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Abstract

A matrix variate Dirichlet vector is a random vector of independent Wishart ma-
trices ‘divided’ by their sum. Many properties of Dirichlet vectors are usually
established through integral computations assuming existence of density for the
Wishart’s. We propose a method to deal with the general case where densities need
not exist. On the other hand, in dimension larger than 2, Dirichlet processes reduce
to Dirichlet vectors and posterior of Dirichlet need not be Dirichlet.
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Random matrices, Wishart distribution.

1 Introduction

Random matrix topic is known for its theoretical richness but also for its appli-
cations in a wide range of areas of both mathematics and theoretical physics.
We are concerned here with Dirichlet distributions on matrix spaces. In di-
mension one, this interesting distribution is that of a vector of independent
Gamma’s real random variables divided by their sum. As Wishart distribu-
tions are usually considered as the generalization to the multivariate case of
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Gamma distributions, multivariate Dirichlet distribution is defined as the dis-
tribution of a vector of independent Wishart matrices ‘divided ’ by their sum
whenever a division algorithm is cautiously defined in the space of positive
definite symmetric matrices (see e.g. [3]).
Several properties of dimension one Dirichlet’s can be extended to higher di-
mension through elementary but rather nontrivial integral computations when
assuming the existence of density for the Wishart’s (see e.g. [3]). However such
densities need not always exist and our purpose is to consider the general
case. Our method, illustrated by two examples, hinges on a deep result due to
Casalis-Letac [1] which states that the Dirichlet distribution doest not depend
neither on the common second parameter of the Wishart’s nor on the division
algorithm.
The paper is structured as follows. In Section 2 we precise our notations and
the notion of division algorithm. Section 3 contains the main results through
two examples. In Section 4 it is shown that Dirichlet processes reduce to
Dirichlet vectors and the last Section concerns the Bayesian approach.

2 Notations

Let (Ω,F ,P) be a probability space on which are defined all the random vari-
ables (r.v.) mentioned in this paper. The probability distribution of a r.v. X
will be denoted PX .
Let n = 1, 2, . . . and m = 1, 2, . . . be two positive integers and letMn×m (resp.
Mn) denote the vector space of real matrices with n lines and m (resp. n)
columns. Let Idn ∈Mn denote the identity matrix. The transpose of a matrix
x will be denoted xT .
Let Vn denote the euclidean space of symmetric n× n real matrices endowed
with the inner product (x, y) = tr(xy) . The Lebesgue measure on Vn is de-
fined by imposing unit measure to the unit cube in this space. Let V+

n be the

cone of real symmetric positive definite n× n matrices and let V+

n denote its
closure.
Let Tn denote the set of lower triangular real matrices and let T +

n be the set
of lower triangular real matrices with (strictly) positive diagonal terms.
Obviously, elements of V+

n and that of T +
n are invertible.

Let Gn be the set of mappings ν : Vn −→ Vn such that there exists an in-
vertible a ∈ Mn with ν(x) = axaT for any x ∈ Vn, that is the subgroup of
automorphisms which preserve V+

n .
Let Cn be the connected component of Gn containing Idn.

Definition 1 A division algorithm is a measurable mapping g : V+
n −→ Cn

such that g(x)(x) = Idn for all x ∈ V+
n
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We will be concerned by the following two usual division algorithms

g(x)(y) = y−
1
2xy−

1
2 (1)

g(x)(y) = c(y)−1x(c(y)−1)T (2)

where c(y) is the matrix of T +
n appearing in the Cholesky decomposition of

y ∈ V+
n , that is c(y)c(y)T = y. In this case we will take

y
1
2 = c(y) ∈ T +

n , so that y−
1
2 ∈ T +

n and g(x)(y) = y−
1
2x(y−

1
2 )T (3)

For any positive integer k = 1, 2, . . ., let

Qn(k) =
{

(p1, . . . , pk) : pi ∈ V
+

n , i = 1, . . . , k, and Σk
i=1 pi = Idn

}
Let finally

Λn =
{

0,
1

2
,
2

2
, . . . ,

n− 1

2

}
∪
(
n− 1

2
,∞

)
.

3 Wishart and Dirichlet distributions on matrix spaces

Definition 2 For α ∈ Λn and a ∈ V+
n , the Wishart probability measure γ(n)

α,a

on V+
n is defined through its Laplace transform:

L(θ) =
∫
V+

n

e(θ,x) γ(n)
α,a(dx) =

(
det(a)

det(a− θ)

)α

for a− θ ∈ V+
n .

