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Combining multigrid and wavelet ideas to 
onstru
t more eÆ
ientmultis
ale algorithms for the solution of Poisson's equationStefan Goede
ker, Claire ChauvinD�epartement de re
her
he fondamentale sur la mati�ere 
ondens�ee,SP2M/L Sim, CEA-Grenoble, 38054 Grenoble 
edex 9, Fran
e1 Abstra
tIt is shown how various ideas that are well established for the solution of Poisson's equationusing plane wave and Multigrid methods 
an be in
orporated into the wavelet 
ontext.The 
ombination of wavelet 
on
epts and multigrid te
hniques turns out to be parti
ularlyfruitful. We propose a modi�ed multigrid V 
y
le s
heme that is not only mu
h simpler,but also more eÆ
ient than the standard V 
y
le. Whereas in the traditional V 
y
lethe residue is passed to the 
oarser grid levels, this new s
heme does not require the
al
ulation of a residue. Instead it works with 
opies of the 
harge density on the di�erentgrid levels that were obtained from the underlying 
harge density on the �nest grid bywavelet transformations. This s
heme is not limited to the pure wavelet setting, where itis faster than the pre
onditioned 
onjugate gradient method, but equally well appli
ablefor �nite di�eren
e dis
retizations of Poisson's equation.2 Introdu
tionPoisson's equation r2V (r) = �4��(r) (1)is the basi
 equation for ele
trostati
 problems. As su
h it plays an important role ina large variety of s
ienti�
 and te
hnologi
al problems. The solution of the di�erentialequation (Eq. 1) 
an be written as an integral equationV (r) = Z �(r0)jr� r0j (2)Gravitational problems are based on exa
tly the same equations as the ele
trostati
 prob-lem, but we will use in this arti
le the language of ele
trostati
s, i.e. we will refer to�(r) as a 
harge density. The most eÆ
ient numeri
al approa
hes for the solution ofele
trostati
 problems are based on (Eq 1) rather than (Eq. 2). However pre
ondition-ing steps found in these methods 
an be 
onsidered as approximate solutions of (Eq. 2).The fa
t that the Green's fun
tion 1jr�r0j is of long range makes the numeri
al solutionof Poisson's equation diÆ
ult, sin
e it implies that a 
harge density at a point r0 willhave an non-negligible in
uen
e on the potential V (r) at a point r far away. A naiveimplementation of (Eq. 2) would therefore have a quadrati
 s
aling. It 
omes however toour help, that the potential arising from a 
harge distribution far away is slowly varying1



and does not depend on the details of the 
harge distribution. All eÆ
ient algorithms forsolving ele
trostati
 problems are therefore based on a hierar
hi
al multis
ale treatment.On the short length s
ales the rapid variations of the potential due to the exa
t 
hargedistribution of 
lose by sour
es of 
harge are treated, on the large length s
ales the slowvariation due to some smoothed 
harge distribution of far sour
es is a

ounted for. Sin
ethe number of degrees of freedom de
reases rapidly with in
reasing length s
ales, one 
anobtain algorithms with linear or nearly linear s
aling. In the following, we will brie
ysummarize how this hierar
hi
al treatment is implemented in the standard algorithms� Fourier Analysis:If the 
harge density is written in its Fourier representation�(r) =XK �KeiKrthe di�erent length s
ales that are in this 
ase given by � = 2�K de
ouple entirelyand the Fourier representation of the potential is given byV (r) =XK �KK2 eiKr (3)The Fourier analysis of the real spa
e 
harge density ne
essary to obtain its Fourier
omponents �K and the synthesis of the potential in real spa
e from its Fourier
omponents given by (Eq. 3) 
an be done with Fast Fourier methods at a 
ost ofN log2(N) where N is the number of grid points. The solution of Poisson's equationin a plane wave is thus a divide and 
onquer approa
h where the division is into thesingle Fourier 
omponents.� Multigrid methods (MG):Trying to solve Poisson's equation by any relaxation or iterative method (su
h as
onjugate gradient) on the �ne grid on whi
h one �nally wants to have the solutionleads to a number of iterations that in
reases strongly with the size of the grid.The reason for this is that on a grid with a given spa
ing h one 
an eÆ
ientlytreat Fourier 
omponents with a wavelength � = 2�K that is 
omparable to the thegrid spa
ing h, but the longer wavelength Fourier 
omponents 
onverge very slowly.This in
rease in the number of iterations prevents a straightforward linear s
alingsolution of (Eq. 1). In the multigrid method, pioneered by A. Brandt [1℄, one istherefore introdu
ing a hierar
hy of grids with a grid spa
ing that is in
reasing bya fa
tor of two on ea
h hierar
hi
 level. In 
ontrast to the Fourier method wherethe 
harge and the potential are dire
tly de
omposed into 
omponents 
hara
terizedby a 
ertain length s
ale, it is the residue that is passed from the �ne grids to the
oarse grids in the MG method. The residue 
orresponds to the 
harge that wouldgive rise to a potential that is the di�eren
e between the exa
t potential and theapproximate potential at the 
urrent stage of the iteration.The solution of partial di�erential equations in a wavelet basis is typi
ally done bypre
onditioned iterative te
hniques [2℄. The diagonal pre
onditioning approa
h, that is2



