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In this paper we introduce the framed pure braid group on n strands of an oriented surface, a topological generalisation of the pure braid group P n . We give different equivalents definitions for framed pure braid groups and we study exact sequences relating these groups with other generalisations of P n , usually called surface pure braid groups. The notion of surface framed braid groups is also introduced.

Introduction

Let Σ = Σ g,b be an oriented surface of genus g with b boundary components (we will note Σ g := Σ g,0 ) and let P = {p 1 , . . . , p n } be a set of n distinct points (punctures) in the interior of Σ. Let C n (Σ) = Σ n \∆, where ∆ is the set of n-tuples x = (x 1 , . . . , x n ) for which x i = x j for some i = j. The fundamental group π 1 (C n (Σ), p) is called pure braid group on n strands of the surface Σ; it shall be denoted by P n (Σ). The symmetric group S n acts freely on C n (Σ) by permutation of coordinates. We denote C n (Σ) the quotient space C n (Σ)/S n . The fundamental group of C n (Σ) is called braid group on n strands of the surface Σ; it shall be denoted by B n (Σ). Since the projection map C n (Σ) -→ C n (Σ) is a regular covering space with transformation group S n , one has the following exact sequence:

1 -→ P n (Σ) -→ B n (Σ) -→ S n -→ 1.
On the other hand, from the homotopy exact sequence associated to the fibration C n+m (Σ) -→ C n (Σ), we get ( [FN, Bir]) an exact sequence:

(SP B) 1 -→ P m (Σ \ n points ) -→ P n+m (Σ) -→ P n (Σ) -→ 1 when Σ has positive genus or genus equal to zero and non-empty boundary (in the case of the sphere such a sequence holds for n + m ≥ 4). In the following we will denote this sequence by (SP B) (Surface Pure Braids).
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1 When Σ has boundary, the (SPB) sequence has an evident geometric section, which corresponds to add m punctures "at the infinity" (see [START_REF] Bellingeri | On presentations of surface braid groups[END_REF][START_REF] Gonçalves | On the structure of surface pure braid groups[END_REF]); if Σ is closed and different from the sphere and the torus, the (SPB) sequence splits if and only if n = 1 (see [GG] for the general case and [BB] for an algebraical section in the case n = 1). In the case of the disk this sequence has some additional features [FR] and it is a powerful tool in the study of finite type invariants for links [P]. In the general case the (SPB) sequence can be used to find a group presentation for P n (Σ) (see for instance [B2]).

In this paper we introduce framed braid groups F B n (Σ) and F P n (Σ) of a surface Σ, which generalise respectively framed braid groups introduced in [KS] and framed pure braid groups considered in Theorem 5.1 of [MM]. These groups turn out also to be related to generalisations of Hilden groups introduced in [BC]. For surfaces of genus greater than 1, with boundary or closed, we give three equivalent definitions of these groups: in terms of configuration spaces, as subgroups of mapping class groups (Section 2) and as subgroups of braid groups of surfaces (Section 6 and 7). We prove that, when the surface is closed and of genus greater than 1, these groups are non trivial central extensions of surface pure braid groups (Section 4) and we provide a group presentation for F P n (Σ) (Section 5, Theorem 8) and therefore for F B n (Σ) (Theorem 13). We show also that the sequence (SP B) extends naturally to a sequence on framed braids, that we will call framed surface pure braid sequence (denoted by (FSPB)) and which splits even in the case of closed surfaces (Section 3, Theorem 4). In the case of the torus the proposed definitions are not equivalent and let arise different notions of framings: this case will treated separately in the last Section.

2 Framed braids: possible definitions

Framed braids via configuration spaces

Let UΣ be the unit tangent bundle of Σ and π : UΣ -→ Σ be the natural projection. We denote by F n (Σ) the subspace (π n ) -1 (C n (Σ)) of (UΣ) n and fix a unit tangent

vector v i of Σ at p i such that F n (Σ) is based at v = (p i , v i ) i=1,...,n . The symmetric group S n acts freely on F n (Σ): we denote F n (Σ) the quotient space F n (Σ)/S n .
Definition 1 The pure framed braid group F P n (Σ) on n strands of Σ is the fundamental group of F n (Σ). The framed braid group on n strands of Σ is the fundamental group of F n (Σ).

Thus, a framed braid can be seen as a family of n continuous paths b i : [0, 1] -→ UΣ for i = 1, . . . , n such that :

1) b i (0) = (p i , v i ) for all i ∈ {1, . . . , n}; 2) ∃σ ∈ S n such that b i (1) = (p σ(i) , v σ(i) ) for all i ∈ {1, . . . , n}; 3) πb i (t) = πb j (t) when i = j for any t ∈ [0, 1].
Since the projection map F n (Σ) -→ F n (Σ) is a regular covering space with transformation group S n , the framed braid group and the pure framed braid group are related by the following exact sequence:

1 -→ F P n (Σ) -→ F B n (Σ) -→ S n -→ 1 (1)

Framed braids as mapping classes

In this section we will give an interpretation of framed braid groups of an oriented surface different from the sphere and the torus in terms of mapping classes.

Notations

Let Diff + (Σ g,b ) denote the group of orientation preserving diffeomorphisms of Σ g,b which are the identity on the boundary. Recall that the mapping class group of Σ g,b , denoted Γ g,b , is defined to be π 0 (Diff + (Σ g,b )), where Diff + (Σ g,b ) is equipped with the compact open topology. Note that we will denote the composition in the mapping class groups from left to right1 . In the following, greek letters will be used to denote simple closed curves on Σ g,b and if α is such a curve, τ α will denote the Dehn twist along α.

We shall also consider different subgroups of Diff + (Σ g,b ) and associated mapping class groups: Remark 1 A preserving orientation diffeomorphism h of Σ g,b such that h(p i ) = p i and d p i h(v i ) = v i is isotopic to a diffeomorphism which is equal to identity on a small disc around p i . Thus, the two groups PFΓ n g,b and Γ g,b+n are isomorphic.

