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Combining multigrid and wavelet ideas to onstrut more eÆientmultisale algorithms for the solution of Poisson's equationStefan Goedeker, Claire ChauvinD�epartement de reherhe fondamentale sur la mati�ere ondens�ee,SP2M/L Sim, CEA-Grenoble, 38054 Grenoble edex 9, Frane1 AbstratIt is shown how various ideas that are well established for the solution of Poisson's equationusing plane wave and Multigrid methods an be inorporated into the wavelet ontext.The ombination of wavelet onepts and multigrid tehniques turns out to be partiularlyfruitful. We propose a modi�ed multigrid V yle sheme that is not only muh simpler,but also more eÆient than the standard V yle. Whereas in the traditional V ylethe residue is passed to the oarser grid levels, this new sheme does not require thealulation of a residue. Instead it works with opies of the harge density on the di�erentgrid levels that were obtained from the underlying harge density on the �nest grid bywavelet transformations. This sheme is not limited to the pure wavelet setting, where itis faster than the preonditioned onjugate gradient method, but equally well appliablefor �nite di�erene disretizations of Poisson's equation.2 IntrodutionPoisson's equation r2V (r) = �4��(r) (1)is the basi equation for eletrostati problems. As suh it plays an important role ina large variety of sienti� and tehnologial problems. The solution of the di�erentialequation (Eq. 1) an be written as an integral equationV (r) = Z �(r0)jr� r0j (2)Gravitational problems are based on exatly the same equations as the eletrostati prob-lem, but we will use in this artile the language of eletrostatis, i.e. we will refer to�(r) as a harge density. The most eÆient numerial approahes for the solution ofeletrostati problems are based on (Eq 1) rather than (Eq. 2). However preondition-ing steps found in these methods an be onsidered as approximate solutions of (Eq. 2).The fat that the Green's funtion 1jr�r0j is of long range makes the numerial solutionof Poisson's equation diÆult, sine it implies that a harge density at a point r0 willhave an non-negligible inuene on the potential V (r) at a point r far away. A naiveimplementation of (Eq. 2) would therefore have a quadrati saling. It omes however toour help, that the potential arising from a harge distribution far away is slowly varying1



and does not depend on the details of the harge distribution. All eÆient algorithms forsolving eletrostati problems are therefore based on a hierarhial multisale treatment.On the short length sales the rapid variations of the potential due to the exat hargedistribution of lose by soures of harge are treated, on the large length sales the slowvariation due to some smoothed harge distribution of far soures is aounted for. Sinethe number of degrees of freedom dereases rapidly with inreasing length sales, one anobtain algorithms with linear or nearly linear saling. In the following, we will brieysummarize how this hierarhial treatment is implemented in the standard algorithms� Fourier Analysis:If the harge density is written in its Fourier representation�(r) =XK �KeiKrthe di�erent length sales that are in this ase given by � = 2�K deouple entirelyand the Fourier representation of the potential is given byV (r) =XK �KK2 eiKr (3)The Fourier analysis of the real spae harge density neessary to obtain its Fourieromponents �K and the synthesis of the potential in real spae from its Fourieromponents given by (Eq. 3) an be done with Fast Fourier methods at a ost ofN log2(N) where N is the number of grid points. The solution of Poisson's equationin a plane wave is thus a divide and onquer approah where the division is into thesingle Fourier omponents.