based on well established plane wave te
hniques, will be presented in the next se
tion.The se
tion after the next will introdu
e multigrid for Poisson's equation in a waveletbasis. Even though the fundamental similarities between wavelet and multigrid s
hemeshave been re
ognized by many workers (su
h as [3℄) this se
tions 
ontains to the best ofour knowledge the �rst thorough dis
ussion of how both methods 
an pro�t from ea
hother.Within wavelet theory [4℄ one has two possible representations of a fun
tion f(x), as
aling fun
tion representation f(x) =Xj sLmaxj �Lmaxj (x) (4)and a wavelet representation.f(x) =Xj sLminj �Lminj (x) + LmaxXl=LminXj dlj  lj(x) : (5)In 
ontrast to the s
aling fun
tion representation, the wavelet representation is a hierar
hi
representation. The wavelet at the hierar
hi
 level l is related to the mother wavelet  by li(x) = p2l (2lx� i) (6)The 
hara
teristi
 length s
ale of a wavelet at resolution level l is therefore proportionalto 2�l. A wavelet on a 
ertain level l is a linear 
ombination of s
aling fun
tions at thehigher resolution level l + 1  li(x) = mXj=�m gj �l+12i+j(x) (7)S
aling fun
tions at adja
ent resolution levels are related by a similar re�nement relation�li(x) = mXj=�mhj �l+12i+j(x) (8)and hen
e also any wavelet at a resolution level l is a linear 
ombination of the highestresolution s
aling fun
tions. The so-
alled fast wavelet transform allows us to transformba
k and forth between a s
aling fun
tion and a wavelet representation.Let us now introdu
e wavelet representations of the potential and the 
harge densityV (x) = Xj V Lminj �Lminj (x) + LmaxXl=LminXj V lj  lj(x) (9)�(x) = Xj �Lminj �Lminj (x) + LmaxXl=LminXj �lj  lj(x) (10)Di�erent levels do not 
ompletely de
ouple, i.e the 
omponents on level l, V lj , of theexa
t overall solution do not satisfy the single level Poisson equationr20�Xj V lj  lj(x)1A 6= �4�0�Xj �lj  lj(x)1A (11)3



within the 
hosen dis
retization s
heme. This is due to the fa
t that the wavelets are notperfe
tly lo
alized in Fourier spa
e, i.e. many frequen
ies are ne
essary to synthesize awavelet. However the amplitude of all these frequen
ies is 
learly peaked at a nonzero
hara
teristi
 frequen
y for any wavelet with at least one vanishing moment. From thes
aling property (Eq. 6) it follows, that the frequen
y at whi
h the peak o

urs 
hangesby a fa
tor of two on neighboring resolution grids. This suggest that the 
oupling betweenthe di�erent resolution levels is weak.In the pre
eding paragraph we presented the mathemati
al framework only for theone-dimensional 
ase. The generalization to the 3-dim 
ase is straightforward by usingtensor produ
ts [4℄. Also in the rest of the paper only the one-dimensional form of themathemati
al formulas will presented for reasons of simpli
ity. It has to be stressedhowever that all the numeri
al results were obtained for the three-dimensional 
ase andwith periodi
 boundary 
onditions.3 The diagonal pre
onditioning approa
h for waveletsPre
onditioning requires �nding a matrix with a simple stru
ture that has eigenvalues andeigenve
tors that are similar to the ones of the matrix in question [5, 6℄. The stru
turehas to be simple in the sense that it allows us to 
al
ulate the inverse easily. The simplestand most widely used stru
ture in this respe
t is the stru
ture of a diagonal matrix.As will be shown a diagonal pre
onditioning matrix 
an be found in a wavelet basis setand pre
onditioned 
onjugate gradient type methods are then a possible method for thesolution of Poissons equation expressed in di�erential form (Eq.1).As one adds su