• Diff + (Σ g,b , P) = {h ∈ Diff + (Σ g,b ) / ∃σ ∈ S n , h(p i ) = p σ(i) }, and the punctured mapping class group Γ n g,b = π 0 (Diff + (Σ g,b , P)); • Diff + (Σ g,b , p) = {h ∈ Diff + (Σ g,b , P) / h(p i ) = p i } and the pure punctured map- ping class group PΓ n g,b = π 0 (Diff + (Σ g,b , p)); • Diff + (Σ g,b , V) = {h ∈ Diff + (Σ g,b ) / ∃σ ∈ S n , h(p i ) = p σ(i) and d p i h(v i ) = v σ(i) } (where V = {(p 1 , v 1 ), . . . , (p n , v n )} is a set of n distinct points on Σ g,b equipped with n unit tangent vectors v 1 , . . . , v n ) and the framed punctured mapping class group FΓ n g,b = π 0 (Diff + (Σ g,b , V)); • Diff + (Σ g,b , v) = {h ∈ Diff + (Σ g,b , V) / h(p i ) = p i and d p i h(v i ) = v i },
Let us also recall that if Σ ′ is a subsurface of Σ and i : Σ ′ ֒→ Σ is the inclusion map, there is a canonical morphism i * from the mapping class group Γ(Σ ′ ) of Σ ′ to the mapping class group Γ(Σ) of Σ, which consists in extending each diffeomorphism h of Σ ′ by identity on Σ \ Σ ′ . When Σ is a genus g surface with b boundary components and Σ \ Σ ′ is a collection of n disjoint discs (see Figure 1), we shall denote by λ n g,b : Γ g,b+n -→ Γ g,b this morphism (λ n g when b = 0). 

Braids groups as mapping class groups

Braid groups of surface are related to mapping class groups as follows (see [START_REF] Birman | Braids, Links, and Mapping Class Groups[END_REF][START_REF] Scott | Braid groups and the group of homeomorphisms of a surface[END_REF]):

Proposition 1 Let n ≥ 1. Let ψ n : Γ n g,b -→ Γ g,b and ϕ n : PΓ n g,b -→ Γ g,b be the homomorphisms induced by the forgetting map Diff + (Σ g,b , P) -→ Diff + (Σ g,b ) and Diff + (Σ g,b , p) -→ Diff + (Σ g,b ). 1) If (g, b) / ∈ {(0, 0), (1, 0)}, Ker(ψ n ) and Ker(ϕ n ) are respectively isomorphic to B n (Σ g,b ) and P n (Σ g,b ).
2) When b = 0 and g ∈ {0, 1}, Ker(ψ n ) and Ker(ϕ n ) are respectively isomorphic to B n (Σ g )/Z(B n (Σ g )) and P n (Σ g )/Z(P n (Σ g )) (where Z(G) is the center of the group G).

Remarks 2 1) Let T 2 be a torus; one has Z(B n (T 2 )) = Z(P n (T 2 )) = Z 2 (see [START_REF] Paris | Geometric subgroups of surface braid groups[END_REF]).

2) Let S 2 be a sphere; one has B 1 (S 2 ) = P 1 (S 2 ) = 1, P 2 (S 2 ) = 1, B 2 (S 2 ) = Z/2Z and for n ≥ 3, Z(B n (S 2 )) = Z(P n (S 2 )) ≈ Z/2Z (see [GV]).

We can provide a similar result for framed braids: Proof. Following [Bir], we consider the evaluation map Ev : Diff

Proposition 2 Let n ≥ 1. Let Ψ n : FΓ n g,b -→ Γ g
+ (Σ g,b ) -→ F n (Σ g,b ) defined by Ev(h) = h(p i ), d p i h(v i ) .
It is a locally trivial fibering with fiber Diff + (Σ g,b , v). The long exact sequence of homotopy groups of this fibration gives the following exact sequence:

• • • -→ π 1 Diff + (Σ g,b ) Ev * -→ π 1 F n (Σ g,b ) ∂ * -→ π 0 Diff + (Σ g,b , v) Φn -→ π 0 Diff + (Σ g,b ) Ev * -→ π 0 F n (Σ g,b ) . Now, π 0 F n (Σ g,b
) is trivial, and if Σ g,b is not the sphere S 2 or the torus T 2 , Diff + (Σ g,b ) is contractible (see [S2]). Thus, we get the required result for Φ n . The proof for Ψ n is analogous and is left to the reader; it suffices to consider the evaluation map

E v : Diff + (Σ g,b ) -→ F n (Σ g,b ) defined by Ev(h) = h(p i ), d p i h(v i ) .
2 The definition of framed braid groups in terms of mapping classes and tangent vectors provided in Proposition 2 was introduced in [OS] as the definition of framed braid groups of surfaces with one boundary component.

We can provide an equivalent definition of pure framed braid groups as the kernel of the mapping induced by the inclusion of a surface with boundary components into another one.

Corollary 3 For all (g, b) distinct from (0, 0) and (1, 0), the kernel of the morphism λ n g,b : Γ g,b+n -→ Γ g,b induced by capping n boundary components is isomorphic to the pure framed braid group

F P n (Σ g,b ). Proof. Via the isomorphism PFΓ n g,b ≈ Γ g,b+n , the homorphism Φ n coincides with λ n g,b . 2 
Theorem 4 For g ≥ 2, b ≥ 0, n ≥ 0 and m ≥ 0, one has the following splitting exact sequence :

(F SP B) 1 -→ F P m (Σ g,b+n ) -→ F P n+m (Σ g,b ) αn,m -→ F P n (Σ g,b ) -→ 1
where α n,m consists in forgetting the first m strands.

Proof. Using Proposition 2 and Corollary 3, one has the following commutative diagram with exact rows and columns:

1

1 1 / / F P m (Σ g,b+n ) / / F P n+m (Σ g,b ) (λ m g,b+n ) | / / F P n (Σ g,b ) / / 1 1 / / F P m (Σ g,b+n ) / / Γ g,b+n+m λ n+m g,b λ m g,b+n / / Γ g,b+n λ n g,b / / 1 Γ g,b Γ g,b 1 1
where (λ m g,b+n ) | is the restriction of λ m g,b+n to F P n+m (Σ g,b ). Since, via the isomorphism F P n+m (Σ g,b ) ≈ Ker(λ n+m g,b ), forgetting m strands corresponds to capping m boundary components, the first row is the required exact sequence. The splitting of the (FSBP) sequence is obtained considering an embedding ι of Σ g,b+n into Σ g,b+n+m as in figure 2. The induced morphism ι * : Γ g,b+n -→ Γ g,b+n+m satisfies λ m g,b+n • ι * = Id Γ g,b+n and its restriction ι * | :

F P n (Σ g,b ) -→ F P n+m (Σ g,b ) is a section for (λ m g,b+n ) | . 2 
Remark 3 Note that the splitting of (FSPB) sequence consists in cabling the first framed strand while the splitting of (SPB) sequence in the case of surfaces with boundary consists in adding m strands at the infinity. If Σ has boundary, adding m framed strands at the infinity gives another splitting of (FSPB) sequence.

