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 coupling local quadratic meta-models with the Covariance Matrix Adaptation Evolution Strategy is investigated. The scaling of the algorithm with respect to the population size is analyzed and limitations of the approach for population sizes larger than the default one are shown. A new variant for deciding when the meta-model is accepted is proposed. The choice of the recombination type is also investigated to conclude that the weighted recombination is the most appropriate. Finally, this paper illustrates the influence of the different initial parameters on the convergence of the algorithm, for multimodal functions.

Introduction

Many real-world optimization problems are formulated in a black-box scenario where the objective function to optimize f : R n → R may have noise, multiple optima and can be computationally expensive. Evolutionary algorithms (EAs) are stochastic population based optimization algorithms that are usually a good choice to cope with noise and multiple optima. For expensive objective functions-several minutes to several hours for one evaluation-a strategy is to couple EAs with meta-models: a model of f is built, based on "true" evaluations of f , and used during the optimization process to save evaluations of the expensive objective function [START_REF] Jin | A comprehensive survey of fitness approximation in evolutionary computation[END_REF]. One key issue when coupling EAs and meta-models is to decide when the quality of the model is good enough to continue exploiting this model and when new evaluations on the "true" objective functions should be performed. Indeed, performing too few evaluations on the original objective function can result in suboptimal solutions whereas performing too many of them can lead to a non efficient approach.

The covariance matrix adaptation ES (CMA-ES) [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF][START_REF] Hansen | Evaluating the cma evolution strategy on multimodal test functions[END_REF] is an EA recognized as one of the most powerful derivative-free optimizers for continuous optimization 3 . At each iteration of CMA-ES, the evaluation of candidate solutions on the objective function are performed. However, from those evaluations only the ranking information is used. In consequence the algorithm is invariant to transformations on f preserving the ranking. CMA-ES was coupled with local meta-models by Kern et al. [START_REF] Kern | Local meta-models for optimization using evolution strategies[END_REF]. In the proposed algorithm, lmm-CMA, the quality of the meta-model is appraised by tracking the change in the exact ranking of the best individuals. The lmm-CMA algorithm has been evaluated on test functions using the default population size of CMA-ES for unimodal functions and for some multimodal functions and has been shown to improve CMA-ES [START_REF] Kern | Local meta-models for optimization using evolution strategies[END_REF].

In this paper, we analyze the performance of lmm-CMA when using population sizes larger than the default one. We show that tracking the exact rankchange of the best solutions to determine when to re-evaluate new solutions is a too conservative criterion and leads to a decrease of the speedup with respect to CMA-ES with increasing population size. Instead we propose a less conservative criterion that we evaluate on test functions. This paper is structured as follows. Section 2 gives an overview of CMA-ES and lmm-CMA. In Section 3, we evaluate lmm-CMA-ES for population size larger than the default one. In Sections 4.1 and 4.2, we propose a new variant of lmm-CMA. In Section 4.3, the influence of the recombination type on the new variant is tested. The influence of initial parameters is analyzed in Section 4.4.

CMA-ES with local meta-models

The Covariance Matrix Adaptation ES CMA-ES is a stochastic optimization algorithm where at each iteration g, a population of λ points is sampled according to a multivariate normal distribution. The objective function of the λ points is then evaluated and the parameters of the multivariate normal distribution are updated using the feedback obtained on the objective function. More specifically, let (m g , g ∈ N) be the sequence of mean values of the multivariate normal distribution generated by CMA-ES, constituting the sequence of estimate of the optimum and let (σ g , g ∈ N) and (C g , g ∈ N) be respectively the sequences of step-sizes and covariance matrices. Assume that m g , σ g , C g are given, new points or individuals are sampled according to:

x g i = m g + σ g N i (0, C g ), for i = 1 . . . λ , (1) 
where (N i (0, C g )) 1≤i≤λ are λ independent multivariate normal distributions with zero mean vector and covariance matrix C g . Those λ individuals are ranked according to f :

f (x g 1:λ ) ≤ . . . f (x g µ:λ ) ≤ . . . f (x g λ:λ ) (2)
where we use the notation x g i:λ for i th best individual. The mean m g is then updated by taking the weighted mean of the best µ individuals, m g+1 = µ i=1 ω i x g i:λ , where in general µ = λ 2 and (w i ) 1≤i≤µ denote strictly positive and normalized weights, i.e., satisfying µ i=1 ω i = 1. The default weights are equal to:

ω i = ln(µ + 1) -ln(i) µ ln(µ + 1) -ln(µ!) , for i = 1 . . . µ. (3) 
Furthermore σ g and C g are updated as well after evaluation and we refer to [START_REF] Hansen | Evaluating the cma evolution strategy on multimodal test functions[END_REF] for the equation updates. All updates rely on the ranking determined by Eq. 2 only and not on the exact value of the objective functions such that the CMA-ES is invariant when optimizing f or g • f where g : R → R is a strictly increasing mapping. The default population size λ equals 4 + ⌊3 ln(n)⌋.

Locally weighted regression During the optimization process, a database, i.e., a training set is built by storing, after every evaluation on the true objective function, points together with their objective function values (x, y = f (x)). We will later then show that some points whose evaluation is asked by the optimizer are not evaluated on the true objective function. Assuming that the training set contains a sufficient number m of couples (x, f (x)), for each individual in the population, denoted now q ∈ R n , locally weighted regression builds an approximate objective function using (true) evaluations stored in the training set. Kern et al [START_REF] Kern | Local meta-models for optimization using evolution strategies[END_REF] have tested several types of models for the objective function (linear, quadratic, ...) and have investigated the impact of the choice of the model complexity and recommend to use a full quadratic meta-model that we will hence consider in this paper. The full quadratic meta-model is built based on minimizing the following criteria w.r.t. the vector of parameters β ∈ R n(n+3) 2

+1 of the meta-model at q:

A(q) = m j=1 f (x j , β) -y j 2 K d (x j , q) h , (4) 
where f is the meta-model defined by

f (x, β) = β T x 2 1 , • • • , x 2 n , • • • , x 1 x 2 , • • • , x n-1 x n , x 1 , • • • , x n , 1 T , (5) 
with x = (x 1 , . . . , x n ). The kernel weighting function K (.) is defined by

K(ζ) = (1-ζ 2 ) 2 1 {ζ<1}
where 1 {ζ<1} is one if ζ < 1 and zero otherwise, and d denotes the Mahalanobis distance with respect to the current covariance matrix C between 2 individuals defined as d (x j , q) = (x jq) T C -1 (x jq) , and h is the bandwidth defined by the distance of the kth nearest neighbor data point to q

where k = n (n + 3) + 2 .

Table 1. Test Functions and their corresponding initial intervals and standard deviations. The starting point is uniformly drawn from the initialized interval.

Name Function

Init. σ 0

Noisy Sphere f NSphere (x) = ( Approximate Ranking Procedure The lmm-CMA-ES algorithm is using the approximate ranking procedure in order to decide when the quality of the model built is satisfactory [START_REF] Runarsson | Constrained evolutionary optimization by approximate ranking and surrogate models[END_REF]. This procedure heavily exploits the ranked-based property of the CMA-ES algorithm. Fig. 1 gives the implementation of this procedure proposed in [START_REF] Kern | Local meta-models for optimization using evolution strategies[END_REF]. Initially, a number n init of best individuals based on the meta-model are evaluated using the true objective function and then added to the training set. A batch of n b individuals is evaluated until satisfying the metamodel acceptance criterion: keeping the ranking of each of the µ best individuals based on the meta-model unchanged for two iteration cycles. Hence, (n init,g + n ic n b ) individuals are evaluated every generation where n ic represents the number of iteration cycles needed to satisfy the meta-model acceptance criterion. We note that n init and n b are initialized respectively to λ and max[1, ( λ 10 )]. The parameter n init is adapted depending on the number of iteration cycles n ic : n init Table 2. Success performance SP1, i.e., the average number of function evaluations for successful runs divided by the ratio of successful runs, standard deviations of the number of function evaluations for successful runs and speedup performance spu, to reach fstop = 10 -10 of lmm-CMA and nlmm-CMA. The ratio of successful runs is denoted between brackets if it is < 1.0. Results with a constant dimension n = 5 and an increasing λ are highlighted in grey. is increased if (n ic > 2) (Line 13 in Fig. 1) and decreased if (n ic < 2) (Line 14 in Fig. 1).