essive levels of wavelets to the basis set the largest eigenvalue growsby a fa
tor of 4 for ea
h level. This 
an easily be understood from Fourier analysis. Asone in
reases the resolution by a fa
tor of 2 (i.e. in
reases the largest Fourier ve
tor kmaxby a fa
tor of 2) the largest eigenvalue in
reases by a fa
tor of 4. This basi
 s
alingproperty of the eigenvalue spe
trum 
an easily be modeled by a diagonal matrix, whereall the diagonal elements are all equal on one resolution level, but in
rease by a fa
tor of4 as one goes to a higher resolution level. It is of 
ourse 
lear that all the details of thetrue spe
trum are not reprodu
ed by this approximations. The true spe
trum 
onsists ofa large number of moderately degenerate eigenvalues. The spe
trum of the approximatematrix 
onsists of a few highly degenerate eigenvalues where ea
h eigenvalue has all thes
aling fun
tions of one resolution level as its eigenfun
tions. The true eigenfun
tions areof 
ourse mixtures of s
aling fun
tions on di�erent resolution levels, but if the waveletfamily is well lo
alized in Fourier spa
e the 
ontributions from neighboring resolutionlevels are weak. The lo
alization in Fourier spa
e in
reases with the number of vanishingmoments [7℄ and therefore this diagonal pre
onditioning method works for instan
e mu
hbetter for lifted interpolating wavelets than for ordinary interpolating wavelets [8℄.Another line of arguments, that shows the weakness of the diagonal pre
onditioning,is the following. The pre
onditioning matrix 
an also be 
onsidered to be the diagonalpart of the matrix representing the Lapla
ian. Sin
e the diagonal elements in
rease by a
4



fa
tor of 4 on ea
h higher resolution level,Z ~ l+10 (x) �2�x2 l+10 (x)dx = 2 Z ~ l0(2x) �2�x2 l0(2x)dx (12)= 4 Z ~ lj(x) �2�x2 lj(x)dxthe spe
trum of the matrix has again the 
orre
t s
aling properties. In the 3-dimensional
ase there are three di�erent types of wavelets (produ
ts of 2 s
aling fun
tions and 1wavelet, produ
ts of 1 s
aling fun
tion and 2 wavelets and produ
ts of 3 wavelets). Ea
htype of wavelet gives rise to a di�erent diagonal element, but again all these diagonalelements di�er by a fa
tor of 4 on di�erent resolution levels. Be
ause of the weak 
ouplingbetween di�erent resolution levels dis
ussed above, we expe
t the matrix elements of theLapla
ian involving wavelets at two di�erent resolutions levels to be small. The numeri
alexamination of the matrix elements (Fig. 1) 
on�rms this guess. It also shows that withinone resolution level the amplitude of the matrix elements de
ays rapidly with respe
t tothe distan
e of the two wavelets and is zero as soon as they do not any more overlap.Nevertheless, some matrix elements 
oupling nearest neighbor wavelets are not mu
hsmaller than the diagonal elements. One also �nds a few matrix elements between di�erentresolution levels that are less than one order of magnitude smaller than the one within asingle resolution level.The fa
t that all o�-diagonal matrix elements are negle
ted in 
urrent pre
onditions
hemes explains their relatively slow 
onvergen
e. It amounts to �nding an approximateGreens fun
tion that is diagonal in a wavelet representation. This is obviously a ratherpoor approximation. Let us nevertheless stress that this diagonal matrix obtained byinverting a diagonal approximation to the Lapla
ian is a mu
h more reasonable approxi-mation for pre
onditioning purposes than the diagonal part of the Greens fun
tion. Thediagonal part of the Greens fun
tion has a
tually 
ompletely di�erent s
aling properties.The elements in
rease by a fa
tor of 2 as one goes to higher resolution levels instead ofde
reasing by a fa
tor of 4. The multigrid methods to be dis
ussed later in
lude also inan approximative way through Gauss-Seidel relaxations this o�-diagonal 
oupling withinea
h resolution blo
k as well as the 
oupling between the di�erent resolutions levels.In the following we will present some numeri
al results for the solution of the 3-dimensional Poisson equation in a wavelet basis using the diagonal pre
onditioning ap-proa
h. All the methods presented in this paper will have the property that the 
onver-gen
e rate is independent of the grid size. We have 
hosen 643 grids for all the numeri
alexamples. The fa
t that the number of iterations ne
essary to rea
h a 
ertain targeta