Framed braids vs classical braids

The following Theorem shows that the group

F P n (Σ g ) is a non trivial central ex- tension of P n (Σ g ) by Z n . Σ g,b+n 1 2 m+1 Figure 2: ι is a section of λ m b+n .
Theorem 5 Let Σ g,b a surface of genus g ≥ 2 with b boundary components. 1) If Σ g,b has boundary, the framed pure braid group

F P n (Σ g,b ) is isomorphic to Z n × P n (Σ g,b ). 2) If Σ g is a closed surface, there is a non-splitting central extension 1 -→ Z n -→ F P n (Σ g ) βn -→ P n (Σ g ) -→ 1 (2)
where β n is the morphism induced by the projection map

F n (Σ g ) -→ C n (Σ g ) (i.e.
β n consists in forgetting the framing).

3) In the two cases, F n (Σ g,b ) is an Eilenberg-Maclane space of type (F P n (Σ g,b ), 1).

Proof. If Σ g,b has boundary, Σ g,b is parallelizable and the unit tangent bundle UΣ g,b is homeomorphic to S 1 × Σ g,b . Thus, F n (Σ g,b ) is homeomorphic to (S 1 ) n × C n (Σ g,b )
and

F P n (Σ g,b ) is isomorphic to Z n × P n (Σ g,b ). Furthermore, since S 1 and C n (Σ g,b ) are Eilenberg-Maclane spaces (see [PR1]), F n (Σ g,b
) is also one. Now, suppose that Σ g is a closed surface of genus greater than 1 and consider the exact sequence of homotopy groups of the locally trivial fibrations (with fiber

(S 1 ) n ) F n (Σ g ) -→ C n (Σ g ) : • • • -→ π n (S 1 ) n -→ π n F n (Σ g,b ) -→ π n C n (Σ g,b ) -→ π n-1 (S 1 ) n -→ • • • • • • -→ π 2 C n (Σ g,b ) -→ π 1 (S 1 ) n -→ π 1 F n (Σ g,b ) βn -→ π 1 C n (Σ g,b ) -→ 1 Since C n (Σ g
) is an Eilenberg-Maclane spaces (see [START_REF] Paris | Geometric subgroups of surface braid groups[END_REF]), this sequence leads to the sequence (2) and to the third point of the Theorem. Now, using Propositions 1 and 2 one has the following commutative diagram with exact rows and columns:

1 1 1 / / Z n / / F P n (Σ g ) / / P n (Σ g ) / / 1 (2) 1 / / Z n / / Γ g,n Φn / / PΓ n g ϕn / / 1 (3) Γ g Γ g 1 1
where the exact sequence (3) is obtained by capping n boundary components of Σ g,n by n punctured discs (see [START_REF] Paris | Geometric subgroups of mapping class groups[END_REF]). In this sequence, Z n can be seen as a subgroup of Γ g,n generated by Dehn twists along curves parallel to boundary components, thus (3) is a central extension of PΓ n g . Therefore, ( 2) is a central extension of P n (Σ g ). To conclude, we shall prove that this sequence does not split. First we remark that for n = 1 we obtain the canonical projection of the fundamental group of the unit tangent space into the fundamental group of the surface which splits if and only if the surface is not closed (we are considering the case g ≥ 2). Thus, let n ≥ 2 and let us consider the following diagram:

1 / / Z n / / F P n+1 (Σ g ) β n+1 / / (λ 1 g,n ) | P n+1 (Σ g ) / / p * 1 1 / / Z n / / F P n (Σ g ) βn / / (ι * ) | O O P n (Σ g ) / / 1
where ι * is the section of λ 1 g,n described in figure 2 and p * the map wich consists in forgetting one strand. One can easily verify that the diagram is commutative. Suppose that there is a section s n :

P n (Σ g ) -→ F P n (Σ g ) for β n .
The composition

β n+1 • ι * • s n : P n (Σ g ) -→ P n+1 (Σ g ) is therefore a section for p * : in fact p * • β n+1 • ι * • s n = β n • λ n g • ι * • s n = Id Pn(Σg )
. This is impossible, since p * has no section when n ≥ 2 and g > 1 [GG].

2

Remark 4 The splitting of sequence (2) in the case of surfaces with boundary was proven in Lemma 19 of [BGG] in a combinatorial way.

Proposition 6 Let Σ g,b be a surface different from the sphere S 2 and the torus T 2 . 1) there is an exact sequence

1 -→ Z n -→ F B n (Σ g,b ) βn -→ B n (Σ g,b ) -→ 1 , ( 4 
)
where β n consists in forgetting the framing. This sequence splits if Σ g,b has nonempty boundary.

2)

F n (Σ g,b ) is an Eilenberg-Maclane space of type (F B n (Σ g,b ), 1).
Proof. Using local trivialisations of the fibering

F n (Σ g,b ) -→ C n (Σ g,b ) and the covering spaces C n (Σ g,b ) -→ C n (Σ g,b ) and F n (Σ g,b ) -→ F n (Σ g,b ), one can easily see that F n (Σ g,b ) -→ C n (Σ g,b
) is a locally trivial bundle with fibre (S 1 ) n . The exact sequence of homotopy groups of this fibration is

• • • -→ π n (S 1 ) n -→ π n F n (Σ g,b ) -→ π n C n (Σ g,b ) -→ π n-1 (S 1 ) n -→ • • • • • • -→ π 2 C n (Σ g,b ) -→ π 1 (S 1 ) n -→ π 1 F n (Σ g,b ) βn -→ π 1 C n (Σ g,b ) -→ 1 Since C n (Σ g,b
) is an Eilenberg-Maclane space (see [START_REF] Paris | Geometric subgroups of surface braid groups[END_REF]), we get the required exact sequence and the second point of the proposition. If Σ g,b is parallelizable, any section s :

C n (Σ g,b ) -→ F n (Σ g,b ) induces a section ŝ : C n (Σ g,b ) -→ F n (Σ g,b
) which gives the splitting of (4). 2

5 Presentations of pure framed braid groups

Now, let us look for a presentation of pure framed braid groups. By Theorem 5, the group

F P n (Σ g,b ) is isomorphic to the direct product Z n × P n (Σ g,b ) if b ≥ 1.
Thus, with the following theorem (see [B2]), we get a presentation of F P n (Σ g,b ).