� Multigrid methods (MG):Trying to solve Poisson's equation by any relaxation or iterative method (suh asonjugate gradient) on the �ne grid on whih one �nally wants to have the solutionleads to a number of iterations that inreases strongly with the size of the grid.The reason for this is that on a grid with a given spaing h one an eÆientlytreat Fourier omponents with a wavelength � = 2�K that is omparable to the thegrid spaing h, but the longer wavelength Fourier omponents onverge very slowly.This inrease in the number of iterations prevents a straightforward linear salingsolution of (Eq. 1). In the multigrid method, pioneered by A. Brandt [1℄, one istherefore introduing a hierarhy of grids with a grid spaing that is inreasing bya fator of two on eah hierarhi level. In ontrast to the Fourier method wherethe harge and the potential are diretly deomposed into omponents haraterizedby a ertain length sale, it is the residue that is passed from the �ne grids to theoarse grids in the MG method. The residue orresponds to the harge that wouldgive rise to a potential that is the di�erene between the exat potential and theapproximate potential at the urrent stage of the iteration.The solution of partial di�erential equations in a wavelet basis is typially done bypreonditioned iterative tehniques [2℄. The diagonal preonditioning approah, that is2



based on well established plane wave tehniques, will be presented in the next setion.The setion after the next will introdue multigrid for Poisson's equation in a waveletbasis. Even though the fundamental similarities between wavelet and multigrid shemeshave been reognized by many workers (suh as [3℄) this setions ontains to the best ofour knowledge the �rst thorough disussion of how both methods an pro�t from eahother.Within wavelet theory [4℄ one has two possible representations of a funtion f(x), asaling funtion representation f(x) =Xj sLmaxj �Lmaxj (x) (4)and a wavelet representation.f(x) =Xj sLminj �Lminj (x) + LmaxXl=LminXj dlj  lj(x) : (5)In ontrast to the saling funtion representation, the wavelet representation is a hierarhirepresentation. The wavelet at the hierarhi level l is related to the mother wavelet  by li(x) = p2l (2lx� i) (6)The harateristi length sale of a wavelet at resolution level l is therefore proportionalto 2�l. A wavelet on a ertain level l is a linear ombination of saling funtions at thehigher resolution level l + 1  li(x) = mXj=�m gj �l+12i+j(x) (7)Saling funtions at adjaent resolution levels are related by a similar re�nement relation�li(x) = mXj=�mhj �l+12i+j(x) (8)and hene also any wavelet at a resolution level l is a linear ombination of the highestresolution saling funtions. The so-alled fast wavelet transform allows us to transformbak and forth between a saling funtion and a wavelet representation.Let us now introdue wavelet representations of the potential and the harge densityV (x) = Xj V Lminj �Lminj (x) + LmaxXl=LminXj V lj  lj(x) (9)�(x) = Xj �Lminj �Lminj (x) + LmaxXl=LminXj �lj  lj(x) (10)Di�erent levels do not ompletely deouple, i.e the omponents on level l, V lj , of theexat overall solution do not satisfy the single level Poisson equationr20�Xj V lj  lj(x)1A 6= �4�0�Xj �lj  lj(x)1A (11)3



within the hosen disretization sheme. This is due to the fat that the wavelets are notperfetly loalized in Fourier spae, i.e. many frequenies are neessary to synthesize awavelet. However the amplitude of all these frequenies is learly peaked at a nonzeroharateristi frequeny for any wavelet with at least one vanishing moment. From thesaling property (Eq. 6) it follows, that the frequeny at whih the peak ours hangesby a fator of two on neighboring resolution grids. This suggest that the oupling betweenthe di�erent resolution levels is weak.In the preeding paragraph we presented the mathematial framework only for theone-dimensional ase. The generalization to the 3-dim ase is straightforward by usingtensor produts [4℄. Also in the rest of the paper only the one-dimensional form of themathematial formulas will presented for reasons of simpliity. It has to be stressedhowever that all the numerial results were obtained for the three-dimensional ase andwith periodi boundary onditions.3 The diagonal preonditioning approah for waveletsPreonditioning requires �nding a matrix with a simple struture that has eigenvalues andeigenvetors that are similar to the ones of the matrix in question [5, 6℄. The struturehas to be simple in the sense that it allows us to alulate the inverse easily. The simplestand most widely used struture in this respet is the struture of a diagonal matrix.As will be shown a diagonal preonditioning matrix an be found in a wavelet basis setand preonditioned onjugate gradient type methods are then a possible method