ura
y is independent of the system size together with the fa
t that a single iterationinvolves a 
ost that is linear with respe
t to the number of grid points ensures that thePoisson's equation 
an be solved with overall linear s
aling. Whereas we use here onlysimple equidistant grids, this linear s
aling has already been demonstrated with highlyadaptive grids in problems that involve many di�erent length s
ales [8, 9, 10, 11℄.The pre
onditioning step using simply the diagonal is given by�V lj = 
onst 4�l��lj (13)In analogy to Eq. 9,10, the ��lj's are the wavelet 
oeÆ
ients on the l-th resolution level ofthe residue ��(r) = r2 ~V (r)+4��(r) in a wavelet representation. ~V (r) is the approximate5
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Figure 1: The absolute value of the amplitude of the matrix elements of the Lapla
ian ina basis of 6-th order interpolating (top panel) and 6-th order lifted interpolating (lowerpanel) wavelets. Shown are the elements within one resolution blo
k (medium-medium) aswell as the elements 
oupling to a higher resolution (medium-�ne) and a lower resolutionlevel (medium-
oarse). The distan
e 1 
orresponds to the nearest neighbor distan
e on themedium resolution level. Be
ause of the better lo
alization in Fourier spa
e of the liftedwavelets, the matrix is more diagonally dominant in the lifted wavelet representation.6



solution at a 
ertain iteration of the solution pro
ess. The pre
onditioned residue �Vis then used to update the approximate potential ~V . In the 
ase of the pre
onditionedsteepest des
ent method used here this update simply reads~V  ~V + ��V (14)where � is an appropriate step size. As dis
ussed above the 
onstant in (Eq. 13) dependsin the three dimensional 
ase upon whi
h type of wavelet is implied sin
e it is the inverseof the Lapla
e matrix element between two wavelets of this type.(Fig. 2) shows numeri
al results for several wavelet families. The slow 
onvergen
eof the interpolating wavelets is due to the fa
t that they have a non-vanishing averageand therefore a non-vanishing zero Fourier 
omponent [8℄. Hen
e they are all lo
alized inFourier spa
e at the origin instead of being lo
alized around a non-zero frequen
y. Thisde�
ien
y 
an be eliminated by lifting. The Fourier power spe
trum of the lifted waveletstends to zero at the origin with zero slope for the family with two vanishing moments
onsidered here. Lifting the wavelet twi
e leads to 4 vanishing moments and a even betterlo
alization in Fourier spa
e. The improvement in the 
onvergen
e rate is however onlymarginal. The higher 8-th order lifted interpolating wavelet is smoother than its 6-thorder 
ounterpart and hen
e better lo
alized in the high frequen
y part. This also leadsto a slightly faster 
onvergen
e.
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Figure 2: The redu
tion of the residue during a steepest des
ent iteration (left hand panel)and a FGMRES iteration (right hand panel) with interpolating and lifted interpolatingwavelets.Combining the diagonal pre
onditioning (Eq. 13) with a FGMRES 
onvergen
e a

el-erator [12℄ instead of using it within a steepest des
ent minimization gives a signi�
antlyfaster 
onvergen
e. The number of iterations 
an nearly be 
ut into half as shown in(Fig 2).Up to now we have only 
onsidered the 
ase where the elements of the matrix repre-senting the Lapla
ian were 
al
ulated within the same wavelet family that was used to7



analyze the residue by wavelet transformations to do the pre
onditioning step. More gen-eral s
hemes 
an however be implemented. It is not even ne
essary that the 
al
ulationof the Lapla
ian matrix elements is done in a wavelet basis. One 
an instead use simplese
ond order �nite di�eren
es, whi
h in the one-dimensional 
ase are given by1h2 (�Vi�1 + 2Vi � Vi+1) ; (15)or some higher order �nite di�eren
es for the 
al
ulation of the matrix elements. Thes
aling relation (Eq. 12) does not any more hold exa
tly, but it is ful�lled approximatelyand the s
hemes works as well as in the pure wavelet 
ase as is shown in (Fig. 3).
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Figure 3: The 
onvergen
e rate for the 
ase where Poisson's equation is solved with �nitedi�eren
es and 8-th order lifted wavelets are used for the pre
onditioned steepest des
ent.
4 The MG approa
h for waveletsThe aim of this part of the arti
le is twofold. One aspe
t is how to speed up the 
on-vergen
e of the solution pro
ess for Poisson's equation expressed in a wavelet basis set
ompared to the diagonal pre
onditioning approa
h. The other aspe
t is how to a

