
elastic body. We can also fill the cavern with some other iglasaterial and model such a
phenomenon by formation of one or more inclusions in the body

Roughly speaking, the influence of a substantial changecaf firoperties of the elastic
body cannot be analysed by the classical tools of the shaséisity analysis or any other
type of sensitivity analysis, but it requires the applioatdof asymptotic methods. Espe-
cially, such methods turn out to be of importance for the ogeacks, since the microcrack
implies the creation of a new portion of internal boundaryhia body, which cannot be
taken into account in the framework of classical sensjtigitalysis based on regular per-
turbations of the ca@icients and of the boundary. The asymptotic methods seemttebe
only avalaible tool to perform theflicient analysis of solutions, eigenvalues and eigen-
functions, and of shape functionals, in general settinge iftternal perturbations of the
domain by creation of small openings or holes, but very ctoghe boundary (see Fig. 2)

O

Fig. 2

will be a subject of another paper. Here, we consider sma#rrs inside the body, i.e., at
a distance form the exterior boundary.



SPECTRAL PROBLEMS 3

We leave aside an important and still not completed topmteel to the so-called con-
centrated masses. Since the pioneering work [39] of E. SamPhlencia, a lot of attention
has been paid to mathematical analysis of vibrations otielasdies, with small parts
wich are very heavy (e.g., pellets in an aspic or in a meét)jedee papers [40, 35, 20, 9,
11, 4, 28], as well as the monographs [41, 36] in an incompiteSuch problems are the
best examples of the topping role of the boundary laykce Although we analyse the
boundary layers in details, the purposes of the present mpssentially dferent so that
we cannot mutually serve for an analysis of concentratedesas

1.2. Preliminaries, anisotropic inhomogeneous elastic body. Let us consider in three
spatial dimensions the elasticity problem for an elastity(@, written in the matrixcolumn
notation, see e.g., [10], [24] for more detalils,

1) D(-V)TAXD(VYu = 0 in Q,
(2) D(N)TAKXD(V,)u g? on 4Q,
whereA is a symmetric positive definite matrix functiondnof size 6<6, with measurable

or smooth elements, consisting of the elastic material nidthe Hooke’s or sfifness
matrix) andD(Vy) is (6 x 3)-matrix of the first order dierential operators,

_f]_ 0 0 0 2_1/2_{:3 2_1/262
3 DET=| 0 & 0 2V 0 2728,
0 0 & 22 2712 0

u = (ug, Uy, u3z)" is displacement columm = (ng, Nz, ng)™ is the unit outward normal
vector ondQ and™ stands for transposition. In this notation the strafn; x) and stress
o(u; X) = AMX)D(Vx)u(xX) columns are given respectively by

(4) D(Vy)u = g(u) = (811, 22, £33, V2623, V2831, \/5812)T ,
(5) AD(V)U = o(u) = (0'11, 022, 733, V20723, V2031, \/50'12)T .

The factors 212 and V2 imply that the norms of strain and stress tensors coincitlethe
norms of columns (4) and (5), respectively. From the lattepprty in the matrixcolumn
notation, any orthogonal transformation of coordinate&3igives rise to orthogonal trans-
formations of columns (4) and (5) ik (cf. [[24];Ch. 2]).

Remark 1.1. The straing4) and the stressg®) degenerate on the space of rigid motions,

(6) R={d(X)c : ceR®, dmR=6,
where
1 00 0 —2712x3 2712,
(7) dx)=| 0 1 0 22 0 —27Y2x
0 0 1 —2_1/2X2 2_1/2X1 0

This subspace plays a critical role in many questions in tlhstiity theory, it appears
also in the so-called polynomial propefgl, 22](see alsd30]).
The following equalities can be verified by a direct comgatat

8 D(V)D(X)" =Ts, D(Vx)d(x) = O,
d(V:)"D(X) k=0 =Ts,  d(V) d(X)x=0 = I
wherely andOy are the unit and nul{N x N)-matrices, respectively.
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The boundary load® is supposed to be self equilibrated in order to assure tistezde
of a solution to the elasticity problem,

(9) j;g d(x)Tg?*(x)ds, = 0e R°.

2. VIBRATIONS OF ELASTIC BODIES.

Consider inhomogenuous anisotropic elastic b@dy R3 with the Lipschitz boundary
0Q. Spectral problems for the body are formulated in a fixed&3#ah coordinate system
X = (X1, X2, X3)7, and in the matrix notation.

We assume that the matti# of elastic moduliis a matrix function of the spatial variabl
x € R®, symmetric and positive definite fore Q U dQ. The problem on eigenvibrations
of the bodyQ takes the form

(10) L(x, V:)U(¥) := D(=V) " AX)D(V)u(X)
(11) N Vu = D) AX)D(V)u(X)

Ay(u(x) xe Q,
0, xeX, u(Xx)=0, xeT,

wherey > 0 is the material density, is an eigenvalue, the square of eigenfreguency. The
partI” of the surface)Q is clamped, and the first boundary condition is prescribethen

traction free remaining pak = 9Q\T of the surface. We denote bgyl(Q; I3 the energy
space, i.e., the subspace of the Sobolev spe¢e) with null traces on the subsEt The
variational formulation of problem (10)-(11) reads :

Find a non trivial functioru € I(—)|1(Q;1")3 and a numben such that for all test functions
(0]
v e HY(Q; T3 the following integral identity is verified

(12) (ADuU, DV)q = A(yu,V)q ,

where ()q is the scalar product in the Lebesgue spiat(€).

If the stiffness matrixA and the density are measurable functions of the spatial variables
X, and in addition uniformly positive definite and boundedrthhe variational problem
(12) admits normal positive egenvalugs which form the sequence

(13) O< A< <Ap< v > oo

taking into account its multiplicities, and the correspimgeigenfunctionsi,, the elastic
vibration modes, are subject to the orthogonality and ntimaizon conditions

(14) Up), U)o =0pgq. POeN:={12 ...},

whered q is the Kronecker symbol.

In the sequel it is assumed that elements of the mairand the density are smooth
functions inQ, continuous up to the boundary. In such the c@ses called asmooth
inhomogenuous body. For such a body the elastic maggare smooth functions in the
interior ofQ, and up to the boundary in the case of the smooth susf@céVe have also the
equivalence between the variational form and thiedéntial form (10)-(11) of the spectral
problem. We require only thiaterior regularity of elastic modes in the sequel, in any case
the elastic modes have singularities on the collisionfimel” and therefore, are excluded
from the Sobolev spadd?(Q)S.