for thesolution of Poissons equation expressed in di�erential form (Eq.1).As one adds suessive levels of wavelets to the basis set the largest eigenvalue growsby a fator of 4 for eah level. This an easily be understood from Fourier analysis. Asone inreases the resolution by a fator of 2 (i.e. inreases the largest Fourier vetor kmaxby a fator of 2) the largest eigenvalue inreases by a fator of 4. This basi salingproperty of the eigenvalue spetrum an easily be modeled by a diagonal matrix, whereall the diagonal elements are all equal on one resolution level, but inrease by a fator of4 as one goes to a higher resolution level. It is of ourse lear that all the details of thetrue spetrum are not reprodued by this approximations. The true spetrum onsists ofa large number of moderately degenerate eigenvalues. The spetrum of the approximatematrix onsists of a few highly degenerate eigenvalues where eah eigenvalue has all thesaling funtions of one resolution level as its eigenfuntions. The true eigenfuntions areof ourse mixtures of saling funtions on di�erent resolution levels, but if the waveletfamily is well loalized in Fourier spae the ontributions from neighboring resolutionlevels are weak. The loalization in Fourier spae inreases with the number of vanishingmoments [7℄ and therefore this diagonal preonditioning method works for instane muhbetter for lifted interpolating wavelets than for ordinary interpolating wavelets [8℄.Another line of arguments, that shows the weakness of the diagonal preonditioning,is the following. The preonditioning matrix an also be onsidered to be the diagonalpart of the matrix representing the Laplaian. Sine the diagonal elements inrease by a
4



fator of 4 on eah higher resolution level,Z ~ l+10 (x) �2�x2 l+10 (x)dx = 2 Z ~ l0(2x) �2�x2 l0(2x)dx (12)= 4 Z ~ lj(x) �2�x2 lj(x)dxthe spetrum of the matrix has again the orret saling properties. In the 3-dimensionalase there are three di�erent types of wavelets (produts of 2 saling funtions and 1wavelet, produts of 1 saling funtion and 2 wavelets and produts of 3 wavelets). Eahtype of wavelet gives rise to a di�erent diagonal element, but again all these diagonalelements di�er by a fator of 4 on di�erent resolution levels. Beause of the weak ouplingbetween di�erent resolution levels disussed above, we expet the matrix elements of theLaplaian involving wavelets at two di�erent resolutions levels to be small. The numerialexamination of the matrix elements (Fig. 1) on�rms this guess. It also shows that withinone resolution level the amplitude of the matrix elements deays rapidly with respet tothe distane of the two wavelets and is zero as soon as they do not any more overlap.Nevertheless, some matrix elements oupling nearest neighbor wavelets are not muhsmaller than the diagonal elements. One also �nds a few matrix elements between di�erentresolution levels that are less than one order of magnitude smaller than the one within asingle resolution level.The fat that all o�-diagonal matrix elements are negleted in urrent preonditionshemes explains their relatively slow onvergene. It amounts to �nding an approximateGreens funtion that is diagonal in a wavelet representation. This is obviously a ratherpoor approximation. Let us nevertheless stress that this diagonal matrix obtained byinverting a diagonal approximation to the Laplaian is a muh more reasonable approxi-mation for preonditioning purposes than the diagonal part of the Greens funtion. Thediagonal part of the Greens funtion has atually ompletely di�erent saling properties.The elements inrease by a fator of 2 as one goes to higher resolution levels instead ofdereasing by a fator of 4. The multigrid methods to be disussed later inlude also inan approximative way through Gauss-Seidel relaxations this o�-diagonal oupling withineah resolution blok as well as the oupling between the di�erent resolutions levels.In the following we will present some numerial results for the solution of the 3-dimensional Poisson equation in a wavelet basis using the diagonal preonditioning ap-proah. All the methods presented in this paper will have the property that the onver-gene rate is independent of the grid size. We have hosen 643 grids for all the numerialexamples. The fat that the