If α > n−1
2

, then the probability measure γ(n)
α,a is concentrated on the open cone

V+
n and has a density with respect to the Lebesgue measure on Vn of the form

γ(n)
α,a(dx) =

[det(a)]α

Γn(α)
[det(x)]α−

n+1
2 e−(a,x)IV+

n
(x) dx .

If α ∈ {0, 1
2
, . . . , n−1

2
}, then γ(n)

α,a is concentrated on the boundary ∂ V+
n of the

cone, thus it does not have a density with respect to the Lebesgue measure
on Vn.

Now, consider a measure on the k-th cartesian power of V+
n which is a product

of Wishart measures with same second parameter

γ(⊗k) = γ(n)
α1,a
⊗ . . .⊗ γ(n)

αk,a
,
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such that
∑k
j=1 αj >

n−1
2

. That is its support is

H = {(x1, . . . , xk) ∈
[
V+

n

]×k
: s = x1 + . . .+ xk ∈ V+

n } .

Let h : H → Qn(k) be defined by

h(x1, . . . , xk) = s−1/2(x1, . . . , xk)s
−1/2 , ∀ x1, . . . , xk ∈ H.

Definition 3 The Dirichlet probability measure Dirn (α1, . . . , αk) on Qn(k)
is defined as transformation of γ(⊗k) through the mapping h, that is for any
A, a Borel set in Qn(k),

Dirn (α1, . . . , αk) (A) = γ(⊗k)(h−1(A)) .

If αi ∈ (n−1
2
,∞), for all i = 1, . . . , k, then the projection of Dirn (α1, . . . , αk)

on the first k − 1 matrix coordinates is supported on the open set

U (n)
k = {(x1, . . . , xk−1) ∈

[
V+
n

]×(k−1)
: Idn −

k−1∑
j=1

xj ∈ V+
n }

and has the density with respect to the Lebesgue measure on [V+
n ]
×(k−1)

of the
form

f(x) =

Γn

(
k∑
j=1

αj

)
k∏
j=1

Γn(αj)

k−1∏
j=1

(det(xj))
αj−n+1

2

det

Idn −
k−1∑
j=1

xj

αk−n+1
2

IU(n)
k

(x).

(4)

Remark 1 Alternatively, if W1, . . . ,Wk are independent Wishart random ma-
trices, Wi ∼ γ(n)

αi,a
, i = 1, . . . , k, such that W = W1+. . .+Wk is positive definite

a.s. then the random vector

P = (P1, . . . , Pk) = W−1/2(W1, . . . ,Wk)W
−1/2 ∼ Dirn (α1, . . . , αk) .

If αi ∈ (n−1
2
,∞), for all i = 1, . . . , k, then (P1, . . . , Pk−1) has the density given

by (4) otherwise there is no density.

Actually the Dirichlet distribution does not depend neither on the second
parameter a of the Wishart’s nor on the division algorithm. This is precised
by the following nice theorem of Casalis-Letac ([1], Theorem 3.1) which will
be crucial in our proofs.

Theorem 2 Let Wi
ind∼ γ(n)

αi,a
, i = 1, . . . , k be independent Wishart random ma-

trices such that W = W1+. . .+Wk is positive definite and let g be any division
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algorithm then the random vector (g(W )W1, . . . , g(W )Wk) is independent of
W and its distribution does not depend neither on a nor on g.

4 Main results

4.1 Diagonal blocks

The following theorem shows that the vector of diagonal blocks of a Dirichlet
is still a Dirichlet.

Theorem 3 Let P = (P1, . . . , Pk) be a random vector assuming values in
Qn(k) having a Dirichlet distribution Dirn (α1, . . . , αk). Let y be a n × m,
m ≤ n, non-random matrix such that yTy = Im. Then

yTPy ∼ Dirm (α1, . . . , αk) . (5)

The same holds if y is random and independent of P.

We divide the proof into two lemmas.

Lemma 4 Let b ∈ Mn×m be a non-random matrix such that x ∈ Mm×1 and

bx = 0 implies x = 0. Let Wi
ind∼ γ(n)

αi,a
, i = 1, . . . , k be independent Wishart

random matrices such that
∑k
i=1 αi ∈ (n−1

2
,∞), then the vector of random

matrices

Φ(b) = (bTWb)−
1
2 bT (W1, . . . ,Wk)b(b

TWb)−
1
2

and W =
∑k
i=1Wi are independent and Φ(b) ∼ Dirm (α1, . . . , αk).

Proof of lemma 4
The hypothesis on b implies bTWib ∈ V+

m so that Φ(b) is a random vector with
k components ∈ V+

m.