eleratemultigrid s
hemes by in
orporating wavelet 
on
epts. The part therefore begins with abrief review of the multigrid method.(Fig. 4) s
hemati
ally shows the algorithm of a standard multigrid V 
y
le [13, 14℄.Even though the s
heme is valid in any dimension, a two dimensional setting is suggestedby the �gure, sin
e the data is represented as squares. Sin
e less data is available on the
oarse grids, the squares holding the 
oarse grid data are in
reasingly smaller. It has to bestressed that the remarks of the end of the �rst part remain valid and that in parti
ularall the numeri
al 
al
ulations are 3-dim 
al
ulations. The upper half of the �gure showsthe �rst part of the V 
y
le where one goes from the �nest grid to the 
oarsest grid andthe lower half the se
ond part where one goes ba
k to the �nest grid.8
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Figure 4: S
hemati
 representation of a multigrid V 
y
le as des
ribed in the text. GSdenotes a red-bla
k Gauss-Seidel relaxation, R restri
tion, P prolongation and + additionof the data sets. The numbering in parentheses gives the ordering of the di�erent stepsof the algorithm.In the �rst part of the V 
y
le the potential on all hierar
hi
 grids is improved bya standard red-bla
k Gauss-Seidel relaxation denoted by GS. The GS relaxation redu
esthe error 
omponents of wavelengths � that are 
omparable to the grid spa
ing h veryeÆ
iently. In the 3-dimensional 
ase we are 
onsidering here, the smoothing fa
tor is .445(page 74 of ref [13℄). Sin
e we use 2 GS relaxations roughly one quarter of the error aroundthe wavelength h survives the relaxations on ea
h level. As a 
onsequen
e the residue ��
ontains mainly longer wavelengths whi
h then in turn are again eÆ
iently eliminatedby the GS relaxations on the 
oarser grids. Nevertheless, the remaining quarter of theshorter wavelengths surviving the relaxations on the �ner grid pollutes the residue on the
oarser grid through aliasing e�e
ts. Aliasing pollution means that even if the residue onthe �ner grid would 
ontain only wavelengths around h (and in parti
ular no wavelengtharound 2h) the restri
ted quantity would not be identi
ally zero.In the se
ond part of the V 
y
le the solutions obtained by relaxation on the 
oarsegrid are prolongated to the �ne grids and added to the existing solutions on ea
h level.Aliasing pollution is again present in the prolongation pro
edure. Due to the a

umulatedaliasing errors 2 GS relaxations are again done on ea
h level before pro
eeding to the next�ner level.To a �rst approximation the di�erent representations of � at the top of (Fig. 4) rep-resent Fourier �ltered versions of the real spa
e data set � on the �nest grid. The large9