number of iterations neessary to reah a ertain targetauray is independent of the system size together with the fat that a single iterationinvolves a ost that is linear with respet to the number of grid points ensures that thePoisson's equation an be solved with overall linear saling. Whereas we use here onlysimple equidistant grids, this linear saling has already been demonstrated with highlyadaptive grids in problems that involve many di�erent length sales [8, 9, 10, 11℄.The preonditioning step using simply the diagonal is given by�V lj = onst 4�l��lj (13)In analogy to Eq. 9,10, the ��lj's are the wavelet oeÆients on the l-th resolution level ofthe residue ��(r) = r2 ~V (r)+4��(r) in a wavelet representation. ~V (r) is the approximate5
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Figure 1: The absolute value of the amplitude of the matrix elements of the Laplaian ina basis of 6-th order interpolating (top panel) and 6-th order lifted interpolating (lowerpanel) wavelets. Shown are the elements within one resolution blok (medium-medium) aswell as the elements oupling to a higher resolution (medium-�ne) and a lower resolutionlevel (medium-oarse). The distane 1 orresponds to the nearest neighbor distane on themedium resolution level. Beause of the better loalization in Fourier spae of the liftedwavelets, the matrix is more diagonally dominant in the lifted wavelet representation.6



solution at a ertain iteration of the solution proess. The preonditioned residue �Vis then used to update the approximate potential ~V . In the ase of the preonditionedsteepest desent method used here this update simply reads~V  ~V + ��V (14)where � is an appropriate step size. As disussed above the onstant in (Eq. 13) dependsin the three dimensional ase upon whih type of wavelet is implied sine it is the inverseof the Laplae matrix element between two wavelets of this type.(Fig. 2) shows numerial results for several wavelet families. The slow onvergeneof the interpolating wavelets is due to the fat that they have a non-vanishing averageand therefore a non-vanishing zero Fourier omponent [8℄. Hene they are all loalized inFourier spae at the origin instead of being loalized around a non-zero frequeny. Thisde�ieny an be eliminated by lifting. The Fourier power spetrum of the lifted waveletstends to zero at the origin with zero slope for the family with two vanishing momentsonsidered here. Lifting the wavelet twie leads to 4 vanishing moments and a even betterloalization in Fourier spae. The improvement in the onvergene rate is however onlymarginal. The higher 8-th order lifted interpolating wavelet is smoother than its 6-thorder ounterpart and hene better loalized in the high frequeny part. This also leadsto a slightly faster onvergene.
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Figure 2: The redution of the residue during a steepest desent iteration (left hand panel)and a FGMRES iteration (right hand panel) with interpolating and lifted interpolatingwavelets.Combining the diagonal preonditioning (Eq. 13) with a FGMRES onvergene ael-erator [12℄ instead of using it within a steepest desent minimization gives a signi�antlyfaster onvergene. The number of iterations an nearly be ut into half as shown in(Fig 2).Up to now we have only onsidered the ase where the elements of the matrix repre-senting the Laplaian were alulated within the same wavelet family that was used to7



analyze the residue by wavelet transformations to do the preonditioning step. More gen-eral shemes an however be implemented. It is not even neessary that the alulationof the Laplaian matrix elements is done in a wavelet basis. One an instead use simpleseond order �nite di�erenes, whih in the one-dimensional ase are given by1h2 (�Vi�1 + 2Vi � Vi+1) ; (15)or some higher order �nite di�erenes for the alulation of the matrix elements. Thesaling relation (Eq. 12) does not any more hold exatly, but it is ful�lled approximatelyand the shemes works as well as in the pure wavelet ase as is shown in (Fig. 3).
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Figure 3: The onvergene rate for the ase where Poisson's equation is solved with �nitedi�erenes and 8-th order lifted wavelets are used for the preonditioned steepest desent.