As bTWib
ind∼ γ

(m)
(αi,bT ab)

, it is seen by Theorem 2 that Φ(b) ∼ Dirm (α1, . . . , αk)

and that for any Borel subset A of (V+
m)k

P(Φ(b) ∈ A) does not depend on parameter a. (6)

Let

D = W− 1
2 (W1, . . . ,Wk)W

− 1
2 .

Observing that

Φ(b) = (bTWb)−
1
2 bTW

1
2DW

1
2 b(bTWb)−

1
2 ,

write Φ(b) as a function of D and W , say Φ(b) = f(D,W ). Then,
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P(Φ(b) ∈ A|W = w) = P(f(D,W ) ∈ A|W = w) =
∫
d∈Qn(k)

I{d:f(d,w)∈A}PD|W=w(d).

As D and W are independent by Theorem 2, we have

P(Φ(b) ∈ A|W = w) =
∫
d∈Qn(k)

I{d:f(d,w)∈A}PD(d). (7)

Again due to Theorem 2, PD does not depend on a, so that (7) yields

P(Φ(b) ∈ A|W = w) does not depend on parameter a. (8)

Now, writing equality

P(Φ(b) ∈ A) =
∫
w∈V+

n

P(Φ(b) ∈ A|W = w)PW (w)

as

∫
w∈V+

n

[P(Φ(b) ∈ A)− P(Φ(b) ∈ A|W = w)]PW (w) = 0

and observing that W has a Wishart density proportional to e−(w,a)dw because
of the condition

∑k
i=1 αi ∈ (n−1

2
,∞), we arrive at∫

w∈V+
n

[P(Φ(b) ∈ A)− P(Φ(b) ∈ A|W = w)]e−(w,a)dw = 0. (9)

By (6) and (7), it is seen that the expression within brackets in (9) does not
depend on a. Further, if we replace all the Wishart’s Wi(αi, a) with indepen-
dent Wi(αi, a

′), the same arguments used above show that equality (9) still
holds for a′ instead of a. Thus (9) holds for any a ∈ V+

n . As for the Laplace
transform, this implies that

P(Φ(b) ∈ A) = P(Φ(b) ∈ A|W = w) for a.a. w.

In other words Φ(b) and W are independent. �

Lemma 5 Let B : V+
n −→ Mn×m be a measurable mapping such that the

conditions v ∈ V+
n , x ∈Mm×1 and B(v)x = 0 imply x = 0.

Let Wi, αi (i = 1, . . . , k),W and Φ be as in lemma 4.
Then, the vector of random matrices Φ(B(W )) is Dirm (α1, . . . , αk).

Proof of lemma 5
For any Borel subset A of (V+

m)k, we have

P(Φ(B(W )) ∈ A) =
∫
w∈V+

n

P(Φ(B(w)) ∈ A|W = w)PW (w)
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Applying lemma 4 with b = B(w), it is then seen that

P(Φ(B(W )) ∈ A) =
∫
w∈V+

n

P(Φ(B(w)) ∈ A))PW (w)

=
∫
w∈V+

n

Dirm (α1, . . . , αk) (A)PW (w)

=Dirm (α1, . . . , αk) (A). �

Proof of Theorem 3
Let y be non-random as in the statement of theorem 3. Take B(v) = v−

1
2y for

any v ∈ V+
n . Then x ∈ Mm×1 and B(v)x = 0 means that v−

1
2yx = 0. This

straightforward implies that v
1
2v−

1
2yx = 0, yx = 0, yTyx = 0 and x = 0 so

that B satifies the requirement of lemma 4.
Then B(W ) = W− 1

2y implies that

(B(W )TWB(W ))−
1
2 = (yTW− 1

2WW− 1
2y)−

1
2 = 1.

Therefore

Φ(B(W )) = (B(W )TWB(W ))−
1
2B(W )T (W1, . . . ,Wk)B(W )(B(W )TWB(W ))−

1
2

reduces to

Φ(B(W )) = B(W )T (W1, . . . ,Wk)B(W ) = yTW− 1
2 (W1, . . . ,Wk)W

− 1
2y.