data set 
ontains all the Fourier 
omponents, while the smaller data sets 
ontain onlylower and lower frequen
y parts of �. In the 1-dimensional 
ase only the lower half of thespe
trum is still dominating when going to the 
oarse grid, in the 3-dimensional 
ase it isonly one eight of the spe
trum. Be
ause of the various aliasing errors des
ribed above theFourier de
omposition is however not perfe
t. Obviously it would be desirable to makethis Fourier de
omposition as perfe
t as possible. In the absen
e of aliasing errors, theGS relaxations would not have to deal with any Fourier 
omponents spilling over fromhigher or lower resolution grids.Let us now postulate ideal restri
tion and prolongation operators and dis
uss theirproperties. As follows from the dis
ussion above, they should provide for a dyadi
 de
om-position of the Fourier spa
e. Consequently the restri
tion operator would have to be aperfe
t low pass �lter for the lower half of the spe
trum (in the 1-dim 
ase, in the 3-dim
ase only 1/8 would survive). We will refer to this property in following as frequen
yseparation property. The degree of perfe
tness 
an be quanti�ed by the k dependentfun
tion Sl(k) = sXi (sli)2=N (16)where N is the number of grid points on resolution level l. The k dependen
e entersthrough the requirement that the signal sLmaxi on the �nest resolution level is a pureharmoni
, sLmaxi = exp(I2�ki=N) (17)The fun
tion Sl(k) for a perfe
t restri
tion operator is shown in (Fig 5). Su
h ideal gridtransfer operators have to satisfy a se
ond property, that will be baptized the identityproperty. The prolongation operator has to bring ba
k exa
tly onto the �ner grid thelong wavelength asso
iated with the 
oarser grid. This 
an only be true if prolongationfollowed by a restri
tion gives the identity. A third desirable property would be that the
oarsed 
harge density represents as faithfully as possible the signi�
ant features of theoriginal 
harge density. In parti
ular the 
oarsed 
harge density should have the samemultipoles and most importantly the same monopole. The 
onservation of the monopolejust means that the total 
harge is identi
al on all grid levels. This third property will be
alled the multipole 
onservation property in the following.With the ideal grid transfer operators, the solution of Poisson's equation would bea divide and 
onquer approa
h in Fourier spa
e and it 
ould be done with a single V
y
le with a moderate number of GS relaxations on ea
h resolution level. In 
ontrast toa solution in a plane wave basis the division would not be into single Fourier 
omponentsbut into dyadi
 parts of the Fourier spe
trum. For the 
ase of our postulated ideal gridtransfer operators it also would not matter whether the GS relaxations are applied whengoing up or going down, only the total number of GS relaxations on ea
h level would
ount.To establish the relation between multigrid grid transfer operators and wavelet theory,let us point out a formal similarity. For vanishing d 
oeÆ
ients, the wavelet analysis stepis given by (Eq. 26 of ref. [7℄) s2hi = mXj=�m ~hjshj+2i (18)10
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Figure 5: The ideal fun
tion Sl(k) de�ned in (Eq. 16) on three resolution levels denotedby �rst 
oarse level, se
ond 
oarse level and third 
oarse level. On the zeroth originallevel the fun
tion is identi
al to one over the entire interval. It gives a perfe
t dyadi
de
omposition of the Fourier spe
trum.and is formally identi
al to a restri
tion operation. A wavelet synthesis step for the s
oeÆ
ients is given by (formula 27 of ref. [7℄)sh2i = m=2Xj=�m=2 h2j s2hi�j (19)sh2i+1 = m=2Xj=�m=2 h2j+1 s2hi�j :and is formally identi
al to a prolongation operation. One 
an now for example easily seethat the inje
tion s
heme for the restri
tion and linear interpolation for the prolongationpart 
orresponds to a wavelet analysis and synthesis steps for 1st order interpolatingwavelets. Using the values of the �lters ~h and h for interpolating wavelets we obtains2hi = sh2i (20)and sh2i = s2hi (21)sh2i+1 = 12 s2hi + 12 s2hi+1 :whi
h is the standard inje
tion and interpolation. As a 
onsequen
e of the fa
t that it
an be 
onsidered as a wavelet forward and ba
kward transformation, the 
ombination ofinje
tion and interpolation satisfy the identity property of our ideal grid transfer operatorpair, namely that applying a restri
tion onto a prolongation gives the identity.11



Usually inje
tion is repla
ed by the full weighting s
heme,s2hi = 14 sh2i�1 + 12 sh2i + 14 sh2i+1 : (22)This s
heme has the advantage that it 
onserves averages, i.e it satis�es the monopolepart of the multipole 
onservation property of an ideal restri
tion operator. Applying itto a 
harge density thus ensures that the total 
harge is the same on any grid level. Tryingto put the full weighting s
heme into the wavelet theory framework gives a �lter ~h withnonzero values of ~h�1 = 14 , ~h0 = 12 , ~h1 = 14 This �lter ~h does not satisfy the orthogonalityrelations of wavelet theory (formula 8 of ref. [7℄) with the h �lter 
orresponding to linearinterpolation. Hen
e a prolongation followed by a restri
tion does not give the identity.A pair of similar restri
tion and prolongation operators that 
onserve averages 
anhowever be derived from wavelet theory. Instead of using interpolating wavelets we haveto use lifted interpolating wavelets [15, 16℄. In this way we 
an obtain both properties,average 
onservation and the identity for a prolongation restri
tion sequen
e. Using the�lters derived in ref. [7℄ we obtains2hi = �18 sh2i�2 + 14 sh2i�1 + 34 sh2i + 14 sh2i+1 � 18 sh2i+2 (23)sh2i = s2hi (24)sh2i+1 = 12 s2hi + 12 s2hi+1 :Let us �nally dis
uss the �rst property of our postulated ideal restri
tion operator,namely that it is a perfe
t low pass �lter. Obviously any �nite length �lter 
an only be anapproximate perfe
t low pass �lter. (Fig 6) shows the S fun
tion for several grid transferoperators. One 
learly sees that the Full Weighting operator is a poor low pass �lter, the�lter derived from se
ond degree lifted wavelets is already better and the �lters obtainedfrom 10th degree Daube
hies wavelets and twofold lifted 6th order interpolating waveletsare best. The Daube
hies 6th degree �lter is intermediate and of nearly identi
al qualityas the one that is a mixture of the Full Weighting and se
ond degree lifted wavelet �lters.In 
ontrast to the former, the later does however not ful�ll the identity property.The degree of perfe
tness for the frequen
y separation is also related to the multipole
onservation property of our postulated ideal grid transfer operators. As one sees from(Fig. 6) �lters whi
h 
orrespond to wavelet families with many vanishing are 
loser tobeing ideal for frequen
y separation than those with few vanishing moments. At the sametime the number of vanishing moments determines how many multipoles are 
onservedwhen the 
harge density is brought onto the 
oarser grids.The right panel of (Fig. 7) shows the 
onvergen
e rate of a sequen
e of V 
y
les forthe full weighting/interpolation (Eq. 22,21) s
heme and various wavelet based s
hemes,namely the s
heme obtained from se
ond order lifted wavelets (Eq. 23,24), the 
orre-sponding s
heme, but obtained from twofold lifted 6-th order wavelets as well as s
hemesobtained from 6th and 10th order Daube
hies wavelets. The numeri
al values for the�lters are listed in the Appendix. One 
an observe a 
lear 
orrelation between the 
onver-gen
e rate and the the degree of perfe
tness of the S fun
tion. A high degree of perfe
tness12
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Figure 6: The fun
tion Sl(k) de�ned in Eq. 16 on the 
oarser resolution levels Lmax� 1,Lmax � 2 and Lmax � 3 (
orresponding to grid spa
ings of 2h, 4h and 8h if the �nestresolution is h) for several restri
tion operators: Top left, Full weighting; middle left, 2ndorder lifted wavelets, bottom left 6th order twofold lifted wavelets; top right half and halfmixture between Full Weighting and 2nd order lifted wavelets; middle right, 6th orderDaube
hies; bottom right, 10th order Daube
hies. S was 
al
ulated numeri
ally for aninitial data set of 256 points. Hen
e the allowed values of k in (Eq. 17) range form -128to 127. The lower half, quarter and eight of the spe
trum where the ideal fun
tion wouldswit
h between the values of 0 and 1 are denoted by verti
al lines.13