Theorem 7 Let Σ g,b be a compact, connected, orientable surface of genus g ≥ 1 with b boundary components, b ≥ 1. The group P n (Σ g,b ) admits the following presentation:

Generators: {A i,j | 1 ≤ i ≤ 2g + b + n -2, 2g + b ≤ j ≤ 2g + b + n -1, i < j}.
Relations:

(PR1) A -1 i,j A r,s A i,j = A r,s if (i < j < r < s) or (r + 1 < i < j < s), or (i = r + 1 < j < s for even r < 2g or r > 2g) ; (PR2) A -1 i,j A j,s A i,j = A i,s A j,s A -1 i,s if (i < j < s) ; (PR3) A -1 i,j A i,s A i,j = A i,s A j,s A i,s A -1 j,s A -1 i,s if (i < j < s) ; (PR4) A -1 i,j A r,s A i,j = A i,s A j,s A -1 i,s A -1 j,s A r,s A j,s A i,s A -1 j,s A -1 i,s if (i + 1 < r < j < s) or (i + 1 = r < j < s for odd r < 2g or r > 2g) ; (ER1) A -1 r+1,j A r,s A r+1,j = A r,s A r+1,s A -1 j,s A -1 r+1,s if r odd and r < 2g ; (ER2) A -1 r-1,j A r,s A r-1,j = A r-1,s A j,s A -1 r-1,s A r,s A j,s A r-1,s A -1 j,s A -1 r-1,s
if r even and r < 2g .

As a representative of the generator A i,j , we may take a geometric braid whose only non-trivial (non-vertical) strand is the (j -2g -b + 1)th one. In Figure 3, we illustrate the projection of such braids on the surface Σ g,1 .

;g, Recall that pure (framed) braid groups can be seen as subgroups of mapping class groups (see Proposition 1 and 2). The isomorphism P n (Σ g,b ) ≈ Ker(ϕ n ) (where ϕ n forgets the punctures) is defined as follows: to an element h of PΓ n g,b which is isotopic to the identity in Σ g,b (i.e. h ∈ Ker(ϕ n )), we associate the braid t → H t (p i ) 1≤i≤n where H : Σ g,b × I -→ Σ g,b is an isotopy between Id and h. From this point of view, one can easily see that the A i,j 's correspond to the following elements of PΓ n g,b :

1 A 2g+2, 2g+n n 2 1 1 g A A 1,2g+1 2g, 2g+2
           τ βr τ -1 βr,s if i = 2r -1, 1 ≤ r ≤ g, j = 2g + b + s -1, 1 ≤ s ≤ n, τ αr τ -1 αr,s if i = 2r, 1 ≤ r ≤ g, j = 2g + b + s -1, 1 ≤ s ≤ n, τ δr τ -1 δr,s if i = 2g + r, 1 ≤ r ≤ b -1, j = 2g + b + s -1, 1 ≤ s ≤ n, τ -1 δr,s if i = 2g + b + r -1, j = 2g + b + s -1, 1 ≤ r < s ≤ n,
where curves are those described by figure 4. Now, let us loot at the closed case. The group P n (Σ g ) is the quotient of P n (Σ g,1 ) by the following relations (see [B2]):

(TR) [A -1 2g,2g+k , A 2g-1,2g+k ] • • • [A -1 2,2g+k , A 1,2g+k ] = = A 2g+1,2g+k • • • A 2g+k-1,2g+k A 2g+k,2g+k+1 • • • A 2g+k,2g+n
(1 ≤ k ≤ n, with the notation A 2g+1,2g+1 = A 2g+n,2g+n = 1) From this result, we can prove the following:

α i β i δ 1 δ j δ j,k p 1 p k α i,k β i,k
Theorem 8 Let Σ g be a compact, connected, closed, orientable surface of genus g ≥ 2. The framed pure braid group F P n (Σ g ) admits the following presentation:

Generators: {B i,j , f k | 1 ≤ i ≤ 2g +n-1, 2g +1 ≤ j ≤ 2g +n, i < j, 1 ≤ k ≤ n}.
Relations: relations (PR1-4) and (ER1-2) together with the following:

(C) the f k 's are central; (FTR) [B -1 2g,2g+k , B 2g-1,2g+k ] • • • [B -1 2,2g+k , B 1,2g+k ] = B 2g+1,2g+k • • • B 2g+k-1,2g+k B 2g+k,2g+k+1 • • • B 2g+k,2g+n f 2(g-1) k (1 ≤ k ≤ n, with the notation B 2g+1,2g+1 = B 2g+n,2g+n = 1)
Proof. Consider the sequence (2):

1 -→ Z n -→ F P n (Σ g ) -→ P n (Σ g ) -→ 1.
In terms of mapping class groups, Z n is generated by τ δ 1 , . . . , τ δn where δ k is a curve parallel to the k th -boundary component. As shown in [J], a presentation of F P n (Σ g,b ) can be established as follow. Take as generators

{τ δ 1 , . . . , τ δn } ∪ {B i,j , 1 ≤ i ≤ 2g + n -1, 2g + 1 ≤ j ≤ 2g + n, i < j}
where B i,j is a representative of A i,j . Relations are of three types: the first corresponds to relations between the τ δ k 's, the second to lifting of each relations in P n (Σ g ). The last one comes from the action under conjugation of each B i,j on the τ δ k 's. In order to define the B i,j 's, consider the curves in Figure 4 where the boundary is capped by a disk and the marked points are replaced by holes. Then, we put