n P i=1 x 2 i ) exp (ǫN (0, 1)) [-3, 7] n 5 Schwefel f Schw (x) = n P i=1 ( i P j=1 xj ) 2 [-10, 10] n 10 Schwefel 1/4 f Schw 1/4 (x) = (f Schwefel (x)) 1 4 [-10, 10] n 10 Rosenbrock fRosen (x) = n-1 P i=1 " 100. `x2 i -xi+1 ´2 + (xi -1) 2 " [-5, 5] n 5 Ackley f Ack (x) = 20 -20 exp " -0.2 s 1 n n P i=1 x 2 i " + e -exp( 1 n n P i=1 cos (2πxi)) [1, 30] n 14.5 Rastrigin fRast (x) = 10n + n P i=1 `x2 i -10. cos (2πxi) ´[1, 5] n 2 1 approximate f (x k ) , k = 1 . . . λ 2 
3 Evaluating lmm-CMA on increasing population size

Experimental procedure

The lmm-CMA and the other variants tested are evaluated on the objective functions presented in Table 1 corresponding to the functions used in [START_REF] Kern | Local meta-models for optimization using evolution strategies[END_REF] except two functions: (1) the function f Schw 1/4 where we compose the convex quadratic function f Schw by a strictly increasing mapping g : x ∈ R → x 1/4 , introduced because we suspect that the results on f Schw are artificial and only reflect the fact that the model used in lmm-CMA is quadratic and (2) the noisy sphere function f NSphere whose definition has been modified following the recommendations of [START_REF] Jebalia | Log linear convergence and divergence of the scale-invariant (1+1)-ES in noisy environments[END_REF]. We have followed the experimental procedure in [START_REF] Kern | Local meta-models for optimization using evolution strategies[END_REF] and performed for each test function 20 independent runs using an implementation of lmm-CMA based on a java code of CMA-ES 4 randomly initialized from initial intervals defined in Table 1 and with initial standard deviations σ 0 in Table 1 and other standard parameter settings in [START_REF] Hansen | Evaluating the cma evolution strategy on multimodal test functions[END_REF]. The algorithm performance is measured using the success performance SP1 used in [START_REF] Auger | Performance evaluation of an advanced local search evolutionary algorithm[END_REF]. SP1 is defined as the average number of evaluations for successful runs divided by the ratio of successful runs, where a run is considered as successful if it succeeds in reaching f stop = 10 -10 . Another performance measure that might be used was the expected running time ERT [START_REF] Hansen | Real-parameter black-box optimization benchmarking[END_REF] which is defined as the number of function evaluations conducted in all runs (successful and unsuccessful runs) divided by the ratio of successful runs. In this paper, we opt for SP1 since the stopping criteria for unsuccessful runs were not properly tuned which can affect the performance comparison. We have reproduced the results for the lmm-CMA presented in [4, Table 3]. Those results are presented in Table 2 5 .

Performances of lmm-CMA with increasing population size

In lmm-CMA, meta-model is accepted if the exact ranking of the µ best individuals remains unchanged. However, this criterion is more and more difficult to satisfy when the population size λ and thus µ(= λ/2) increases. We suspect that this can have drastic consequences on the performances of lmm-CMA. To test our hypothesis we perform tests for n = 5 on f Rosen , f Schw 1/4 with λ = 8, 16, 24, 32, 48, 96 and for f Rast for λ = 70, 140, 280. The results are presented in Fig. 2 and rows highlighted in grey in Table 2. On f Rosen and f Schw 1/4 , we observe, as expected that the speedup with respect to CMA-ES drops with increasing λ and is approaching 1. On f Rast , we observe that the speedup for λ = 140 is larger than for λ = 280 (respectively equal to 1.6 and 1.3).

A new variant of lmm-CMA

We propose now a new variant of lmm-CMA, the new-local-meta-model CMA-ES (nlmm-CMA) that tackles the problem detected in the previous section.