Along with the smooth inhomogenuous ba@ylet us consider a bod@y, with defects;
hereh > 0 stands for a small dimensionless geometrical parametachvdescribes the
relative size of defects. Actually, we select in the intedbQ the pointsP?, ..., P’ and



SPECTRAL PROBLEMS 5

denote byws, ..., w; elastic bodies bounded by the Lipschitz surfades, . . ., dwj, fur-

themore, for the sake of simplicity we assume that the odgirelongs taw;, j = 1,..., J.
The body with defects is defined by
(15) E(h) = Qh)Uwlu-- U
where
J
(16) W) = {x: & =hx-P)ew), ah)=ox| .
=1

The stitness matrix and the density of thempositébody (15) take the form

A(X), x € Q(h); v(X), xeQ(h);
@ A= { ApE). xeat V= { YiE), xed
The matricesA andA(j) as well as the scalagsandy(;) are diferent from each other, i.e.,
w*j‘ are inhomogenuous inclusions of small diameters. We assbateAl(j) andy(j) are
measurable, bounded and positive definite uniformlywen In particular, for almost all
¢ € wj the eigenvalues of the matriA;(¢) are bounded from below by a constapnt- 0.
There is no special assumption on the relation between thgepties of the inclusions
and of the matrix (body without inclusions), we assume ohét the densities, y(;, and
entries of the matricedl, A(;) are of similar orders, respectively. We point out that in the
framework of our asymptotic analysis, in section 4 therepdormed the limit pasages
Ay — 0 andy(j) — 0 (a hole) as well asAj) — o andy — o (an absolutely rigid
inclusion). However, the passagg) — oo with the fixed matrix functionA; (heavy
concentrated masses) can be analysed with some othezenga{38, 40, 4].

In the fracture mechanics, the most intereting case is ttakereng of elastic material
due to the crack formation. The cracks are modelled by tweesitwo dimensional sur-
faces, with the first boundary conditions from (11) presadibn the both crack lips, i.e. the
surface is traction free from both sides. The case of a miaokds not formally included
in our problem statement, since we assume that the defeist of positive volume and
with the Lipschitz boundaryw;. However, the asymptotic procedure works also for the
cracks. Small changes which are required in the justifiogi&rt, are given separately (see
the end of section 4, proof of Proposition 5.1 and Remark Sl polarization matrices
for the cracks can be found in [43], [33].

The exchange of and.A by y" and.A" from (17), respectively, transforms (12) in the
integral identity for the body weakened by the defed}s. . a)*J‘ this integral identity is
further denoted by (12) We observe also, that for smoothfBtess matrixA and the
densityy the diterential problem for vibrations of a composite body does cwisist
only of the system of equations, denoted in our notation )"(¥estricted to the union
of domains (15), along with the boundary conditions {1But in addition it contains
transmition conditions on the surfaae)? where the ideal contact is assumed. Since we
use only the variational formulations of the spectral peofs, the transmission conditions
are not explicitely written. In a similar way as for problef8], there is the sequence of
eigenvalues for the problem (12)

(18) O<A <A< <Al <o - +oo,

and the corresponding eigenfunctimﬁﬁ meet the orthogonality and normalization condi-
tions

(19) (th?p)» u?q))ﬂ = 5p,q, p’ q € N
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3. FORMAL CONSTRUCTION OF ASYMPTOTICS

We introduce the following asymptotic ansatze for eigémsa and eigenfunctions in
problem (129

(20) Ay=Ap+hiup+...,
(21)

J
uly (%) = Uy (%) + hz;)(j(x) (vv(lé) (h’l (x - PJ)) + hvv(zr‘,) (h’l(x -~ P'))) + v + ...
J:
whereyj € C(Q), j = 1,..., J, are cut-df functions, with non overlaping supportsr
and for eachyj, yj(x) = 1 for x € wj andy;(P') = §; ;.

First, we assume that the egenvalue 1, in problem (12) is simple, and for brevity the
subscriptp is omitted. The corresponding eigenfunctiog u € I(—)|1(Q;1")3, normalized
by condition (14), is smooth in the interior of the dom&in

Columns of the matriced(x) andD(x)T form a basis in twelve dimensional space of
linear vector functions iiR3. In this way, the Taylor formula takes the form

(22) u(x) = d(x - Phal + D(x - P&l + O(x - PI?)
and, by equalities (4), (5) and (8), the columns
al =d(V)Tu(P), & =D(VuP)),

represent the column of rigid motions, and of strains, apthiat Pi. Since in the vicinity
of the inclusionw we have

su;X) =& +O(x) = & + O(h),

the main terms of discrepancies, left by the fielth the problem (12)for the composite
bodyQ", appear in the system of equation&j']ﬁand in the transmition conditions @m?
For the compensation of the discrepancies are used theaspetitions of the elasticity
problem in a homogenuous space with the inclusigof unit size

LA(VIWK(E) := D(=V) TAP)D(V)WHK(E) = 0, ¢ € O = R3\@],
LI VOWHK(E) = D(=V) Ay ED(VIWH(E) = DV A (O)ex, € € wj,
WEE) = W@, DI E) (A ©DVIWE(E)
— APHD(Ve)WL(©) = DOE)T (AP - Ap(E)ae £ € dw.

Herey is the unit vector of the exterior normal on the boundawy of the bodyw;, & =
(61x ---.06x) T is a orthant in the spad®®, W, andW._ are limit values of the functiolV
on the surfacéw; evaluated from outside and from inside of the inclusignrespectively.

We denote byb! the fundamental (X 3)-matrix of the operatok® (V;) in R3. This
matrix is infinitely diferentiable inR*\O and enjoys the following positive homogeneity
property
(24) o(t¢) =t o), t>0.

It is known (see, e.g., [[27], Ch. 6]), that the solution® of problem (23) admit the
expansion

(23)

6 3 ‘
(25) W) =" ML DYVIOIE) + Ol ®), £ € R:\Br,
p=1 g=1
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whereD,, = (D3, D3, D?) is a line of the matrixD (see (3))®!*, ®12, 13 are columns of
the matrix®!, and the radiu® of the ballBg = {¢ : |¢] < R} is chosen such thai; c Bg.
The coeﬁﬁcientleip in (25) form the (6x 6)-matrix M! which is called thepolarization
matrix of the elastic inclusiom; (see[43, 23] and also [[27]; Ch. 6], [5], [30]). Some
properties of the polarization matrix, and some commentthersolvability of problem
(23) are given in section 4.

The columne®Vit, ..., Wi® compose the (% 6)-matrixW! and we set

(26) wh(©) = W9l .