4 The MG approah for waveletsThe aim of this part of the artile is twofold. One aspet is how to speed up the on-vergene of the solution proess for Poisson's equation expressed in a wavelet basis setompared to the diagonal preonditioning approah. The other aspet is how to aeleratemultigrid shemes by inorporating wavelet onepts. The part therefore begins with abrief review of the multigrid method.(Fig. 4) shematially shows the algorithm of a standard multigrid V yle [13, 14℄.Even though the sheme is valid in any dimension, a two dimensional setting is suggestedby the �gure, sine the data is represented as squares. Sine less data is available on theoarse grids, the squares holding the oarse grid data are inreasingly smaller. It has to bestressed that the remarks of the end of the �rst part remain valid and that in partiularall the numerial alulations are 3-dim alulations. The upper half of the �gure showsthe �rst part of the V yle where one goes from the �nest grid to the oarsest grid andthe lower half the seond part where one goes bak to the �nest grid.8
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Figure 4: Shemati representation of a multigrid V yle as desribed in the text. GSdenotes a red-blak Gauss-Seidel relaxation, R restrition, P prolongation and + additionof the data sets. The numbering in parentheses gives the ordering of the di�erent stepsof the algorithm.In the �rst part of the V yle the potential on all hierarhi grids is improved bya standard red-blak Gauss-Seidel relaxation denoted by GS. The GS relaxation reduesthe error omponents of wavelengths � that are omparable to the grid spaing h veryeÆiently. In the 3-dimensional ase we are onsidering here, the smoothing fator is .445(page 74 of ref [13℄). Sine we use 2 GS relaxations roughly one quarter of the error aroundthe wavelength h survives the relaxations on eah level. As a onsequene the residue ��ontains mainly longer wavelengths whih then in turn are again eÆiently eliminatedby the GS relaxations on the oarser grids. Nevertheless, the remaining quarter of theshorter wavelengths surviving the relaxations on the �ner grid pollutes the residue on theoarser grid through aliasing e�ets. Aliasing pollution means that even if the residue onthe �ner grid would ontain only wavelengths around h (and in partiular no wavelengtharound 2h) the restrited quantity would not be identially zero.In the seond part of the V yle the solutions obtained by relaxation on the oarsegrid are prolongated to the �ne grids and added to the existing solutions on eah level.Aliasing pollution is again present in the prolongation proedure. Due to the aumulatedaliasing errors 2 GS relaxations are again done on eah level before proeeding to the next�ner level.To a �rst approximation the di�erent representations of � at the top of (Fig. 4) rep-resent Fourier �ltered versions of the real spae data set � on the �nest grid. The large9



data set ontains all the Fourier omponents, while the smaller data sets ontain onlylower and lower frequeny parts of �. In the 1-dimensional ase only the lower half of thespetrum is still dominating when going to the oarse grid, in the 3-dimensional ase it isonly one eight of the spetrum. Beause of the various aliasing errors desribed above theFourier deomposition is however not perfet. Obviously it would be desirable to makethis Fourier deomposition as perfet as possible. In the absene of aliasing errors, theGS relaxations would not have to deal with any Fourier omponents spilling over fromhigher or lower resolution grids.Let us now postulate ideal restrition and prolongation operators and disuss theirproperties. As follows from the disussion above, they should provide for a dyadi deom-position of the Fourier spae. Consequently the restrition operator would have to be aperfet low pass �lter for the lower half of the spetrum (in the 1-dim ase, in the 3-dimase only 1/8 would survive). We will refer to this property in following as frequenyseparation property. The degree of perfetness an be quanti�ed by the k dependentfuntion Sl(k) = sXi (sli)2=N (16)where N is the number of grid points on resolution level l. The k dependene entersthrough the requirement that the signal sLmaxi on the �nest resolution level is a pureharmoni, sLmaxi = exp(I2�ki=N) (17)The funtion Sl(k) for a perfet restrition operator is shown in (Fig 5). Suh ideal gridtransfer operators have to satisfy a seond property, that will be baptized the identityproperty. The prolongation operator has to bring bak exatly onto the �ner grid thelong wavelength assoiated with the oarser grid. This an only be true if prolongationfollowed