B i,j =      τ βr τ -1 βr,s τ δs if i = 2r -1, 1 ≤ r ≤ g, j = 2g + s, 1 ≤ s ≤ n, τ αr τ -1 αr,s τ δs if i = 2r, 1 ≤ r ≤ g, j = 2g + s, 1 ≤ s ≤ n, τ δr τ -1 δr,s τ δs if i = 2g + r, j = 2g + s, 1 ≤ r < s ≤ n. (5) 
When capping each boundary components of Σ g,n , the τ δ k 's are sent to identity, thus B i,j is indeed a representative of A i,j . Now, the τ δ k 's are central in Γ g,n , thus the first and third type of relations correspond clearly to relations (C). Let us look at relations (PR1-4), (ER1-2) and (TR) of P n (Σ g ). Relations (PR1-4) -(ER1-2) have been verified in [START_REF] Bellingeri | Lower central series of Artin Tits and surface braid groups[END_REF]Lemma 19] to hold in Γ g,n and therefore in F P n (Σ g ). Then it suffices to lift (TR) relation from

P n (Σ g ) to F P n (Σ g ). Since τ β i,k τ -1 β i (α i ) = γ i,k and τ β i,k τ -1 β i (α i,k ) = α i where γ i,k
is the curve descibed in figure 5, one has (we omit the τ ′ δ l s because they are central

) 2 : [B -1 2i,2g+k , B 2i-1,2g+k ] = τ -1 α i τ α i,k τ β i τ -1 β i,k τ α i τ -1 α i,k τ -1 β i τ β i,k = τ -1 α i τ α i,k τ γ i,k τ -1 α i .
Considering the curves described in figure 5, one has the following lantern relations: Then, using lantern relations

τ 2 α i τ µ i,k τ δ k = τ µ i τ α i,k τ γ i,k and we get [B -1 2i,2g+k , B 2i-1,2g+k ] = τ -1 µ i τ µ i,k τ δ k . δ k δ l δ s ϕ s,k ε l,k ε l λ i,k λ i µ i µ i,k γ i,k
τ µ i-1 τ λ i τ λ i-1,k τ δ k = τ λ i-1 τ λ i,k τ µ i-1,k ,
it is easy to check by induction on i that3 

[B -1 2g,2g+k , B 2g-1,2g+k ] • • • [B -1 2i,2g+k , B 2i-1,2g+k ] = τ -1 λ i τ λ i,k τ 2(g-i)+1 δ k . ( 6 
)
On the other hand, by definition of the B i,j 's, on has, for 1 ≤ k ≤ n:

B 2g+1,2g+k • • • B 2g+k-1,2g+k B 2g+k,2g+k+1 • • • B 2g+k,2g+n = τ δ 1 τ -1 δ 1,k • • • τ δ k-1 τ -1 δ k-1,k τ δ k+1 τ -1 δ k,k+1 • • • τ δn τ -1 δ k,n τ n-1 δ k
Now, with the curves described in figure 5, one has the lantern relation

τ ε i-1 τ δ i τ δ k τ ε i,k = τ ε i τ δ i,k τ ε i-1,k , from which one can check by induction on i < k that (ε 1 = δ 1 and ε 1,k = δ 1,k ) τ -1 δ 1,k τ -1 δ 2,k • • • τ -1 δ i,k = τ ε i τ -1 ε i,k τ -1 δ 1 τ -1 δ 2 • • • τ -1 δ i τ 1-i δ k .
Then, with the lantern relation (where s > k and ϕ k,k = ε k-1 )

τ εs τ δs τ δ k τ ϕ s-1,k = τ ϕ s,k τ δ k,s τ ε s-1 , one obtains by induction on s τ -1 δ 1,k • • • τ -1 δ k-1,k τ -1 δ k,k+1 • • • τ -1 δ k,s = τ ϕ s,k τ -1 εs τ -1 δs • • • τ -1 δ k+1 τ -1 δ 1 • • • τ -1 δ k-1 τ 2-s δ k
and finally

B 2g+1,2g+k • • • B 2g+k-1,2g+k B 2g+k,2g+k+1 • • • B 2g+k,2g+n = τ ϕ n,k τ -1 εn τ 2-n δ k τ n-1 δ k = τ ϕ n,k τ -1 εn τ δ k . ( 7 
)
To conclude, one has just to compare equation ( 6) with i = 1 and equation ( 7), and to observe that

ε n = λ 1 and ϕ n,k = λ 1,k . 2 
Remark 5 This presentation gives another proof of the fact that the central extension (2) does not split for all g ≥ 2. Indeed, if it splits, the group F P n (Σ g ) is the direct product of Z n and P n (Σ g ): it contredicts the relation (FTR).

Framed pure braids as centralizers of Dehn twists

We give a third possible definition of framed pure braid groups in terms of centralizers of Dehn twists: since in the case of surfaces with boundary the corresponding framed pure braid groups are trivial central extension of pure braid groups, we will focus on the case of closed surfaces of genus greater than one. This interpretation of framed pure braid groups will allow us to introduce another possible definition of framed braid groups (Section 7). All following Definitions and Propositions can be easily extended to the case with boundary.

Let us consider a surface Σ g,n of genus g ≥ 2 and n boundary components and cap each boundary component with a disk with 2 marked points (see Figure 6). We will denote by χ n : Γ g,n -→ PΓ 2n g the morphism induced by the inclusion of Σ g,n into Σ 2n g , a surface of genus g with 2n marked points. One has the following commutative diagram at the level of mapping classes:

1 / / F P n (Σ g ) / / Γ g,n λ n g / / χn Γ g id / / 1 1 / / P 2n (Σ g ) / / PΓ 2n g ϕ 2n / / Γ g / / 1
Since χ n is injective (see Proposition 4.1 in [START_REF] Paris | Geometric subgroups of surface braid groups[END_REF]), we can consider F P n (Σ g ) as a subgroup of P 2n (Σ g ). Moreover, we can provide a characterization of F P n (Σ g ) as subgroup of PΓ 2n g . Proposition 9 Let g ≥ 2, χ n : Γ g,n -→ PΓ 2n g be the map defined above and γ i be the boundary of the ith capping punctured disk (see Figure 6). The group

χ n (F P n (Σ g )) coincides with n ∩ j=1 C P 2n (Σg ) (τ γ j ), where C P 2n (Σg) (τ γ j ) is the centralizer of the Dehn twist τ γ j in P 2n (Σ g ).
Before proving Proposition 9 we need to introduce some definitions and to recall some results. Let Σ be a surface with a finite set P of n marked points. An arc is an embedding A : [0, 1] -→ Σ such that A(0), A(1) are in P and A(x) is in Σ \ P for all x in (0, 1). A (j, k)-arc is an arc such that A(0) = j and A(1) = k. Note that two (j, k)-arcs are isotopic if and only if they can be connected by a continuous family of (j, k)-arcs.