In section 5 it is verified, that the right choice of boundaydr is given by formula (26),
since it compensates the main terms of discrepancies. RRBnafd (26) it follows that
(27) W@ = (MID(V)DI(E)T) e + O ®), ¢ e RN\Br.

Relation (27) can be fierentiated term by term on the $t\Br under the rul&7 O(I¢|P) =
O(|¢]~P~1) for the remainder.

In view of (24) the detached asymptotics term equals
(28) h2(MID(V,) @I (x - PHYT)Tel .

It produces discrepancies of ordet (we point out that there is the factbron wll in
(21)), which should be taken into account when construdtiegregular type ternhv.

On the other hand, discrepancies of the same drtlare left in the problem fov by the
subsequent terd?w(h~%(x — P})), which solves the transmission problem analoguous to
(23)

(29) LIV =FU@), é€O) LEVIWIE) =FIE), few;,

(30) W@ =w@):  DUE) (AGE@DVIW (©)
~ APYDVIW(©) = GI(®). £ € dwj,
and with the decay ra®(|¢| ) at|¢] — oo, smaller compared to the decay ratedf.
Now, we evaluate the right-hand sides of the problems (3®). (First, by the repre-
sentation of the dfiness matrix
(31) AX) = APY) + (x— PYTVAPY) + O(Ix - PIP)

and the corresponding splitting offiirential operator with the variable dfieients£(x, V)
from (10), we find that the right-hand side of system (29) ésrttain term of the expression
(32) _ _ _ _ _

—LO(x, VWH (h™(x=P))) = h™XD(V,) (€T VAP D(VIWH (&) +- - = h I +...

We note that.% (V,)w! (h1(x — P)) = 0 in (32), and the dots.. stand for the terms of
lower order, which are unimportant for our asymptotic asaly The following discrepancy
appears in the second transmission condition (30) :

(33) Gl = D(V(E))T(.fTVx?l(Pj))(D(Vf)Wli(f) fs")
+D((E)) " (AP) = A(p() D(Ve)U(6).
The second term comes out from the elaborated Taylor for(8d/a

(34) u(x) = d(x - PYal + D(x - P))Tel + Ul(x = P)) + O(Ix — P'%)
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and involves the quadratic vector function

3
: : ' o : 1 6% :
i(x— pi) = _p _ plyyira jpa_ =_Z 7 (pi
(35) ul(x P)_Egap Ph)(xg - PHUPI, U "za@mhm)
p.o=1
Finally, the right-hand side of system (29) takes the form
(36) FI(€) = ~yj(@)u(P’) + D(Ve) Ay () D(Ve)U (&).

Besides the term obtained from the quadratic vector funcf8b) in the Taylor for-
mula (34), the expression (36) contains the discrepangy(P’) which originates from
the inertial term"y;u" in accordance to the asymptotic ansatze (35) and (35).

In order to establish properties of solutions to the prob{28), (30), we need some
complementary results.

Lemma3.1. Assume that &) = D(V,)TY(¢) and

(37) (&) =p720(0),  Z() = p3(6),
where(p, 6) are spherical coordinates arfl € C*(S?)%, 3 € C*(5?)2 are smooth vector
functions on the unit sphere. The model problem

(38) LO(V)X(6) = Z(¢), &€ e R3\{0},

admits a solution ¥) = p~1%(6), which is defined up to the teri (¢)c with ce R3, and
becomes unique under the orthogonality condition

(39) f D) AP)DVX(E)dg =0 € R,

Proof After separating variables and rewriting the operafb(v;) = r=22(6, V4, rd/ar)
in the spherical coordinates, the system (38) takes the form
(40) (0, Ve, ~1)X(6) = 3(6), €S2

Sinceg(, Vy, 0) is the formally adjoint operator fati (0, Vg, —1) (see, for example, [[27];
Lemma 3.5.9]), the compability condition for the system dfetential equations (40)
implies the equality

(41) 3(0)ds =0eR3.
/

The equality represents the orthogonality condition inghacel 2(S?) of the right-hand
side3 of system (40) to the solutions of the system

(42) 21(0,V,,0)08(0) =0 6es?,

which are nothing but constant columns. Indeed, after foammtion to the Cartesian
coordinate systensi equations (42) take the fortP!(V)V(£) = 0, ¢ € R3O, and any

solutionV(¢) = p°%B(6) is constant. Leb > a > 0 be some numbers, and Etbe the

annulug¢ : a< p < b}. We have

|ngf3(9)d@ = fp_ldeS(G)d% = fp‘ss(ﬂ)d§=

a

- f D(V)TY(E)de = f D) Y(@)ds - f D) TY(E©)ds = 0.
) 2 2
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We have used here the Green formula and the fact that theamggjon the spheres of radii
aandb are equal tdh2D(F) Y anda2D(6) 7Y, respectively, i.e., the integrals cancel one
another.

Therefore, the compability condition (41) is verified and ystem (40) has a solution
X € C*(S?)3. The solution is determined up to a linear combination ofgsaonS? of
columns of the fundamental matrii(¢); recall that the columns of matri(¢) are the
only homogenuous solutions of degrekt of the homogenuous model problem (38).

According to the definition and utility the colum@ag verify the relations

43) - | DEOTAP)D(V)DUE)ds = | LU(V)ONE)E = | 5(£)eqde = ey
f [ |

where¢ is the unit outer normal to the sphegé = 9B1, By = {£ : p < 1}, § is the
Dirac massgy = (61,4.02,g-63q)" IS the basis vector of the axig, and the last integral
overB; is understood in the sense of the theory of distributionsisTwing to (43), the
orthogonality condition (39) can be satisfied that impltes tiniqueness of the solutiéh
to the problem (38), (39w

In view of (32) and (27), (28), the right-hand side of (38)aakhe form

(44) Z(&) = D(Ve) (€ VAP D(V)(MID(V)DI()T) el

General results of [6] (see also[[273.5, §6.1, §6.4]) show that there exists a unique
decaying solution of problem (29), (30), which admits thpasion

(45) wWA(¢) = XI() + DI@EC + O(p2(L+1Inpll), & € R3\Br.

In the same way as in relation (27), the relation (45) can Ifferdintiated term by term
under the rul&7:O(lo| (1 + [ In pl)) = O(lpI" (L + | In pl)). ‘
The method [14] is applied in order to evaluate the col@hn

Lemma 3.2. The equality is valid
(46) Cl = (7 - y(P))wjlu(P) - 1,

where|wj| is the volume, angj = |w;|™ fm vj(€)dé the mean scaled density of the inclu-
J
sionwj, i.e., its mass i¥j |wjl, and

(@7) = [ DO AP DENMIDTIOIE") s

Proof In the ballBr we apply the Gauss formula and obtain, thatRos oo,
FOde + | Flde + | Glds = Li%W2ide | Liw?ide
BR\\f;)j (:)[ ﬁ\ujf; BR\\/‘; (:)[
+ [ DO @p@DTIE - APYDE s
(48) " . .
- - [ Dl ey AP DTS
Br
=~ f DRIYTAPYD(V(X! () + D) (E)C))dé + o(1) = C! + o(1).