A new meta-model acceptance criteria

We have seen that requiring the preservation of the exact ranking of the µ best individuals is a too conservative criterion-for population sizes larger than the 4 See http : //www.lri.fr/ ∼ hansen/cmaes inmatlab.html. 5 Experiments have been performed with k = n(n + 3) + 2 indicated in [START_REF] Kern | Local meta-models for optimization using evolution strategies[END_REF]. However we observed some differences on fRosen and f Schw with this value of k and found out that k = n(n+3)

2

+ 1 allows to obtain the results presented in [4, Table 3]. We did backup this finding by using the matlab code provided by Stefan Kern. default one-to measure the quality of meta-models. We therefore propose to replace this criterion by the following one: after building the model and ranking it, a meta-model is accepted if it succeeds in keeping, both the ensemble of µ individuals and the best individual unchanged. In this case, we ignore any change in the rank of each individual from the best µ individuals, except for the best individual which must be the same, as long as this individual is still an element of the µ best ensemble. Another criterion is added to the acceptance of the meta-model: once more than one fourth of the population is evaluated, the model is accepted if it succeeds to keep the best individual unchanged. The proposed procedure is outlined in Fig. 3. Considering only changes in the whole parent set, without taking into account the exact rank of each individual, and setting an upper limit on the number of true objective function evaluations was first proposed in [START_REF] Runarsson | Approximate evolution strategy using stochastic ranking[END_REF]. The new variant is called nlmm-CMA in the sequel.

1 approximate f (x k ) , k = 1 . . . λ
then ninit = min(ninit + n b , λ -n b ) 22 elseif (nic < 2) then ninit = max(n b , ninit -n b )

Evaluation of nlmm-CMA

The performance results of nlmm-CMA are presented in Table 2 together with the one of lmm-CMA. Table 2 shows that on f Rast , the nlmm-CMA speedup is in between 2.5 and 5 instead of 1.5 and 3 for lmm-CMA and on f Ack , nlmm-CMA outperforms lmm-CMA with speedups between 1.5 and 3.5 for nlmm-CMA and between 1.4 and 3 for lmm-CMA. On these functions, nlmm-CMA is significantly more efficient. For the other tested functions f Rast , f Schw and f Schw 1/4 , nlmm-CMA is marginally more efficient than the standard lmm-CMA. In Fig. 2 and highlighted rows in Table 2, we evaluate the effect of increasing λ on nlmm-CMA using the same setting as in Section 3.2. Using population sizes larger than the default one, nlmm-CMA improves CMA-ES by a factor between 2.5 and 3.5 for all tested functions f Rosen , f Schw 1/4 and f Rast . Therefore, nlmm-CMA maintains a significant speedup for λ larger than the default one contrary to lmm-CMA which offers a speedup approaching to 1 for f Rosen and f Schw 1/4 and a decreasing speedup (from 1.6 to 1.3) when λ increases (from 140 to 280) for f Rast .

Impact of the recombination type

The choice of the recombination type has an important impact on the efficiency of ES in general [START_REF] Arnold | Optimal weighted recombination[END_REF] and CMA-ES in particular [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF][START_REF] Hansen | Evaluating the cma evolution strategy on multimodal test functions[END_REF]. In the previous section, the runs performed use the default weighted recombination type defined by Eq. 3. In the new variant of lmm-CMA, the meta-model acceptance criterion does not take into account the exact rank of each individual except the best one. By modifying the meta-model acceptance criteria of lmm-CMA, a possible accepted meta-model may be a meta-model that preserves the µ best individuals set and the best individual but generates a ranking far from the "true" ranking, i.e., the one based on the true objective function. We now compare nlmm-CMA using weighted recombination where weights are defined in Eq. 3 and intermediate recombination where weights are all equal to 1/µ: nlmm-CMA I . Results are presented in Table 3. The algorithm nlmm-CMA outperforms nlmm-CMA I in all cases suggesting that even if the exact ranking is not taken into account for assessing the quality of the meta-model in nlmm-CMA , this ranking is not random and has still an amount of information to guide CMA-ES.