Since Φ(B(W )) is a Dirichlet vector by lemma 4 and the same for

W− 1
2 (W1, . . . ,Wk)W

− 1
2
d
= P by definition, we get for any deterministic y such

that yTy = Idm
yTPy ∼ Dirm (α1, . . . , αk) . (10)

Next, suppose that y is a random matrix such that yTy = Idm and suppose

that y and P are independent. Let Wi
ind∼ γ

(m)
(αi,a)

, i = 1, . . . , k be indepen-
dent Wishart’s independent of y. Then (10) implies that the conditional dis-

tribution of yTW− 1
2 (W1, . . . ,Wk)W

− 1
2y given y is Dirm (α1, . . . , αk) because

W− 1
2 (W1, . . . ,Wk)W

− 1
2 and y are independent. Integrating out w.r.t. the dis-

tribution of y we find that

yTW− 1
2 (W1, . . . ,Wk)W

− 1
2y ∼ Dirm (α1, . . . , αk) . (11)

Morevoer, as y and W− 1
2 (W1, . . . ,Wk)W

− 1
2 are independent and as y and

P are independent by hypothesis and finally as W− 1
2 (W1, . . . ,Wk)W

− 1
2

d
=

P by definition, we have (y,W− 1
2 (W1, . . . ,Wk)W

− 1
2 )

d
= (y,P). Thus

yTW− 1
2 (W1, . . . ,Wk)W

− 1
2y

d
= yTPy and (11) implies yTPy ∼ Dirm (α1, . . . , αk).

�
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4.2 Stick-breaking scheme

In dimension one (n = m = 1), it is well known that if P(j) ind∼
Dirn

(
α

(j)
1 , . . . , α

(j)
k

)
, j = 1, 2 are two independent Dirichlet vectors and if

Q ∼ Beta(s(1), s(2)), where s(j) =
∑k
i=1 α

(j)
i , is independent of (P(1),P(2)),

then QP(1) + (1 − Q)P(2) ∼ Dirn
(
s(1), s(1)

)
(see e.g. [6], Section 7). This

result which was used for example in the Sethuraman stick-breaking construc-
tive definition of a Dirichlet process ([5] lemma 3.1), is generalized to the the
matrix case by the following theorem where square root of a matrix ∈ V+

n is
taken in the sense of (3):

Theorem 6 Let P(j) = (P
(j)
1 , . . . , P

(j)
k )

ind∼ Dirn(α
(j)
1 , . . . , α

(j)
k ), j = 1, . . . , J

be independent matrix Dirichlet random vectors such that α
(j)
i ∈ Λn, i =

1, . . . , k, and s(j) =
∑k
i=1 α

(j)
i > n−1

2
.

Let Q = (Q1, . . . , QJ) ∼ Dirn(s(1), . . . , s(J)) be a real r.v. independent of the
P(j)’s. Then(
Q

1
2
1 P(1)(Q

1
2
1 )T , . . . , Q

1
2
JP(J)(Q

1
2
J )T

)
∼ Dirn(α

(1)
1 , . . . , α

(1)
k , . . . , α

(J)
1 , . . . , α

(J)
k )

and

Q
1
2
1 P(1)(Q

1
2
1 )T+. . .+Q

1
2
JP(J)(Q

1
2
J )T ∼ Dirn(α

(1)
1 +. . .+α

(J)
1 , . . . , α

(1)
k +. . .+α

(J)
k ).

Proof. As the definition of Dirichlet distribution doest not depend on the di-
vision algorithm (again by Theorem 2), we will use here the division agorithm
derived from Choleski decomposition as mentioned in (2) and (3).
First, using (2) and the independence hypothesis it is seen that there exists

W
(j)
i

ind∼ γ
(n)

α
(j)
i ,a

, i = 1, . . . , k and j = 1, . . . , J

such that
P(j) = W

− 1
2

(j) (W
(j)
1 , . . . ,W

(j)
k )(W

− 1
2

(j) )T (12)

where W(j) =
∑k
i=1 W

(j)
i .

Moreover, as the sum over i of independent Wishart’s γ
(n)

α
(j)
i ,a

is a Wishart

γ
(n)

s(j),a
, it can be assumed that

Qj = W− 1
2W(j)(W

− 1
2 )T (13)

where W =
∑K
j=1 W(j).

The point is that, since W(j) = W
1
2

(j)(W
1
2

(j))
T by Cholesky decomposition, (13)

8



can be written as

Qj = W− 1
2W

1
2

(j)(W
1
2

(j))
T (W− 1

2 )T = W− 1
2W

1
2

(j)(W
− 1

2W
1
2

(j))
T (14)

which is the Cholesky decomposition of Qj, so that we get

Q
1
2
j = W− 1

2W
1
2

(j). (15)

Then (12) and (15) yield

Q
1
2
j P(j)(Q

1
2
j )T = W− 1

2W
1
2

(j)W
− 1

2

(j) (W
(j)
1 , . . . ,W

(j)
k )(W

− 1
2

(j) )T (W− 1
2W

1
2

(j))
T

and
Q

1
2
j P(j)(Q

1
2
j )T = W− 1

2 (W
(j)
1 , . . . ,W

(j)
k )(W− 1

2 )T . (16)

Writing (16) for j = 1, . . . , J , it is seen that
(
Q

1
2
1 P(1)(Q

1
2
1 )T , . . . , Q

1
2
JP(J)(Q

1
2
J )T

)

= W− 1
2

(
W

(1)
1 , . . . ,W

(1)
k , . . . ,W

(J)
1 , . . . ,W

(J)
k

)
(W− 1

2 )T (17)

and thus has, when using division algorithm (3), the announced Dirichlet

distribution since W =
∑J
j=1

∑K
i=1 W

(j)
i .