0BRr



10 S.A.NAZAROV AND J.SOKOLOWSKI

We have also taken into accout equalities (39) and (43). @rother hand, in view of
formulae (36) and (32) it follows that

f Fi@)ds = - f yi(©deu(P!) + f D(Ve) Ay (E) DTV ()

wj wj

= —jlwjlu(P)) + | DM(E))" A (€)D(VU (€)dé,
w;i

(49) | | | |
f FOI(&)dé = - f DOE) (€ VAP DVIWI () ds
BR\wj 3(4)]
+ f DR (€T AP) DV IWH @)
OBR

We turn back to the decomposition (27), and taking into antthe homogeneity degree
of the integrand, we see that the integral over the sp&‘@ﬁeaBR equals

(50) f DE) (T VXAP))D(Ve)(MID(V)D! () T) Tdse! + O(R™).

The integrals over the surfacés; in the right-hand sides of (49) cancel with two integrals,
which according to (33) appear in the formula

f Gl(©)ds = f DUE) (€T VAP DV (©)ds

Owj Owj
G f D) Ay E)D(TU(E)deé + f D) (€ VAP dg e
ﬁmi ) ) ﬁmi
+ [ DUE) AP)DEUI@)ds.
Owj
Finally, by the equality
D(-T,)TAPYD(-T)UI(E) + D(-V,) (T, A P)e) = 1y (PHu(PY)

resulting from equation (33) at the poixnt= P, the sum of the pair of two last integrals in
(51) takes the form

f (D(=Ve) APYD(V)U () + D(=Ve) (€T VXA (P])e)d = 1y (P)lwj|u(P) .
It remains to pass to the lIMR —» +c0. m

Now, we are in position to determine the termandyu in the ansatze (21) and (20),
which are given by solutions of the problem

(52) L% VIV(X) = 2y()V(X) + y(Qu(x) + F(X), xe Q\{P,..., P},
(53) DEX))TAXDVIV(X) =0, xeX, v(X)=0, xeTl.

The weak formulation of (52)-(53) is given below by (59) inatlaubspaceeoi1((2;1")3 of
the Sobolev spacd?(Q). The right-hand sidé includes the discrepancies, which results
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from the terms of boundary layer type and of the ordfer By decompositions (27) and
(45) we obtain
(54)
J
f(x) = Z(L(x, Vy) = Ay (QLa)x j (M D(Vy) DI (x = PHT) Tl + XI(x) + @) (x - PI)Cl}.
=1
The terms in the curly braces enjoy the singularit¥ — P!|=2) and O(|x — PI|™1),
respectively, therefore, it should be clarified in what sethee diferential problem (52),
(53) is considered. Equation (52) is posed in the punctuoedadn(, thus the Dirac mass
and its derivatives, which are obtained by the action of {herator£ on the fundamental
matrix, are not taken into account. Beside that, by virtuthefdefinition of the ternx!

implying a solution to the model problem (38) with the rigtand side (44), and according
to the estimates of remainders in the expansions (27), #&jollowing relations are valid

(55) f() = O(rj?(L+Inry), rj=x-P|->0 j=1..1J
which accept the dlierentation according to the standard rule
V,O( ;P + lInr)) = O(r ;P (L +1Inr)))) .

In other words, expression (54) should be written in the carsime way
J

(56) 100 = Y {(TLxil - dnxiTa)(SH + S+

j=1
X D(V) (A - APY) = (x = PV APDVIS! + (A - AP D(V:)S ) .

Here, A, B] = AB — BA is the commutator of operatosandB, andSi, S = Sit +
X} + ®!C! are expressions in curly braces in (54).

Lemma 3.3. Leta be a simple eigenvalue in the probléh®), (11), and u the correspond-
ing vector eigenfunction normalized by the condit{@4). Problem(52), (53) admits a
solution ve H(Q)3 if and only if

(57) u= —LiLrg) js;s u(x)" f(x)dx,

whereQ’ = Q\(B} U - -- U B}) andBj; ={x:rj<dh

Proof The variant of the one dimensional Hardy’s inequality

1 1 2 1
|U(r)dr < c[ r? dr + |U(r)|2dr]
Jorersel [ |

1/2
provides the estimate
(58) IV LA(Q)N < cllV; HY(Q)Il
In this way, the last term in the integral identity serving ffwoblem (52), (53)

du
W(r)

(59) (AVY, VV)a - A0V, V)a = (ot Vg + (f.V)a, V€ RY(@T)%,
is a continuous functional over the Sobolev spEé€Q)3, owing to the inequalities
1/2 1/2

J

(. V)al < civiLa@i+ Y| [eorax| | [ravegrax| < civ: i@

S j
B45 B{f
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o
frjzh‘(x)lzdxs cfrjzrj‘z(1+ lInrj)?drj < +co.
B} 0
Thus, Lemma follows from the Riesz representation theonednFaedholm alternative, in

addition, formula (57) is valid because the integrand is aatimfunction inQ\{P%, ..., P’},
with absolutely integrable singularities at the poiRts...,P’. m

Remark 3.1. If the points P are considered as tips of the complete coRés.P!, the
elliptic theory in domains with conical points (see the farméntal contributionfg, 14, 15]
and also e.g., monograp27]) provides estimates in weighted norms of the solution v
to problem(52), (53). Indeed, owing to relatiorf55) for any r > 1/2 the inclusions
rif e LXU’)* are valid, wherel/! stands for a neighbourhood of the point; i addition

U NUK = @ for | £ k, therefore, the termgTv, ri"'Vyv and £ Vv are square integrable
iNnUl. m
We evaluate the limit in the right-hand side of (57) for»> +0. By the Green formula

and representation (54), the limit is equal to the sum of thifase integrals
(60)

(SIYTDEH(x = PY)TAND(V,)U(X) - u(x)TDE (X = P AMND(V:)SH(¥) + S1?) ds; .
J;
We apply the Taylor formulae (31) and (22) to the matfixand the vectou, and
take into account relations (8) for the matrickand . We also introduce the stretched
coordinateg = 6-1(x — P)). As a result, up to an infinitesimal term &s- +0, integral
(60) equals to

—571|o +li+l+l3+14+ 0(1)
- 51 f WP D(E)T AP)YD(V)SH(E)ds

§2

- f (d@a’ - u(P)) D) AP)D(V:)S (@) d
§2

(61) - f U(P))TD(E)T (€T VAP D(VA)S @)

§2

- f u(P!)" D& APD(V) (X)) + @I()C)ds

SZ
’ f (S1%&)"DE)TAPYD(Ve) D) &
S2

~(DETe)TDETAP)D(V,)SIH(¢)ds + o(L).
The integraldo andl; vanish. Indeed, due to the second equality in (8) we have

75 [ e D@ APYDTIS s
SZ
(62) == f d(&)"DE) TAP)D(V)(MID(V,) Dl (€)T) el de
B

-~ [d@ D s(@demIe! = ~(DEIUE) oM =0

B1
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These equalities are understood in the sense of distritsitBy formula (47), we obtain
I, = —u(P)T17.