is parti
ularly useful in 
onne
tion with high order dis
retizations of the Lapla
ian. Mostof the �lters of the grid transfer operators are longer than the standard Full Weighting�lter, whi
h just has 3 elements. The lifted 2nd order interpolating wavelet restri
tion�lter has for instan
e 5 elements and the 6-th degree Daube
hies �lter 6 elements. Thisdoes however not lead to a substantial in
rease of the CPU time. This 
omes from thefa
t that on modern 
omputers the transfer of the data into the 
a
he is the most time
onsuming part. How many numeri
al operations are then performed on these data resid-ing in 
a
he has only a minor in
uen
e on the timing. The new wavelet based s
hemes forrestri
tion and prolongation are therefore more eÆ
ient than the Full Weighting s
heme,both for �nite di�eren
e dis
retizations and s
aling fun
tion basis sets. It is also obviousthat the multigrid approa
h for s
aling/wavelet fun
tion basis sets is more eÆ
ient thanthe diagonal pre
onditioning approa
h.The identity property for a restri
tion prolongation operator pair was only ne
essaryfor the 
ase of operators where the restri
tion part is a perfe
t low pass �lter. Onemight therefore wonder how useful it is in the 
ontext of the only nearly perfe
t �lters.The numeri
al experien
e suggests that it is nevertheless a useful property. One 
an forexample 
ompare the 
onvergen
e rates using either the 6-th order Daube
hies �lters orthe �lter that is the average of Full Weighting and lifted 2nd order wavelet �lters. (Fig. 6)shows that their restri
tion parts have very similar S fun
tions. Nevertheless we alwaysfound a better 
onvergen
e rate with the Daube
hies �lter whi
h satis�es the identityproperty.For the 2-dimensional Poisson equation it has been shown, that the 
onvergen
e rate
ompared to the standard Full Weighting s
heme 
an be improved by tailoring grid trans-fer operators for the relaxation s
heme used [17℄. The theoreti
al foundations for this isfurnished by lo
al Fourier analysis [18℄. The same approa
h 
ould 
ertainly also be usedfor the 3-dimensional 
ase 
onsidered here. It is to be expe
ted that the grid transferoperators found by su
h an optimization would be very 
lose to the ones that we haveobtained from wavelet theory.The main justi�
ation for the relaxations in the upper part of the traditional multigridalgorithm shown in (Fig. 4) is to eliminate the high frequen
ies. This 
an however be donedire
tly by fast wavelet transformations based on wavelets that have good lo
alizationproperties in frequen
y spa
e su
h as lifted interpolating wavelets. As a 
onsequen
e thetraditional multigrid algorithms 
an be simpli�ed 
onsiderably as shown in (Fig. 8). Usingwavelet based restri
tion and prolongation operators we 
an 
ompletely eliminate the GSrelaxation in the �rst part of the V 
y
le where we go from the �ne grid to the 
oarsestgrid. We baptize su
h a simpli�ed V 
y
le a halfway V 
y
le. The numeri
al results,obtained with the halfway V 
y
le, shown in the right hand plots of (Fig. 7), demonstratethat the 
onvergen
e is slightly faster than for the traditional multigrid algorithm basedon the same restri
tion and prolongation s
heme. In addition one step is faster. It isnot ne
essary to 
al
ulate the residue after the GS relaxations. Otherwise the numberof GS relaxations and restri
tions/prolongations is identi
al in the full and halfway V
y
le. On purpose no CPU times are given in this 
ontext be
ause optimization of 
ertainroutines [19℄ 
an entirely 
hange these timings. Be
ause the residue is never 
al
ulated inthe halfway V 
y
le, the memory requirements are also redu
ed.The number of GS relaxations in the halfway V 
y
le was 
hosen to be 4 in order to14
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Figure 7: The 
onvergen
e rate of a sequen
e of V 
y
les (left hand side) and halfwayV 
y
les (right hand side). In the upper two plots Poisson's equation was dis
retized byse
ond order �nite di�eren
es, In the middle two plots by 6-th order �nite di�eren
es andin the lower two plots by 6-th order and 10th order (for the 
ase of transfer operators basedon DAUB 10) interpolating s
aling fun
tions. Shown are results for the Full Weightings
heme (FW) se
ond order lifted wavelets (LFT 2), twofold lifted 6-th order wavelets (2LFT 6) and 6-th and 10-th order Daube
hies wavelets. In the 
ase of ordinary V 
y
les 2GS relaxations were done on the �nest level both when going up and 
oming ba
k down,in the 
ase of the halfway V 
y
le 4 GS relaxation were done on the �nest level.15
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VFigure 8: S
hemati
 representation of a halfway V 
y
le as des
ribed in the text. Theabbreviations are the same as in (Fig. 4).allow for an unbiased 
omparison with the traditional V 
y
le where also 4 GS relaxationswere done on the �nest grid level. For optimal overall eÆ
ien
y putting the number ofGS relaxation to 3 is usually best, with the values of 2 and 4 leading to a modest in
reasein the 
omputing time. The 
onvergen
e rate of halfway V 
y
les as a fun
tion of thenumber of GS relaxations on the �nest grid level is shown in (Fig 9).
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Figure 9: The 
onvergen
e rate for halfway V 
y
les with 4, 3, 2 and 1 GS relaxation onthe �nest grid level. In the left panel 2nd order �nite di�eren
es were used, in the rightpanel 6th order �nite di�eren
es.In all the previous examples we spe
i�ed the number of GS relaxations on the �nestgrid level. On the 
oarser grid levels the number of iterations was allowed to in
reaseby a fa
tor of two per grid level. In this way it was pra
ti
ally always possible to �ndthe exa
t solution on the most 
oarse grid. In addition we found that this tri
k slightly16