Impact of initial parameters

In the tests presented so far, the initial parameters of the approximate ranking procedure (n init , n b ) were initialized at the beginning of the optimization process to (λ, max[1, ( λ 10 )]). Every generation g, the number of initial individuals evaluated n init is adapted (increased or decreased) depending on the meta-model quality (Lines 21 and 22 in Fig 3). The number of evaluations performed every generation is (n init,g + n ic,g × n b ). We quantify now the impact of the initial values of (n init and n b ) on the total cost of the optimization process. The algorithm nlmm-CMA is compared to a similar version where initial parameters are chosen as small as possible, i.e., n init and n b are equal to 1. Moreover, we consider two cases: (1) with update denoted nlmm-CMA 1 , i.e., where initial parameters are adapted depending on the iteration cycle number (Lines 21 and 22 in Fig 3), and (2) without update denoted nlmm-CMA 2 , i.e., parameters are equal to during the entire optimization process (omitting lines 21 and 22 in Fig. 3). We note that in case (1), the number of evaluations for each generation g is (n init,g + n ic,g × n b ) where n init,0 = 1 and n b = 1. In case (2), every generation, lmm-CMA evaluates (1 + n ic,g ) individuals. The results on different test functions are summarized in Table 3.

the unimodal functions f Schw , f Schw 1/4 , setting n init and n b as small as possible in every generation, is marginally more efficient than default definition of initial parameters on small dimensions except for dimension n = 8 and λ = 10. On f Rosen , nlmm-CMA 2 is the most efficient compared to other approaches, except for dimension n = 8 and λ = 10 which can be justified by a higher number of unsuccessful runs compared to other approaches. On the multimodal function f Ack , modifying the initial parameter n init does not have an important impact on the speedup of lmm-CMA (between 1.5 and 4). However on f Rast , using a small initial n init decreases considerably the probability of success of the optimization, from 0.95 to between 0.35 and 0.10 for dimension n = 2 and λ = 50, and from 0.60 to 0.10 for dimension n = 5 and λ = 140. Evaluating only an individual every iteration cycle does not cause, in general, any changes in the ranking of the µ best individuals and therefore it causes a premature acceptance of the meta-model. Hence, with a small initial parameters, the optimization process can easily get stuck in local minima. However, setting a sufficiently large initial n init and a batch size n b proportional to λ prevents the algorithm from a premature acceptance of the meta-model. These results confirm the initial parameters choice suggested in [START_REF] Kern | Local meta-models for optimization using evolution strategies[END_REF].

Summary

In this work, we have investigated the performances of the lmm-CMA algorithm coupling CMA-ES with local meta-models. On f Rosen and f Schw 1/4 , we have shown that the speedup of lmm-CMA with respect to CMA-ES drops to one when the population size λ increases. This phenomenon has been explained by the too restrictive condition used to stop evaluating new points dedicated at refining the meta-model, namely requiring that the exact ranking of the µ = λ/2

Fig. 1 .

 1 Fig. 1. The approximate ranking procedure, performed once the training set contains a sufficient number of evaluations to build the meta-model. ninit and n b are initialized respectively to λ and max[1, ( λ 10 )] .

Fig. 2 .

 2 Fig. 2. Speedup of nlmm-CMA (△) and lmm-CMA ( ) on (a) f Schw 1/4 , (b) fRosen and (c) fRast for dimension n = 5.

Fig. 3 .

 3 Fig. 3. The new approximate ranking procedure, performed once the training set contains a sufficient number of evaluations to build the meta-model. ninit and n b are initialized respectively to λ and max[1, ( λ 10 )] .
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	7	determine the µ best individuals set : setn ic
	8 9 10	determine the best individual : eltn ic if (ninit + nic n b < λ 4 ) if ((setn ic = setn ic -1) or (eltn ic = eltn ic -1)) then
	11	evaluate f for the n b best unevaluated individuals, add to the training set
	12	else	
	13	break	
	14	fi	
	15	elseif (eltn ic = eltn ic -1) then
	16	evaluate f for the n b best unevaluated individuals, add to the training set
	17	else	
	18	break	
	19	fi	
	20 od	
	21 if (nic > 2)	

Table 3 .

 3 SP1, standard deviations of the number of function evaluations for successful runs and speedup performance spu, to reach fstop = 10 -10 of nlmm-CMA, nlmm-CMAI (intermediate recombination and default initial parameters), nlmm-CMA1(default recombination, initial values of ninit and n b set to 1) and nlmm-CMA2(default recombination type, ninit = 1 and n b = 1 during the whole optimization process). The ratio of successful runs is denoted between brackets if it is < 1.0.

