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SURRENDER TRIGGERS IN LIFE INSURANCE :

CLASSIFICATION AND RISK PREDICTIONS

X. Milhaud, S. Loisel and V. Maume-Deschamps ∗

Abstract - This paper shows that some policy features

are crucial to explain the decision of the policyholder

to surrender her contract. We point it out by apply-

ing two segmentation models to a life insurance portfolio

: the Logistic Regression model and the Classification

And Regression Trees model. Protection as well as Sav-

ings lines of business are impacted, and results clearly

explicit that the profit benefit option is highly discrimi-

nant. We develop the study with endowment products.

First we present the models and discuss their assump-

tions and limits. Then we test different policy features

and policyholder’s characteristics to be lapse triggers so

as to segment a portfolio in risk classes regarding the

surrender choice : duration and profit benefit option are

essential. Finally, we explore the main differences of both

models in terms of operational results and discuss about

it.

I Introduction

Understanding the dynamics of the surrender
(or lapse) rates is a crucial point for insurance
companies. Several problems appear : first, pol-
icy lapse might make the insurer unable to fully
recover her initial expenses (cost of procuring,
underwriting, and issuing new business). Actu-
ally the insurer pays expenses at or before the
time of issue but earns profits over the life of the
contract, so she might incur losses from lapsed
policies. Second, policyholders who have adverse
health or other insurability problems tend not
to lapse their policies, causing the insurer to ex-
perience more claims than expected if the lapse
rate is high. This is also called the moral hazard

and adverse selection : there remain only “bad
risks” (Bluhm (1982)). Third, massive early sur-
render or policy lapse poses a liquidity threat to
the insurer who is subjected to interest rate risk,
because the interest rate is likely to change over
the period of the contract. Imagine that finan-
cial events and a general loss of confidence of
investors are at the origin of a high increase of
the interest rate, say rt plus a liquidity premium
λt. Borrowing money in order to pay back the
surrender value to the policyholder is thus more
expensive for the insurer who could undergo a se-
ries of indesirable effects : no time to recover ini-
tial expenses, obligation to borrow at a high cost
and finally necessity to liquidate assets at the
worst moment. However, the surrenders are not
always a bad thing for the insurer because pol-
icyholders renounce to some guarantees, which
makes the insurer to earn money.

What causes lapses has attracted certain aca-
demic interest for some time. Originally two
main hypotheses have been suggested to explain
lapse behavior. The first one, the emergency
fund hypothesis (Outreville (1990)), contends
that policyholders use cash surrender value as
emergency fund when facing personnal financial
distress. Outreville (1990) develops an ordinary
least square method for short term dynamics
whose testable implication would be an increas-
ing surrender rate during economic recessions.
On the other hand, the interest rate hypothesis
conjectures that the surrender rate rises when
the market interest rate increases, because the
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II THE CART MODEL 2

investor acts as the opportunity cost for owning
insurance contracts.
When interest rates rise, equilibrium premiums
decrease, so there is a greater likelihood that a
newly acquired contract provides the same cov-
erage at a lower premium. Indeed policyholders
tend to surrender their policy to exploit higher
yields (or lower premiums) available in the mar-
ket. Another insight developed by Engle &
Granger (1987) is to separate the potential long-
term relationship between the lapse rate, interest
rate and unemployment rate from their short-
term adjustment mechanisms thanks to the coin-
tegrated vector autoregression approach.

Modeling lapse behavior is therefore impor-
tant for insurer’s liquidity and profitability. The
lapse rate on life policies is one of the cen-
tral parameters in the managerial framework for
both term and whole life products : assumptions
about lapse rate have to be made in Asset and Li-
ability Management, particularly for projections
of the Embedded Value.
To design life products, managers and their
teams assume an expected level of lapsation
thanks to data mining techniques. But collect-
ing just a part of the information from the ob-
servations prevents companies from getting to a
maximum productivity, and to fully exploit the
information is not so easy because of the data set
complexity. For instance in a typical database
of an insurance company there are missing data,
mixtures of data types, high dimensionality, het-
erogeneity between policyholders. The challenge
is thus to select salient features of the data and
feed back summaries of the information.

The idea of this paper is to give clues to prod-
uct designers (or managers) regarding the sur-
render risk thanks to the use of two complemen-
tary segmentation models : the Classification
And Regression Trees (CART) model (Breiman
et al. (1984)) and the Logistic Regression (LR)
model (Hilbe (2009)). In the litterature, Ka-
graoka (2005) and Atkins & Gallop (2007) ap-
plied respectively the negative binomial and the
zero-inflated models as counting processes, and

Kim (2005) applied the logistic regression model
with economic variables to explain the lapses on
insurance policies during the economic crisis in
Korea. To the best of our knowledge, CART

and LR have not been run with policy and in-
sured’s characteristics in this framework.
Our paper is organized as follows: we first
present theoretical results about CART method
that are useful for our practical problem. We
more briefly recall the basics of logistic regres-
sion, as it has been more widely used in many
fields. In Section IV, we analyze a real-life insur-
ance portfolio embedding endowment contracts
with these two methods and determine the main
reasons for a policyholder to surrender, as well
as predictors of the individual surrender prob-
ability. Numerical figures are given, both ap-
proaches are compared and their limits are dis-
cussed.