redu
es the number of iterations and the total CPU time. The overall behavior of all thedi�erent methods is however identi
al when the number of GS relaxation is 
onstant onea
h grid level.5 Con
lusionsOur results demonstrate that halfway V 
y
les with the restri
tion and prolongationsteps based on wavelet theory are the most eÆ
ient approa
h for the solution of the 3-dimensional Poisson's equation. It is most eÆ
ient both for �nite di�eren
e dis
retizationsand for the 
ase where s
aling fun
tions or wavelets are used as basis fun
tions. Weexpe
t that the approa
h should also be the most eÆ
ient one in 
onne
tion with �niteelements. It is essential that the wavelet family used for the derivation of the restri
tionand prolongation s
hemes has at least one vanishing moment and 
onserves thus averagequantities on the various grid levels. Wavelet families with more vanishing moments donot lead an appre
iable in
rease of the 
onvergen
e rate 
ompared to the 
ase of onevanishing moment for low order dis
retizations of Poissons equation, but lead a modestfurther in
rease for high order dis
retizations. In the 
ase where a wavelet family was usedto dis
retize the Lapla
e operator, it is best to use the same wavelet family to 
onstru
tthe grid transfer operators. In addition to in
reased eÆ
ien
y of the proposed halfway V
y
le in terms of the CPU time, it is also simpler than the standard V 
y
le. This makesnot only programming easier, but also redu
es the memory requirements.6 A
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es follwo from the symetry hi = h�i and ~hi = ~h�i.Filters for 6-th order Daube
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hies wavelets [4℄:h�4=.1601023979741929d0, h�3=.6038292697971897d0,h�2=.7243085284377729d0, h�1=.1384281459013207d0,17
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