	Function f Rosen	n 2 4	λ ǫ 6 8	nlmm-CMA 252 ± 52 719 ± 54 [0.85] 3.0 833 ± 100 spu nlmm-CMA I 3.1 357 ± 67	spu 2.2 2.6	nlmm-CMA 1 250 ± 80 596 ± 55	spu 3.1 229 ± 53 nlmm-CMA 2 3.7 575 ± 68	spu 3.4 3.8
		8 10	2234 ± 202 [0.95] 2.4 2804 ± 256 [0.95] 1.9 2122 ± 133	2.5 2466 ± 207 [0.85] 2.1
	f Schw	2 4	6 8	87 ± 7 166 ± 6	4.4 110 ± 10 5.4 220 ± 15	3.5 4.1	75 ± 8 138 ± 6	5.2 6.5 136 ± 5 73 ± 7	5.3 6.6
		8 10	333 ± 9	6.2 423 ± 15	4.9	374 ± 16	5.6 380 ± 21	5.5
		16 12	855 ± 30	6.2 947 ± 24	5.6	794 ± 27	6.7 786 ± 37	6.8
	f Schw 1/4	2 4	6 8	413 ± 25 971 ± 36	3.3 550 ± 29 2.9 1320 ± 76	2.4 2.2	411 ± 20 938 ± 32	3.3 398 ± 16 3.1 909 ± 30	3.4 3.1
		8 10	2714 ± 41	2.2 2714 ± 257	2.2 2668 ± 40	2.2 2677 ± 36	2.2
	f NSphere 2	6 .35 109 ± 12	3.1 135 ± 19	2.5	92 ± 11	3.7	87 ± 9	3.9
		4	8 .25 236 ± 19	3.1 306 ± 40	2.4	216 ± 16	3.4 219 ± 16	3.4
		8 10 .18 636 ± 33	2.4 788 ± 47	2.0	611 ± 35	2.5 619 ± 45	2.5
		16 12 .13 2156 ± 216	1.3 2690 ± 421	1.1 2161 ± 148	1.3 2195 ± 142	1.3
	f Ack	2 5	5 7	227 ± 23 704 ± 23 [0.90] 3.0 850 ± 43 [0.90] 2.5 3.5 329 ± 29 [0.85] 2.4	226 ± 21 [0.95] 3.5 208 ± 19 654 ± 35 [0.95] 3.2 652 ± 32 [0.95] 3.2 3.8
		10 10	2066 ± 119 [0.95] 1.8 2159 ± 58	1.8 2394 ± 52 [0.80] 1.6 1925 ± 44	2.0
	f Rast	2 50 5 140	524 ± 48 [0.95] 4.7 796 ± 68 [0.75] 3.1 4037 ± 209 [0.60] 2.6 5265 ± 313 [0.55] 2.0 13685 ± 257 [0.10] 0.8 7910 ± 82 [0.10] 1.3 569 ± 26 [0.35] 4.3 1365 ± 28 [0.10] 1.8

See http://coco.gforge.inria.fr/doku.php?id=bbob-2009-results.
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best solutions is preserved when evaluating a new solution on the exact objective function. To tackle this problem, we have proposed to relax the condition to: the set of µ best solutions is preserved and the best individual is preserved. The resulting new variant, nlmm-CMA outperforms lmm-CMA on the test functions investigated and the speedup with CMA-ES is between 1.5 and 7. Moreover, contrary to lmm-CMA it maintains a significant speedup, between 2.5 and 4, when increasing λ on f Rosen , f Schw 1/4 and f Rast . The study of the impact of the recombination weights has shown that the default weights of CMA-ES are more appropriate than equal weights. The influence of two parameters, n b and n init , corresponding to the number of individuals evaluated respectively initially and in each iteration has been investigated. We have seen that setting those parameters to 1 during the whole optimization process can marginally improve the performances on uni-modal functions and some multimodal test functions. However it increases the likelihood to be stuck in local minima for the Rastrigin function suggesting that the default parameter for lmm-CMA are still a good choice for nlmm-CMA.