For any i = 1, . . . , n we fix an arc with end points 2i -1 and 2i in the interior of the ith capping disk. In a disk with 2 punctures all arcs are isotopic; let us choose a representative as in Figure 7 that we will denote by [2i -1, 2i].

Consider a disk D 2n in Σ 2n g which contains all 2n punctures. The embedding of D 2n into Σ 2n g induces an embedding of B 2n into B 2n (Σ g ) (see for instance [START_REF] Paris | Geometric subgroups of surface braid groups[END_REF]): the usual generator σ j of B 2n can be considered therefore as an element of B 2n (Σ g ); in particular the generator σ 2j-1 for j = 1, . . . , n corresponds to the braid twist (see [LP] for a definition) associated to the arc [2j -1, 2j].

The group B 2n (Σ g ) acts on Σ g up to isotopy. In the following we adopt the convention that, for any β in B 2n (Σ g ), * β : Σ g -→ Σ g corresponds to a mapping Σ g × {0} -→ Σ g × {1} and defines an action on the right, whereas β * : Σ g -→ Σ g corresponds to a mapping Σ g × {1} -→ Σ g × {0} and defines an action on the left.

In particular B 2n (Σ g ) acts on the right and on the left on A 2n , the set of arcs up to isotopy.

Theorem 10 [B1] Let g > 1. For each β in B 2n (Σ g ) the following properties are equivalent: (a) σ 2j-1 β = βσ 2k-1 , (b) σ r 2j-1 β = βσ r 2k-1 for any integer r, (c) σ r 2j-1 β = βσ r 2k-1 for some nonzero integer r, (d) [2j -1, 2j] * β = [2k -1, 2k].
Remark 6 Theorem 10 is a weaker version of Theorem 2.2 in [B1], which statement concerns all braid groups B n (Σ g ) and all braid generators σ 1 , . . . , σ n-1 .

We recall that γ i denotes the boundary of the ith capping disk. From the fact that σ 2 2i-1,2i = τ γ i we can therefore deduce the following result:

Corollary 11 Let g > 1.

For each β in P 2n (Σ g ) the following properties are equivalent: (a)

τ γ i β = βτ γ i , (b) τ r γ i β = βτ r γ i , for any integer r, (c) τ r γ i β = βτ r γ i , for some nonzero integer r, (d) [2i -1, 2i] * β = [2i -1, 2i].
Remark 7 The equivalences between a) and d) are in the folkrore even for the case g = 1.

Proof of Proposition 9. We recall that a multitwist is a product of twists along pairwise disjoint curves and that the map χ n : Γ g,n -→ PΓ 2n g defined above is injective and sends F P n (Σ g ) into P 2n (Σ g ). Any generator g of F P n (Σ g ) is a multitwist (see ( 5)), as well as its image χ n (g). Since two twists τ γ and τ δ commute if and only if γ and δ are disjoint up to isotopy (see for instance [START_REF] Paris | Geometric subgroups of mapping class groups[END_REF]), we deduce that any element χ n (g) commutes with τ γ j for j = 1, . . . , n and therefore

χ n (F P n (Σ g )) is a subgroup of n ∩ j=1 C P 2n (Σg) (τ γ j ). On the other hand, if g is an ele- ment of n ∩ j=1 C P 2n (Σg) (τ γ j ), from Corollary 11 it follows that [2j -1, 2j] * g = [2j -1, 2j]
for j = 1, . . . , n and then up to isotopy we can suppose that g = Id on each capping disk. Therefore we can consider g as the image by χ n of an element g in Γ g,n . Since λ n g (g) = ϕ 2n (χ n (g)) = ϕ 2n (g) = 1 we deduce that g ∈ F P n (Σ g ) and hence that

F P n (Σ g ) maps onto n ∩ j=1 C P 2n (Σg ) (τ γ j ). 2 
Let A k,l be the generator of P 2n (Σ g ) depicted in Theorem 7 for 1 ≤ k ≤ 2g+2n-1 and 2g + 1 ≤ l ≤ 2g + 2n. Now, set: C i,j = A i,2(j-g)-1 A i,2(j-g) A 2(j-g)-1,2(j-g) for i = 1, . . . , 2g and j = 2g + 1, . . . , 2g + n,

C i,j = A 2(i-g)-1,2(j-g)-1 A 2(i-g),2(j-g)-1 A 2(i-g)-1,2(j-g) A 2(i-g),2(j-g) A 2(j-g)-1,2(j-g) for 2g + 1 ≤ i < j ≤ 2g + n and finally F k = A 2g+2k-1,2g+2k for k = 1, . . . , n.
Roughly speaking, the element F k corresponds to σ 2 2k-1,2k in P 2n (Σ g ) and the C i,j 's correspond to pure braids on P 2n (Σ g ) where the only non trivial strands are the (2(j -g) -1)th and the 2(j -g)th one, which are "parallel", meaning that they bound an annulus in Σ g \ {p 1 , . . . , p 2(j-g-1) , p 2(j-g)+1 , . . . , p 2n }.

We recall that it is possible to embed P n into P 2n (or B n into B 2n ) "doubling" any strand (see for instance [FRZ]); one can remark that in the case of braid groups on closed surfaces of genus g ≥ 2 such embeddings are not well defined because of Theorem 5.

From Theorem 8 and Proposition 9 one can therefore deduce the following group presentation for F P n (Σ g ) as subgroup of F P 2n (Σ g ).