Relations (39) and (43) yield
I3 =u(P)'C!.

Finally, in the same way as in (62), we obtain

Iy = f (D)) D(Ve) T APYD(V,)S () deé

(63) B N -

- f DEDEx) MIIs(E)de = ()M,
B

Now, we could apply the derived formulae. We insert the ofetdiexpressions fdg,
into (61)— (60) — (57) and in view of equation (46) for the colurid, we conclude that

J
(64) p= > ()Ml + a(y(P) - 7)lwjllu(P)P).
=1
If equality (64) holds, then problem (52), (53) admits a sioluv € H1(Q)3. The construc-
tion of the detached terms in the asymptotic ansatze (20j21) is completed.

In the forthcoming sections the formal asymptotic analisst®nfirmed and generalized
into the following result.

Theorem 3.2. Let A, be an eigenvalue in probleii2) with multiplicity xp, i.e., in the
sequencéll)

(65) /lp_l < /lp == /lp+%p_1 < /lp+;¢p .

There exist p > 0 and g, > 0 such that for he (0, h;] the eigenvaluesy, -, %, of

the singularly perturbed problefi2)', and only the listed eigenvalues, verify the estimates
(66) Mprg-1 = Ap — 3Pl < cp(@)h®™, q=1,...,%p,

where ¢(«) is a multiplier depending on the number p and the exponeat(0, 1/2) but
independent of e (0, hy], While,u(lp), e ,,uffg) imply eigenvalues of symmetie, X »p)-
matrix MP with the entries

(67)

J
MR = > (euprcrs P MIe(Upec1; P) = Ap(F7 = y(P)lwjlupc1(P)) TUpaica(PY))
j=1

M! is the polarization matrix of the scaled inclusion (§86) and (27)), Uy, - - - s Upep—1)
are vector eigenfunctions in the problgi®) corresponding to the eigenvalug and or-
thonormalized by conditio(iL4), finally the quantities; and |w;j| are defined in Lemma
3.2.

We explain which changes are necessary in the asymptotitzn&0), (21) and in the
asymptotic procedure in order to construct asymptotickércase of a multiple eigenvalue
Ap. First, forup andugy in (20) and (21) should be selected unknown numlé@rand the
linear combination

(68) UE?,)) = b(lq)u(p) Foet b,(fl)u(pﬂp_l)
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of vector eigenfunctions; the columbf® = (b, ... ,bffl))T € R* is of the unit norm.
After the indicated changes the formulae for the boundaygrew!id andw? remain
unchanged. The same applies to problem (52), (53) for thection terrrwgg)) of regular
type. However, the compability conditions are modified, aurd into thex, relations

(69) ygp)(yugg;,up+m,l)9=6|im f Upsm1()TF(dX, m=1,...,%p.
—+0 _Qé

The left-hand side of (69) equals §”b{ by (14) and (68). It can be evaluated by the
same method as for formula (57), that (69) becomes the systatgebraic equations

%p
(70) pPO = MBBD, m=1,.. .

k=1
with coeficients from (67). In this way, the eigenvalues of the maw¥® and its eigen-
vectorsb@ e R* furnish the explicit values for the terms of the asymptotisitze
(20) and (21). We emphasise that by the orthogonality andnhatization conditions
(b@)Th® = g4 for the eigenvectors of the symmetric mat{(P, it follows that the
vector eigenfunctionsy = (u%ugg’)) p=1---,x%p, in problem (12), which are
given by formulae (68), are as well orthonormalized by theditions (14).

If we have good luck, and from the beginning the eigenveaigys: - - , Up:x,-1) have
the required form (68), then the mattM(P is diagonal and the system of equations (70)
is decomposed into a collection 8§ independent relations, fully analoguous to relations
(64) in the case of a simple eigenvalue. Such an observatitheikey ingredient of the
algorithm of defects identification which will be describieda forthcoming paper, and it
makes the identification method insensitive to the multtipfiof eigenvalues in the limit
problem.

4. REMARKS ON POLARIZATION MATRICES
The results presented in this section are borrowed from f28] the forthcoming paper
[33]. _
Variational formulation of problem (23) for the special fsWX, which define the
elements of the polarization mat’ in decomposition (25), are of the form
2E/ (WK, W) := (AP)D(V )W, D(Ve) W)e, + (A D(Ve) WK, D(Vo)W),,

(71) = (R()8 D(Ve) W)y, W € VAR,

whereV&(R:") is the Kondratiev space [6], which is the completion of thear space
C>(R3) (infinitely differentiable functions with compact supports) in the weidimterm
(72) IW; Vo (RE)Il = (IVeW; LARI)IZ + 111+ p)*W; LAR)] )Y

The following result, established in [23, 33] can be showrubing transformations ana-
loguous to (62) and (63) operating with the fiel and3i™ = D(&)Tg + WM,

Proposition 4.1. The equalities hold true
(73) My, = —2EI (Wi, wim) - f (An(P’) = (A krn(€))¢ -
wj

From the above representation it is clear that the maliixs symmetric, the property
follows by the symmetry of the siness matriced’, Al and of the energy quadratic form
E!. In addition, the representation allows us to deduce if tlarisaM’ is negative or
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positive definite. We writé* < M? for the symmetric matrice®?® andM? provided all
eigenvalues oM? — M? are positive.

Proposition 4.2. (see [33])1° If A;)(¢) < A(P)) for & € wj (the inclusion is softer
compared to the matrix material), then’Ns a negative definite matrix.
2° If the matrix A is constant and?{(’]% < A(P)~ (the homogenuous inclusion is rigid

compared to the matrix), then IMs a positive definite matrix.