by a restrition gives the identity. A third desirable property would be that theoarsed harge density represents as faithfully as possible the signi�ant features of theoriginal harge density. In partiular the oarsed harge density should have the samemultipoles and most importantly the same monopole. The onservation of the monopolejust means that the total harge is idential on all grid levels. This third property will bealled the multipole onservation property in the following.With the ideal grid transfer operators, the solution of Poisson's equation would bea divide and onquer approah in Fourier spae and it ould be done with a single Vyle with a moderate number of GS relaxations on eah resolution level. In ontrast toa solution in a plane wave basis the division would not be into single Fourier omponentsbut into dyadi parts of the Fourier spetrum. For the ase of our postulated ideal gridtransfer operators it also would not matter whether the GS relaxations are applied whengoing up or going down, only the total number of GS relaxations on eah level wouldount.To establish the relation between multigrid grid transfer operators and wavelet theory,let us point out a formal similarity. For vanishing d oeÆients, the wavelet analysis stepis given by (Eq. 26 of ref. [7℄) s2hi = mXj=�m ~hjshj+2i (18)10
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Figure 5: The ideal funtion Sl(k) de�ned in (Eq. 16) on three resolution levels denotedby �rst oarse level, seond oarse level and third oarse level. On the zeroth originallevel the funtion is idential to one over the entire interval. It gives a perfet dyadideomposition of the Fourier spetrum.and is formally idential to a restrition operation. A wavelet synthesis step for the soeÆients is given by (formula 27 of ref. [7℄)sh2i = m=2Xj=�m=2 h2j s2hi�j (19)sh2i+1 = m=2Xj=�m=2 h2j+1 s2hi�j :and is formally idential to a prolongation operation. One an now for example easily seethat the injetion sheme for the restrition and linear interpolation for the prolongationpart orresponds to a wavelet analysis and synthesis steps for 1st order interpolatingwavelets. Using the values of the �lters ~h and h for interpolating wavelets we obtains2hi = sh2i (20)and sh2i = s2hi (21)sh2i+1 = 12 s2hi + 12 s2hi+1 :whih is the standard injetion and interpolation. As a onsequene of the fat that itan be onsidered as a wavelet forward and bakward transformation, the ombination ofinjetion and interpolation satisfy the identity property of our ideal grid transfer operatorpair, namely that applying a restrition onto a prolongation gives the identity.11



Usually injetion is replaed by the full weighting sheme,s2hi = 14 sh2i�1 + 12 sh2i + 14 sh2i+1 : (22)This sheme has the advantage that it onserves averages, i.e it satis�es the monopolepart of the multipole onservation property of an ideal restrition operator. Applying itto a harge density thus ensures that the total harge is the same on any grid level. Tryingto put the full weighting sheme into the wavelet theory framework gives a �lter ~h withnonzero values of ~h�1 = 14 , ~h0 = 12 , ~h1 = 14 This �lter ~h does not satisfy the orthogonalityrelations of wavelet theory (formula 8 of ref. [7℄) with the h �lter orresponding to linearinterpolation. Hene a prolongation followed by a restrition does not give the identity.A pair of similar restrition and prolongation operators that onserve averages anhowever be derived from wavelet theory. Instead of using interpolating wavelets we haveto use lifted interpolating wavelets [15, 16℄. In this way we an obtain both properties,average onservation and the identity for a prolongation restrition sequene. Using the�lters derived in ref. [7℄ we obtains2hi = �18 sh2i�2 + 14 sh2i�1 + 34 sh2i + 14 sh2i+1 � 18 sh2i+2 (23)sh2i = s2hi (24)sh2i+1 = 12 s2hi + 12 s2hi+1 :Let us �nally disuss the �rst property of our postulated ideal restrition operator,namely that it is a perfet low pass �lter. Obviously any �nite length �lter an only be anapproximate perfet low pass �lter. (Fig 6) shows the S funtion for several grid transferoperators. One learly sees that the Full Weighting operator is a poor low pass �lter, the�lter derived from seond degree lifted wavelets is already better and the �lters obtainedfrom 10th degree Daubehies wavelets and twofold lifted 6th order interpolating waveletsare best. The Daubehies 6th degree �lter is intermediate and of nearly idential qualityas the one that is a mixture of the Full Weighting and seond degree lifted wavelet �lters.In ontrast to the former, the later does however not ful�ll the identity property.The degree of perfetness for