Finally, representation (17) straightforward yields

Q
1
2
1 P(1)(Q

1
2
1 )T +. . .+Q

1
2
JP(J)(Q

1
2
J )T ∼ Dirn(α

(1)
1 +. . .+α

(J)
1 , . . . , α

(1)
k +. . .+α

(J)
k )

since the sum over j of independent Wishart’s γ
(n)

α
(j)
i ,a

is Wishart γ
(n)

α
(1)
i +...+α

(J)
i ,a

.

�

5 Dirichlet processes, for n ≥ 2, reduce to Dirichlet vectors

Let (S,S) be a measurable space. We define a set of ’definite positive
matrix-variate probability measures’ on S as

Q(S) = {p : S → V+
n , such that

p(S) = Idn and p(∪j Sj) = Σj p(Sj) for any pair-wise disjoint Sj ∈ S} .

Let Q̃(S) be a Borel σ-field of subsets of Q(S).
Let D denote the family of all finite measurable partitions of S.
A generalization to the matrix variate case of Dirichlet processes as defined
by Ferguson [2] could then be defined as follows:
Let α be a finite nonegative measure defined on Q̃(S). A Dirichlet pro-
cess P with basis α is a r.v. from Ω to Q(S) such that for any partition

9



(B1, . . . , Bk) ∈ D, the matrix-variate random vector (P(B1), . . . ,P(Bk)) ∼
Dirn (α(B1), . . . , α(Bk)).
However to be consistent with Dirichlet vectors definition the preceding defi-
nition requires that for any measurable B ∈ Q̃(S)

α(B) ∈ Λn =
{

0,
1

2
,
2

2
, . . . ,

n− 1

2

}
∪
(
n− 1

2
,∞

)
. (18)

In particular if n ≥ 2, since α(Q(S)) < ∞, the measure α has a fi-
nite number of (disjoint) atoms, say A1, . . . , Ak, having positive measure

α1, . . . , αk ∈ {1
2
, 2

2
, . . . , n−1

2
} ∪

(
n−1

2
,∞

)
, respectively.

Hence, if Pi = P(Ai), P can be identified to a matrix variate Dirichlet vector
(P1, . . . ,Pk) ∼ Dirn(α1, . . . , αk) with

P(B) =
∑

i=1,...,k:Ai⊆B
Pi.

Actually, when examining Kingman’s construction [4], it is seen that the deep
reason for which Dirichlet process construction cannot be extended in dimen-
sion n ≥ 2 is that the Whishart distributions are not indifinitely divisible
while Gamma ones are.

6 Matrix variate Bayesian setting

Let P = (P1, . . . , Pk) ∼ Dirn(α1, . . . , αk) be a matrix variate Dirichlet vector.
Applying Theorem 3 with yT = (0, . . . , 1, . . . , 0) where 1 is at the i-th position,
we see that the vector of diagonal terms P (i, i) = (P1(i, i), . . . , Pk(i, i)) ∼
Dir1(α1, . . . , αk) is a one-dimensional Dirichlet, that is a random (classical)
probability vector.
Then, Bayes formula can be stated as follows:

Proposition 7 Let P = (P1, . . . , Pk) ∼ Dirn(α1, . . . , αk) be a Dirichlet vector
of random matrices with density, i.e. with αi ≥ n−1

2
for all i = 1, . . . , k. Let

X = (Xi, 1 ≤ n) be a random vector with components Xi assuming values in
{1, . . . , k} and such that

P(Xi = j|P ) = Pj(i, i), j = 1, . . . , k.

Then (P |Xi = j) ∝ Pj(i, i) ·Dir(α1, . . . , αk).

In dimension one, Pj(i, i) = det(Pj) can be inserted in the posterior density
and the statement is nothing but the well-known property that the posterior
of a Dirichlet vector is Dirichlet. In dimension n ≥ 2 we see that this posterior
need not be a Dirichlet.

10



Notice finally that we have a similar Bayes formula when using all the diagonal
terms for a r.v. X assuming values in {1, . . . , k} and such that

P(X = j|P ) =
1

n

n∑
i=1

Pj(i, i), j = 1, . . . , k.
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