It is also possible to consider the limit cases, either ofvatgavith Al = 0, or of an
absolutely sff inclusion withA(j) = co. For the case of a cavity the fférential problem
takes the form

(74) LO(VOWK(E) = 0, ¢ € ®; = R\aj,
DM APYD(VIWH(E) = ~D((&)  APYex, ¢ € duwj .
For an absolutely rigid inclusion the integraH@rential equations occur as follows

(75)  L9VAWK@E =0, €@, WKE=dEck-D@) e, &€ dwj,

] (@) DME) AP )D(Ve)WH(E) - 8)ds = 0 € R®,
wj
where the matrice® andd are introduced in (3) and (7), respectively.

The Dirichlet conditions in (75) contains an arbitrary aoluc € RS, which permits
for rigid motion ofw; and can be determined by the integral conditions which atedhe
principal vector and moment of forces applied to the baglyThe variational formulation
of problems (74) and (75) can be established in the Kond/rap'ace\/é(@J-)3 (see[6], and
e.g., [27]) normed by the weighted norm (72) (cf. the rightit side of (76)) and in its
linear subspac@W\ € V&(G)j)3 : W|3wj € R}, respectively, wher® is the linear space of
rigid motions (6). The asymptotic procedures of derivabbproblems (74) and (75) from
problems (23) and (71) can be found in [38, 13]. The requistioinates can be extracted
from these references as well.

In accordance with Proposition 4.2 the polarization mdwixa cavity is always nega-
tive definite, and that for an absolutely rigid inclusionsialways positive definite. Theo-
rem 3.2 gives an asymptotic formula, which can be combindid thie indicated facts and
the information from Proposition 4.2, and it makes possibldeduce the sign of the vari-
ation of a given eigenvalue in terms of the defect properfes example, in the case of a
defect-crack, with the null volume and negative polarzatnatrix, the eigenvalues of the
weakened body are smaller compared to the initial body. @ncbbservation is already
employed in the bone China porcelane shops by the qualifiessdpel.

5. JUSTIFICATION OF ASYMPTOTICS

We proceed with the following statements, which are fairpwn for the entire body
(see [34, 7]) but should be verified for a body with small dagi{see (16)). We emphasize
that a body with small inclusions is to be regarded in somsesas an intermediate case.
In this way, some of given below axiliary results for the ttthody are fit for the body
with foreign inclusions, however, in some situations it isah simpler to compare the
latter with the body with small voids. On the other hand, theie justification procedure
works for any sort of defects.
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Proposition 5.1. For a vector function & Igll(Q; I the inequality
(76) lIF7 1 L(Q)N + 1IVxu; LA(Q)N < cllD(Tx)u; LA(Q)II

holds true. The above inequality remains valid with a constadependent of k (0, hg],
if the domainQ is replaced by the domai(h) with defects.

Proof For analysis of displacement fields in the dom@h) with cavities (in particular,
with cracks) we apply the method described in review papR9]{ §2.3] - in this frame-
work the body with elastic inclusions isgnsidered as inta@ntire. Let us consider the

restrictioniu of u to the sefQ" = Q\ Ule ]BB%R, Where]BBt’;R = {X: |x— PJ| < hR} and radius

hR of the balls is selected in such a way tlmi‘t c Bt’;R. We construct an extensianto

Q of the fieldu. To this end, we introduce the annu[E# = BihR\Blij and perform the
stretching of coordinates— g—‘i_ = h‘l_(x— P)). The vector functiong andu written in the
&l-coordinates are denoted Biyandu!, respectively. It is evident that

(77) hID(VAT; LAE)I? = ID(Ve)T; LAEDIP < I1D(Vx)u; LAQN)IZ;
whereE = Bor\Bg. Let

(78) W) = (¢) + d@&)al,

whered is the matrix (7), and the colurmai € R® is selected in such a way that
(79) f o) "0l (¢)de = 0 € RS,

where the matrixl is given by (7). By the orthogonality condition (79), the Konequality
is valid

(80) T ; HYE)Il < RID(VT,; LAE)I = crID(V)T; LAE)I|

(see, e.g., [7], [[29]:82] and [[24]; Thm 2.3.3]), and the last equality follows frdime
second formula (8) since the rigid motidial generates null strains (4). Lat denote an
extension in the Sobolev clakg of the vector functioriﬂl from 2 ontoBg, such that

(81) @, ; H (Bar)ll < callT; HY@)Il.
Now, the required extension of the fialdnto the entire domaifl is given by the formula

_ [T, xeQn, .
(82) u(x) = { dehal + T (£1), xe Brqu’ i=1....3

In addition, according to (78) and (77), (80), (81) we have

(83) ID(V)T; LAQ) < cllD(Vx)u; LAQ(N))I.

Applying the Korn’s inequality (80) ilf2, we obtain

(84) [Ir;tu; L2Q) + IV,u; LA(QM < 11T La(Q)l] + 94T Lall < clD(V,)T; LA(Q)II-
We turn back to the functioal and find

(85) hIT!; HYE)I” < c(lIr;'T; LAQ)IP + IV,T; LAQ)IP).

The other variant of the Korn’s inequality

(86) s HE B2r\wj)I? < c(ID(Vul; LXENw)IP + Iu); LAE)IP)
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(see e.g., [7], [[29]82] or [[24]; §3.1]), after returning to the-coordinates leads to the
relations

h2jlu; LA Barr NI < ¢ Vxu; LA (Banr\w)I?

®7) < c(ID(Vx)U; L2 (Banr NI + h2lu; LA ) IIP)

By virtue of Ch>rj > ch> 0 forx Bth\w'j‘ D E‘%R’ the multiplierh~* can be inserted
into the norm, and transformed |tpl, but the normlrj‘lu; L2(Z} Il is already estimated in
(84), owing tou = u on Eﬂ]R. Estimates (87)j = 1,..., J modified in the indicated way
along with relation (84) imply the Korn inequality in the damQ(h). m

Remark 5.1. If wj is a domain, then in the proof of Proposition 5.1 we do not nieed
restrictu toQ", but operate directly with the sef(h) andByr\wj since there is a bounded
extension operator in the classttbver the Lipschitz boundadw; with the estimate of

type(81). The presence of crackTi]‘ makes the existence of such an extension impossible.
However, the Korn's inequalit§87)is still valid in this case, since to maintain the validility
the union of Lipschitz domains is only required (§€g. m

The bilinear form
(88) (u,v) = (A"D(V,)u, D(Vi)V)o

(0]
can be taken as a scalar product in the Hilbert spak{€; T')3. In this way, the integral
identity (12} can be rewritten as the abstract spectral equation
(89) KR = mhu,
wherem" = (A"~ is the new spectral parameter, aRis a compact, symmetric, and
continuous operator, thus selfadjoint,

(90) (f"uv) = ("uv)e, uves.
Eigenvalues of the operat8f constitute the sequence
(91) m?ngz---ngz..._)+o’

with the elements related to the sequence in (18) by the firstdla in (90).
The following statement is known as Lemma almost eigenvalues and eigenvectors
(see, e.qg., [42)]).