the frequeny separation is also related to the multipoleonservation property of our postulated ideal grid transfer operators. As one sees from(Fig. 6) �lters whih orrespond to wavelet families with many vanishing are loser tobeing ideal for frequeny separation than those with few vanishing moments. At the sametime the number of vanishing moments determines how many multipoles are onservedwhen the harge density is brought onto the oarser grids.The right panel of (Fig. 7) shows the onvergene rate of a sequene of V yles forthe full weighting/interpolation (Eq. 22,21) sheme and various wavelet based shemes,namely the sheme obtained from seond order lifted wavelets (Eq. 23,24), the orre-sponding sheme, but obtained from twofold lifted 6-th order wavelets as well as shemesobtained from 6th and 10th order Daubehies wavelets. The numerial values for the�lters are listed in the Appendix. One an observe a lear orrelation between the onver-gene rate and the the degree of perfetness of the S funtion. A high degree of perfetness12
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Figure 6: The funtion Sl(k) de�ned in Eq. 16 on the oarser resolution levels Lmax� 1,Lmax � 2 and Lmax � 3 (orresponding to grid spaings of 2h, 4h and 8h if the �nestresolution is h) for several restrition operators: Top left, Full weighting; middle left, 2ndorder lifted wavelets, bottom left 6th order twofold lifted wavelets; top right half and halfmixture between Full Weighting and 2nd order lifted wavelets; middle right, 6th orderDaubehies; bottom right, 10th order Daubehies. S was alulated numerially for aninitial data set of 256 points. Hene the allowed values of k in (Eq. 17) range form -128to 127. The lower half, quarter and eight of the spetrum where the ideal funtion wouldswith between the values of 0 and 1 are denoted by vertial lines.13



is partiularly useful in onnetion with high order disretizations of the Laplaian. Mostof the �lters of the grid transfer operators are longer than the standard Full Weighting�lter, whih just has 3 elements. The lifted 2nd order interpolating wavelet restrition�lter has for instane 5 elements and the 6-th degree Daubehies �lter 6 elements. Thisdoes however not lead to a substantial inrease of the CPU time. This omes from thefat that on modern omputers the transfer of the data into the ahe is the most timeonsuming part. How many numerial operations are then performed on these data resid-ing in ahe has only a minor inuene on the timing. The new wavelet based shemes forrestrition and prolongation are therefore more eÆient than the Full Weighting sheme,both for �nite di�erene disretizations and saling funtion basis sets. It is also obviousthat the multigrid approah for saling/wavelet funtion basis sets is more eÆient thanthe diagonal preonditioning approah.The identity property for a restrition prolongation operator pair was only neessaryfor the ase of operators where the restrition part is a perfet low pass �lter. Onemight therefore wonder how useful it is in the ontext of the only nearly perfet �lters.The numerial experiene suggests that it is nevertheless a useful property. One an forexample ompare the onvergene rates using either the 6-th order Daubehies �lters orthe �lter that is the average of Full Weighting and lifted 2nd order wavelet �lters. (Fig. 6)shows that their restrition parts have very similar S funtions. Nevertheless we alwaysfound a better onvergene rate with the Daubehies �lter whih satis�es the identityproperty.For the 2-dimensional Poisson equation it has been shown, that the onvergene rateompared to the standard Full Weighting sheme an be improved by tailoring grid trans-fer operators for the relaxation sheme used [17℄. The theoretial foundations for this isfurnished by loal Fourier analysis [18℄. The same approah ould ertainly also be usedfor the 3-dimensional ase onsidered here. It is to be expeted that the grid transferoperators found by suh an optimization would be very lose to the ones that we haveobtained from wavelet theory.The main justi�ation for the relaxations in the upper part of the traditional multigridalgorithm shown in (Fig. 4) is to eliminate the high frequenies. This an however be donediretly by fast wavelet transformations based on wavelets that have good loalizationproperties in frequeny spae suh as lifted interpolating wavelets. As a onsequene thetraditional multigrid algorithms an be simpli�ed onsiderably as shown in (Fig. 8). Usingwavelet based restrition and prolongation operators we an ompletely eliminate the GSrelaxation in the �rst part of the V yle where we go from the �ne grid to the oarsestgrid. We