Proposition 12 Let Σ g be a compact, connected, closed, orientable surface of genus g > 1. The framed braid group F P n (Σ g ) as subgroup of P 2n (Σ g ) admits the following presentation:

Generators: {C i,j , F k | 1 ≤ i ≤ 2g + n -1, 2g + 1 ≤ j ≤ 2g + n, i < j, 1 ≤ k ≤ n}.
Relations: relations (PR1-4) and (ER1-2) from Theorem 7 replacing A i,j with C i,j together with the following:

(C) the F k 's are central; (FTR) [C -1 2g,2g+k , C 2g-1,2g+k ] • • • [C -1 2,2g+k , C 1,2g+k ] = C 2g+1,2g+k • • • C 2g+k-1,2g+k C 2g+k,2g+k+1 • • • C 2g+k,2g+n F 2(g-1) k (1 ≤ k ≤ n, with the notation C 2g+1,2g+1 = C 2g+n,2g+n = 1)
Proof. One has to check that χ n sends the generators B i,j and f k respectively into C i,j and F k . 2

7 Framed braids as 2n-strands braids

The definition of framed pure braid groups in terms of centralizers of Dehn twists given in Proposition 9 allows us to give another equivalent definition for the framed braid group of a closed surface introduced in Definition 1.

Definition 2 Let Σ be a surface of genus g > 1 with a finite set P of 2n marked points and let I n be the set of arcs {[1, 2], [3, 4], . . . , [2n -1, 2n]}. We say that an element β of B 2n (Σ g ) preserves with orientation

I n if for any [2i -1, 2i] there exists j such that [2i -1, 2i] * β = [2j -1, 2j] with {2i -1} * β = {2j -1} (and therefore {2i} * β = {2j}).
The set of braids preserving with orientation I n forms a subgroup of B 2n (Σ g ) that we will denote by F B n (Σ g ).

Let us recall that the group B 2n (Σ g ) is generated (see [B2]) by the usual generators σ 1 , . . . , σ 2n-1 of B 2n plus the braids a 1 , b 1 , . . . , a g , b g which are the pure braids A 1,2g+1 , A 2,2g+1 , . . . , A 2g,2g+1 depicted in Theorem 7. Let us define

A i = A 2i-1,2g+1 A 2i-1,2g+2 A 2g+1,2g+2 and B i = A 2i,2g+1 A 2i,2g+2 A 2g+1,2g+2
for i = 1, . . . , g and let τ j = σ 2j σ 2j-1 σ 2j+1 σ 2j for j = 1, . . . , n -1. The elements A 1 , B 1 , . . . , A g , B g , τ 1 , . . . , τ n-1 , F 1 , . . . , F n , belong to F B n (Σ g ). Moreover we have the following result:

Theorem 13 Let Σ g be a compact, connected, closed, orientable surface of genus g > 1. The group F B n (Σ g ) admits the following presentation:

Generators: A 1 , B 1 , . . . , A g , B g , τ 1 , . . . , τ n-1 , F 1 , . . . , F n .
Relations:

τ i F j = F j τ i for j = i, i + 1 (8) τ i F i = F i+1 τ i (9) τ i F i+1 = F i τ i (10) τ i τ j = τ j τ i if |i -j| ≥ 2 (11) τ i τ i+1 τ i = τ i+1 τ i τ i+1 for all 1 ≤ i ≤ n -2 (12) c i τ j = τ j c i for all j ≥ 2, c i = A i or B i and i = 1, . . . , g (13) 
c i τ 1 c i τ 1 = τ 1 c i τ 1 c i for c i = A i or B i and i = 1, . . . , g (14) 
A i τ 1 B i = τ 1 B i τ 1 A i τ 1 for i = 1, . . . , g (15) 
c i τ -1 1 c j τ 1 = τ -1 1 c j τ 1 c i for c i = A i or B i , c j = A j or B j and 1 ≤ j < i ≤ g (16) g i=1 [A -1 i , B i ] = τ 1 • • • τ n-2 τ 2 n-1 τ n-2 • • • τ 1 F 2(g-1) 1 . ( 17 
)
Proof. If π : F B n (Σ g ) -→ S n is the map which associates to any β ∈ F B n (Σ g ) the corresponding permutation on the set I n , we have the following exact sequence:

1 -→ F P n (Σ g ) -→ F B n (Σ g ) -→ S n -→ 1.
Then, the statement follows by Proposition 12 and, as already done in Theorem 8, by another application of the technique from [J] that we leave to the reader; we simply remark that τ 1 , . . . , τ n-1 are coset representative of the usual generators of S n and the other generators of F P n (Σ g ) can be deleted since they are conjugated by words in τ 1 , . . . , τ n-1 . 2

Before proving that F B n (Σ g ) is isomorphic to the framed braid group F B n (Σ g ) defined in Definition 1 let us recall few additional notations and results from [B1].

Definition 3 We define a ribbon as an embedding

R : [0, 1] × [0, 1] -→ Σ × [0, 1] , such that R(s, t) is in Σ × {t}.
Let A be a (j, k)-arc in Σ × {0}. Then the isotopy corresponding to β ∈ B n (Σ g ) moves A through a ribbon which is proper for β, meaning that • R(0, t) and R(1, t) trace out the strands j and k of the braid β, while the rest of the ribbon is disjoint from β; Let us denote P n (T 2 ) the kernel of the morphism ϕ n : PΓ n 1 -→ Γ 1 induced by forgetting the n marked points. We recall that, according to Proposition 1, one has that P n (T 2 ) ≃ P n (T 2 )/Z(P n (T 2 )).

• R([0, 1] × {0}) = A and R([0, 1] × {1}) = A * β.
Theorem 18 The group P n (T 2 ) admits the following presentation: Generators: {A i,j | 1 ≤ i ≤ n + 1, 3 ≤ j ≤ n + 2, i < j}.