Proposition 5.2. Letm andu € $ be such that
(92) lls =1, IR —nullg = 6.

Then there exists an eigenvahm% of the operatoiR", which satisfies the inequality

(93) [m — mgl <é.
Moreover, for any, > ¢ the following inequality holds
(94) It — 1]l < 26/6

whereu, is a linear combination of eigenfunctions of the opera#dr associated to the
eigenvalues from the segmént— ., m + &.], and|ju.|g = 1.

For the asymptotic approximatioms andu of solutions to the abstract equation (89)
we take

(95) m = (Ap+ h3up) ™ u=U; 97U,
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whereU stands for the sum of terms separated in the asymptotica(®h). Let us
evaluate the quantity from formula (92). By virtue oftp, > 0O, forh € (0, hp] andh, > 0
small enough, we have

(96) & = I8 — mu; Hll = (Ap + hPup) HIU; HI supl(2p + h*°)(]"U,) - (U, V)|

Ve

< csupl(A"D(V)U; D(V)V)a — (1p + hPup)(0"U", V)al;

ves
whereG = {V € 9 : ||V; 9| = 1} is the unit sphere in the spage In addition, to estimate
the norm||U; 9| the following relations are used
(97) llupy; SI = (AD(V Uy, D(V)U(p)a > € > 0,

Iy Wy Bl < 2, i=1,2, [IWy(; SIF < ch,

where the first relation follows from the continuity at theirgs P! of the second order
derivatives of the vector function, combined with the integral identity (12) and the
normalization condition (19). We transform the expresdioner the sigrsupin (96).
Substituting into the expression the sum of terms in angAdty, (ve have

lo = (A"D(Vx)U(p), D(Vi)V)a = (4p + h3up) (y"Ugp), Vo
(98) = 311 (g - DTV - 160" = D, V)

_hsﬂp(yhu(p)’v)ﬂ = Zf:l I(]) - |8,

(99) 1] = W(ADV gy DVV)a=H A+ ) 0 d iy VI = 1710, i= 1.2,

la= hs((ﬂD(Vx)V(p)D(Vx)V)Q = p(WV(p): V)a) - hGﬂp(YhV, V)a

(100) +h* 57, {((ﬂ(j) = A)D(Vx)V), DVIV) o = p((vj = )V, V)wjh}
=hIg+heIg + R 1.

In (98) we used thai; andl, verify the integral identity (12). Furthermore, by the Tay!
formulae (34) and (31), we obtain
(101)

15 =155 =137 < c(hID(V)V; L)l + hiIV; LD

+ f IV = V'dx) < chPh¥2|D(V)V: LAQ)|| = ch'/2,
h

@j

Iy = (A = AP, DVV),
15" = () = APN DUy, DVV),1 + (x= PV AP))e

DEIV),,
=Ap((rj = y(P))up)(P1), V), 0.

i
(9]

Let explain the derivation of above formulae. The followsgstitutions are performed

D(VX)U(p)(X) = S(Jp) + @(VX)U(p)(X),
AX) - AP + (x— PYTV,APY),
Up)(X) = U (P),
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with pointwise estimates for remainders of ordetsh?, andh, respectively. These gave
rise to the following multipliers in the majorants

IDV)V; Lw)ll < ch¥2ID(V)V; LAQ)I,
IV; LY@l < i v; LA(Q)].

Note that the factoh®? is proportional to (me&)';)l/z, andh~!r; does not exceed a con-
stant on the inclusiow*j‘. Beside that, the Poincaré inequality

@ @j

(102) f V(x) = V'|dx < ch?? f IV(X) — V2 [2dx < ch¥/2h? f IV V(9))2dx,

is employed together with the relation

(103) f()’j(x) ~ ¥ U (P)TV(X)dx = f(yj(x) ) (P (V(X) - Vdx

HereV' stands for the mean value Vfoverw*j‘. Finally, all the norms of the test function
V are estimated by Proposition 5.1. _

In similar but much simpler way, by virtue of Remark 3.1, tleen Ii from (100)
satisfies

(104)  h31)| < ch¥ (Ml Vv L2 + 271 T2y LAWNIDIV; Sl < e,

wherer > 1/2 is arbitrary. It is clear tha®I}"| < Ch°. The integrah®} cancels the
integral—h®1J in (98) and some parts of the integrélsrom (99), which we are going to
consider.

In the notation of formula (56) we have

1} =nl {(ﬂm@(vx)wyp),@(vx)vm + (APHDV )W, DX Vo)
#0726,2((x = P)TVAP) DTN, DT Mars |

HADT ). x Wy DVIV)a = (ADVIW, [D(V). xiIV)a)
+((ﬂ - ﬂ(PJ) - 5i,l(x - P])Tvxﬂ(PJ))D(Vx)V\’I(]p)’ D(Vx)XjV)Q\m'j‘
= 0 112

(105)

Furthermore, the integrakél ijo andl I" cancel each other according to the integral identities

2E1(wH, xjV) = ((A(PY) = AG)eh, DV
2E2(W?, yjV) = (Fol,XjV)Rg\wj +(F',V)o, + (G, V)su; -
The latter formulae are provided by (71), (26) and (29), (882), (33), (36). We point
out that the test functioti — y;(h& + P!)V(hé + P') in (106) has a compact support,
i.e., the function belongs to the Kondratiev spa/é(dRe’), and in the analysed integrals the
stretching of coordinates— & = h™(x — PJ) has to be performed. )

The expressions including asymptotic ter8y5 (h™*(x — P)) = h3“S("p)(x — Pi) are
detached from the integrail#1 andl?,
o = P{AIDT). XIS}y DVOV)a — (ADV)SH DY), x{]V)a)

2 (p)°
(107) = h(Lx]S" Vo, | | __
o = (A= AP - 6ia(x~ P)TVAP)DV)S (. DVx Vo

(106)
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and the remainders are estimated by virtue of the deconiusi27) and (45), namely,
(108)

1/2
=1 < chivssl j‘«um*m*+W%um4m*wx < cif,
uplVyxil
1/2
-y < dﬂWﬂl\f(G+W%YMWQO+W%YWLHWWMWQX
uplVxjl
< chf(@+]|Inh),
1/2
=15 < chiv; sl f riL+hir) x| <chf,
\a)g1
1/2
NZ -1 < crv; 9l f rf(L+hr) @+ lIn(h~ir))?dx| - <chf(1+]Inhi).