baptize suh a simpli�ed V yle a halfway V yle. The numerial results,obtained with the halfway V yle, shown in the right hand plots of (Fig. 7), demonstratethat the onvergene is slightly faster than for the traditional multigrid algorithm basedon the same restrition and prolongation sheme. In addition one step is faster. It isnot neessary to alulate the residue after the GS relaxations. Otherwise the numberof GS relaxations and restritions/prolongations is idential in the full and halfway Vyle. On purpose no CPU times are given in this ontext beause optimization of ertainroutines [19℄ an entirely hange these timings. Beause the residue is never alulated inthe halfway V yle, the memory requirements are also redued.The number of GS relaxations in the halfway V yle was hosen to be 4 in order to14
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Figure 7: The onvergene rate of a sequene of V yles (left hand side) and halfwayV yles (right hand side). In the upper two plots Poisson's equation was disretized byseond order �nite di�erenes, In the middle two plots by 6-th order �nite di�erenes andin the lower two plots by 6-th order and 10th order (for the ase of transfer operators basedon DAUB 10) interpolating saling funtions. Shown are results for the Full Weightingsheme (FW) seond order lifted wavelets (LFT 2), twofold lifted 6-th order wavelets (2LFT 6) and 6-th and 10-th order Daubehies wavelets. In the ase of ordinary V yles 2GS relaxations were done on the �nest level both when going up and oming bak down,in the ase of the halfway V yle 4 GS relaxation were done on the �nest level.15
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Figure 9: The onvergene rate for halfway V yles with 4, 3, 2 and 1 GS relaxation onthe �nest grid level. In the left panel 2nd order �nite di�erenes were used, in the rightpanel 6th order �nite di�erenes.In all the previous examples we spei�ed the number of GS relaxations on the �nestgrid level. On the oarser grid levels the number of iterations was allowed to inreaseby a fator of two per grid level. In this way it was pratially always possible to �ndthe exat solution on the most oarse grid. In addition we found that this trik slightly16



redues the number of iterations and the total CPU time. The overall behavior of all thedi�erent methods is however idential when the number of GS relaxation is onstant oneah grid level.5 ConlusionsOur results demonstrate that halfway V yles with the restrition and prolongationsteps based on wavelet theory are the most eÆient approah for the solution of the 3-dimensional Poisson's equation. It is most eÆient both for �nite di�erene disretizationsand for the ase where saling funtions or wavelets are used as basis funtions. Weexpet that the approah should also be the most eÆient one in onnetion with �niteelements. It is essential that the wavelet family used for the derivation of the restritionand prolongation shemes has at least one vanishing moment and onserves thus averagequantities on the various grid levels. Wavelet families with more vanishing moments donot lead an appreiable inrease of the onvergene rate ompared to the ase of onevanishing moment for low order disretizations of Poissons equation, but lead a modestfurther inrease for high order disretizations. In the ase where a wavelet family was usedto disretize the Laplae operator, it is best to use the same wavelet family to onstrutthe grid transfer operators. In addition to inreased eÆieny of the proposed halfway Vyle in terms of the CPU time, it is also simpler than the standard V yle. This makesnot only programming easier, but also redues the memory requirements.6 AknowledgmentsI was fortunate to have several disussion with Ahi Brandt about this work. His greatinsight on multigrid methods, that he was willing to share with me, helped a lot to improvethe manusript. I thank him very muh for his interest and advie.7 AppendixFilter for twofold lifted 6th order interpolating wavelets [21℄:h1=75/128,h3=-25/256,h5=3/256,~h0=2721/4096, ~h1=9/32, ~h2=-243/2048, ~h3=-1/32,~h4=87/2048, ~h6=-13/2048, ~h8=3/8192 .The values for negative indies follwo from the symetry hi = h�i and ~hi = ~h�i.Filters for 6-th order Daubehies wavelets [4℄:h�2=0.3326705529500826159985d0, h�1=0.8068915093110925764944d0,h0=0.4598775021184915700951d0, h1=-0.1350110200102545886963d0,h2=-0.0854412738820266616928d0, h3= 0.0352262918857095366027d0 .~hi = hi.Filters for 10-th order extremal Daubehies wavelets [4℄:h�4=.1601023979741929d0, h�3=.6038292697971897d0,h�2=.7243085284377729d0, h�1=.1384281459013207d0,17
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