Relations:

(PR1) A -1 i,j A r,s A i,j = A r,s if (i < j < r < s) or (r + 1 < i < j < s), or (i = r + 1 < j < s or r > 2) ; (PR2) A -1 i,j A j,s A i,j = A i,s A j,s A -1 i,s if (i < j < s) ; (PR3) A -1 i,j A i,s A i,j = A i,s A j,s A i,s A -1 j,s A -1 i,s if (i < j < s) ; (PR4) A -1 i,j A r,s A i,j = A i,s A j,s A -1 i,s A -1 j,s A r,s A j,s A i,s A -1 j,s A -1 i,s if (i + 1 < r < j < s) or (i + 1 = r < j < s for odd or r > 2) ;

(ER1) A -1 2,j A 1,s A 2,j = A 1,s A 2,s A -1 j,s A -1 2,s (ER2) A -1 1,j A 2,s A 1,j = A 1,s A j,s A -1 1,s A 2,s A j,s A 1,s A -1 j,s A -1 1,s (TR) [A -1 2,2+k , A 1,2+k ] = A 3,2+k • • • A 1+k,2+k A 2+k,3+k • • • A 2+k,2+n (1 ≤ k ≤ n) (1 ≤ k ≤ n, with the notation A 3,3 = A 2+n,2+n = 1) (QR1) A 1,3 • • • A 1,2+n = 1 (QR2) A 2,3 • • • A 2,2+n = 1
Proof. It suffices to remark that the previous presentation is the presentation for the group P n (T 2 ) given in Theorem 7, quotiented by (QR1) and (QR2) relations, where A 1,3 • • • A 1,2+n , A 2,3 • • • A 2,2+n generate the center of P n (T 2 ) (see for instance [START_REF] Paris | Geometric subgroups of surface braid groups[END_REF]).

2

One has the following commutative diagram with exact rows and columns: ( 17)

Γ 1 Γ 1 1 1
One can repeat word by word the proof of Theorem 8 and verify that (QR1) and (QR2) relations lift to F P n (T 2 ). Since g = 1 one deduces then also (TR) relation lifts to F P n (T 2 ) and therefore that the natural map from P n (T 2 ) to F P n (T 2 ) is actually a section. Therefore the fact that the group Z n generated by Dehn twists around boundary components is central implies the following result.

Proposition 19

The group F P n (T 2 ) is isomorphic to Z n ⊕ P n (T 2 ).

Proposition 20 The group F P n (T 2 ) is isomorphic to F P n (T 2 ) Z ⊕ Z .

Proof. It follows from Proposition 19 and Theorem 16. One can easily deduce the result also considering the long exact sequence for Σ g,b = T 2 in the proof of Proposition 2 and remarking that π 1 Diff + (T 2 ) = π 1 (T 2 ) = Z ⊕ Z (see [S2]). 2

Finally, let χ n : Γ 1,n -→ PΓ 2n 1 be the injective map defined in Section 6.

Proposition 21 The group χ n ( F P n (T 2 )) coincides with n ∩ j=1 C P 2n (T 2 ) (τ γ j ), where C P 2n (T 2 ) (τ γ j ) is the centralizer of the Dehn twist τ γ j in P 2n (T 2 ).

Proof. The proof is the same as the proof of Proposition 9 using Remark 7. 2

  and the pure framed punctured mapping class group PFΓ n g,b = π 0 (Diff + (Σ g,b , v)).

Figure 1 :

 1 Figure 1: The embedding Σ g,b+n ֒→ Σ g,b .

  ,b and Φ n : PFΓ n g,b -→ Γ g,b be the homomorphism induced by the maps which forget the tangent vectors and the punctures. If (g, b) / ∈ {(0, 0), (1, 0)}, Ker(Ψ n ) and Ker(Φ n ) are respectively isomorphic to F B n (Σ g,b ) and F P n (Σ g,b ).
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 3 Figure3: Projection of representatives of the generators A i,j . We represent A i,j by its only non-trivial strand.
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 4 Figure 4: curves on Σ g,b

Figure 5 :

 5 Figure 5: curves on Σ g

Figure 7 :

 7 Figure 6: Inclusion of Σ g,n into Σ 2n g

Definition 4

 4 We say that the braid β in B 2n (Σ) has a (2j -1, 2k -1)-band if there exists a ribbon proper for β and connecting[2j -1, 2j] × {0} to [2k -1, 2k] × {1}. Proposition 14 [B1, Proposition 2.2] Let g > 1 and 1 ≤ j < k ≤ n. For each β in B 2n (Σ g ),the following properties are equivalent: (a) β has a (2j -1, 2k -1)-band, (b) [2j -1, 2j] * β = [2k -1, 2k].

We do this in order to have the same group-composition in braid groups and mapping class groups.

The (FSPB) sequenceIn this section, we prove the existence of a framed version of the (SP B) sequence. We also prove that it splits even in the case of closed surfaces of genus greater or equal than 2.

Recall that we denote composition of applications from left to right. Thus, if γ = h(α), one has τ γ = h -1 τ α h.

Note that λ g = µ g and λ g,k = µ g,k .

Proposition 15 The group F B n (Σ g ) is isomorphic to the framed braid group F B n (Σ g ) defined in Definition 1.

Proof. By its definition an element β ∈ F B n (Σ g ) can be seen as an element β ′ ∈ B 2n (Σ g ) such that for any i = 1, . . . , n there exists a (2i -1, 2k -1)-band and {2i -1} * β ′ = {2k -1}. This defines a morphism from F B n (Σ g ) to F B n (Σ g ) wich is an isomorphism by Proposition 14. 2

8 Framed braids on the torus

In the case of the torus the proposed definitions are not equivalent and let arise different notions of framings. Let F n (Σ) and F n (Σ) be the spaces defined at the beginning of the Section 2. We recall Definition 1 in the case of Σ = T 2 .

Definition 5 The pure framed braid group F P n (T 2 ) on n strands of T 2 is the fundamental group of F n (T 2 ). The framed braid group on n strands of T 2 is the fundamental group of F n (T 2 ). In what follows we prove that F P n (T 2 ) is a quotient of F P n (T 2 ) and we examine exact sequences for F P n (T 2 ) and F P n (T 2 ).

Theorem 16

The group F P n (T 2 ) is isomorphic to Z n × P n (T 2 ) and F n (T 2 ) is an Eilenberg-Maclane space of type (F P n (T 2 ), 1).

Proof. Since T 2 is parallelizable, the proof of Theorem 16 is the same as in the case of surfaces with boundary given in Theorem 5.

2

Theorem 17 For n ≥ 0 and m ≥ 0, one has the following splitting exact sequence:

where α n,m consists in forgetting the first m strands.

Proof. Because of Theorem 16 the (FSPB) sequence reduces to the exact sequence induced by Fadell-Neuwirth fibration (SP B) 1 -→ P m T 2 \ n points -→ P n+m (T 2 ) -→ P n (T 2 ) -→ 1 which is a splitting sequence ( [GG]). 2