\m?

Inequalities for the integral#O from (99) are obtained in a similar way and look as follows

10— 101 < clirp2V; LA(Q)IINh*(L + 6 21 In hl) < chi(L + 621 In h),
1S = R (ox Sl Va

According to formula (56) for the right-hand sideof the problem (52), (53) and the
associated integral identity (59), the sum of the expre&ﬁag from (100) and:g from
(107), (109) (the latter is summed oviee 1,...,Jandq = 0, 1, 2) turns out to vanish. As
a result, collecting the obtained estimates, we concludettte quantitys from formula

(95) (see also (92)) satisfies the estimate

(110) § < g ht

(109)

foranya € (0,1/2).

Now we are in position to prove the main theorem on asymptatfcsolutions of sin-
gularly perturbed problem.
Proof of Theorem 3.2 From the columns, . . ., b%® of matrix M® with elements (67)
can be constructed linear combinations (68) of vector digentionsuy), . . ., Upx,-1) as
well as the subsequent terms of asymptotic ansatz (21). ésustyforg=p,..., p+»p—1

the approximate solutior{(;/lp +h3up)t, ||U((gg; 55||*1UE$} of the abstract equation (89) are

obtained, such that the quantfijrom relations (92) verifies the inequality (110). We apply
the second part of Proposition 5.2 with

(111) 8. =C.h*" | a,€(0,a).
Let the list
(112) mh= @A) mpy = () T

include all eigenvalues of the operaftt, located in the segment

(113) [(/lp)_l _ C.h3+n.’ (/lp)_l + C.h3+n.] ,
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for sufficiently smallh, > 0, such that{, + h%up)~! with h € (0, h,] belongs to segment
(113). Our immediate objective becomes to show that

(114) n=p, N=uxp.

The quantitiest? for m > n+N-1 are uniformly bounded ih € (0, h,]. By Proposition

5.1, the same assumptions provide the uniform boundedfi#ss norml[ﬂ'(“m ; |9|1(Q; 3|

of the vector functionglj) € $" constructed for the vector eigenfunctioufs) in (12)'
according to (86). Hence, there exists an infinitesimal sage{h;}, such that the limit
passagé; — +0 leads to the convergences

(115) m? - m? = (19)2, Jg - J% weakly inH(Q)® and strongly inL2(Q)° .

We substitute into the integral identity (I2he test functiow € CZ(Q\(TU{P%, - - -, PI}))3.
According to definition (17) and for siiciently smallh > 0, the stifness matrixA" and
the densityy" coincide on the support efwith A andy, respectively. Therefore, the limit
passagéy — +0 in the integral identity (12)leads to the equality

(116) (—?{D u?m), DV)Q = /lg"l(y u?m), V)Q .

SinceC(Q\(T' U {P,--- ,P)))% is dense irl9|1(Q; I3, the integral identity (116) holds

true for all test functions e |9|1(Q; I')3. We observe that the weighted nornnplu?m); L2(Q)|
are uniformly bounded by virtue of inequality (76), thus

o" Wy U)o = (y W), Ul )a = o(1) forh — +0.
In this way, taking into account formulae (19) and (115), wel fout that
(117) O Ury» Uy = Omi -

Hence, 9, is an eigenvalue, and?’n:) is a normalized vector eigenfunction of the limit
problem (12). This implies thai+x, > n+N. Considering consenquently the eigenvalues
Aps ..., A1, we conclude that

(118) p>n, x,>N.

In order to establish the inequalitips< nandx, < N we select the factas, in (111) such

that foru® # ,u(pq) the number £, + )1 is excluded from the segment
119 N+ h3,u(q) -1_ C.h3+oz.’ Ao+ h3#(CI) -1 4 g3 .
p p p P

Let < be the multiplicity of the eigenvalygs’ of matrix M. By Proposition 5.1 and

estimate (120) there are, not necessarily distinct, ehyemm{‘(q), . ..,m{‘(qﬂqfl) of the
operatoR" such that
(120) Iy = (2p + W)Y < cih® .
In addition, Proposition 5.1 furnishes the normalized outsa® = (o, - - ,agf)mrl)T,
such that

n.+N,-1

(121) Ul - o sl > ;s

i=1

)

<2< Spome
6 C.
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Whereuﬂ., e ,uﬂﬁer are normalized ir§ vector eigenfunctions of the opera®' cor-
responding to all eigenvalues from segment (119). By foam®7), and (12), (14),
K 0
KUB,UD) = Aol = o(1) for h— +0.
Furthermore, owing to formula (121), we have

|<U((Ir();’u((lp))> (@) T =0(1) for h— +0.

Thus, for stficiently smallh the numbem, cannot be smaller thakﬁ‘) Hence, there

are eigenvaluemI oo, mh @_, which verify inequality (120) with the majoranf, h3+a-

l+kp
(since the exponent € (0, 1/2) is arbitrary, we can choose < a without loosing of

the precision in the final estimate (66)). Selecting all pigdues of the matrixM(®, and
subsequently the numbeig_y, - - - , A1, it turns out that necesserily the equality in (118)
occurs, and alsbl, = K(r?).

The proof of Theorem 3.2 is completenl.

Remark 5.2. Theorem 3.2 provides inequalit¥21), which allows for derivation of some
asymptotic formulae for vector eigenfunctior?@ wf the problem(12)f'. We emphasise
that, first, the estimates of remainder are not as good aserctise of eigenvalues, and,
second, for multiple eigenvalues of maty(P even the initial approximation for

is not available. And this is not a lack of the obtained este@mébut just the matter of
asymptotic procedures; we refer the reader to the chaptef Book[24] and to papers
[25, 26, 12, 13]where is discussed the notion of individual and collectisgmptotics of
solutions to spectral problems. We present one variant@étimates proved above.

If /,c(pq) is a simple eigenvalue of the mato® (for example,, is a simple eigenvalue
of problem(12)) and 49 the corresponding normalized eigenvector, then there isigen-
value/lg in problem(12)) (if A, is simple than p= q), which is simple, and together with
the corresponding vector eigenfunction verifies the eséma

Mg —/lp 3 (Q)| <c (a,)h3+a
Uy = (6Pug) + - + b U1, 1) HAOQ)II < Cp@)h® ,

wheree € (0, 1/2)is arbitrary, and the factors ), Cp(a) are independent of parameter
h e (0, hp.
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