II The CART model

The CART method was developed by
Breiman et al. (1984) in order to segment a pop-
ulation by splitting up the data set step by step
thanks to binary rules. It is an iterative and re-
cursive flexible nonparametric tool, binary trees
provide an illuminating way of looking at data
and results in classification problems. The nov-
elty of the CART method is in its algorithm to
build the tree : there is no arbitrary rules to stop
its construction, contrary to the previous uses of
decision trees using stopping rules (see A.1). De-
pending on the studied problem, the two main
goals of a classification process are to uncover
the predictive structure of the problem and to
produce an accurate classifier.
The opportunity to make predictions particu-
larly with regression trees technique is also very
useful; but CART should not be used to the
exclusion of other methods.

A The model

We present in this section how to construct
the classification tree. Figure 1 shows the differ-
ent stages to follow. The appendix details each
of the steps and the underlying concepts.
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Figure 1: Ordered steps of CART procedure

A.1 Building the classification tree

Notation 1. Let ǫ = (xn, jn)1≤n≤N be a sam-
ple of size N, where jn are the observations of
the outcome variable Y (Y ∈ C = {1, 2, ..., J}
and xn = {xn1

, xn2
, ..., xnd

} the observations of
X in X which are the d explanatory variables
(X =

∏d

i=1 Xi where Xi is a set of categorical or
continuous variable).

Definition 1. Let

• ∀x ∈ X, the classification process class(.,ǫ)
classifies x in a group j ∈ C.

• The a-priori probability of group j is defined
by πj =

Nj

N
where Nj = card{jn|jn = j}.

• Given t ⊂ X (t finite subset of X), let us
denote N(t) = card{(xn, jn) ∈ ǫ, xn ∈ t}.
• Nj(t) = card{(xn, jn) ∈ ǫ, jn =
j knowing that xn ∈ t}.
• An estimator by substitution of P(j,t), de-

noted p(j,t), is given by p(j,t) = πj
Nj(t)

N(t)
.

• An estimator by substitution of P(t), denoted
p(t), is given by p(t) =

∑J

j=1 p(j, t).

• P(j | t) is the a-posteriori probability of class

j, is estimated by p(j,t)
p(t)

=
Nj(t)

N(t)
= p(j,t)

πj
.

How to begin ? The principle is to divide X

into q classes, where q is not given a-priori. The
method builds an increasing sequence of parti-
tions of X; the transfer from one part to another

is given by the use of binary (or splitting) rules
such as :

x ∈ t, for t ⊂ X.

For example, the first partition of X could be the
sex. Here the policyholder whose characteristics
are x is either a female or male, and t could be
the modality “female”.

Criterion 1. These rules only depend on one
“threshold” µ and one variable xl, 1 ≤ l ≤ d :

– xl ≤ µ, µ ∈ R in the case of an ordinal
variable (if we have m distinct values for
xl, the set of possible sections card(D) is
equal to M - 1);

– xl ∈ µ where µ is a subset of
{µ1, µ2, ..., µM} and µm are the modalities
of a categorical variable (in this case the
cardinal of the subset D of possible binary
rules is 2M−1 − 1).

Actually we start with X called root which
is divided into two disjoint subsets called nodes
and denoted by tL and tR. Each of the nodes is
then divided in the same way (if it has at least
two elements !). At the end, we have a partition
of X in q groups called terminal node or leaf.
In the following, we denote by T̃ the set of leaves
of the tree T; T t is the set of descendant nodes of
the ancestor node t in the tree T (see Figure 2).

The impurity concept The quality of the di-
vision from a node t to tL and tR is measured
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thanks to the impurity criterion. This concept
is explained in more details in Appendix II.1.

In our case, the impurity of a node t of a tree T
is the quantity

impur(t) = g(p(1|t), p(2|t), ..., p(J |t)), (1)

where g is an impurity function.
By consequence, the impurity of a tree T is

Impur(T ) =
∑

t∈T̃ Impur(t) (2)

where Impur(t) = p(t)impur(t).
A binary rule ∆ (or splitting-rule) of a node t

gives pL = p(tL)
p(t)

observations in tL and pR = p(tR)
p(t)

observations in tR. We want to maximize the pu-
rity variance :

δ impur(∆, t) = impur(t) − pLimpur(tL)

− pRimpur(tR) (3)

Each time a split is made, the purity of the
tree must increase : intuitively, it means that
as many observations as possible should belong
to the same class in a given node. The maximum
decrease of impurity defines what splitting rule
must be chosen.

Problem 1. δ impur(∆, t) positive ? Or

impur(t) ≥ pL impur(tL) + pR impur(tR) ?

Solution 1. The answer is always“yes” if g is
concave.

In our applications and in most of them, one uses
the Gini index of diversity :

impur(t) =
∑

j 6=k p(j|t)p(k|t) (4)

The Gini diversity index can be interpreted as a
probability of misclassification. It is the proba-
bility to assign an observation selected randomly
from the node t to class k, times the estimated
probability that this item is actually in class j.
There also exits other impurity functions with
an easier interpretation (see Appendix II.2) and
there is no convincing justification for those

choices, except that they satisfy the conditions
of an impurity function. Besides, the properties
of the final tree are usually surprisingly insensi-
tive to the choice of the impurity function ! For
further explanations, see Breiman et al. (1984).

Dividing a node t The optimal division ∆⋆
t

is given by

∆⋆
t = argmax

∆∈D

(δ impur(∆, t)), (5)

where argmax
∆∈D

(δ impur(∆, t)) denotes the

splitting rule ∆ which maximizes δ impur(∆, t).

At each step, the process is run in order to lower
the impurity as fast as possible. Maximizing the
gain in purity (homogeneity) dividing the node t
is the same as maximizing the gain of purity on
the overall tree T. Hence by dividing the parent
node t into descendant nodes (tL,tR) with the
rule ∆, one gets the more branched tree T

′

(see
Figure 2) and from (2):

Impur(T
′

) =
∑

w∈T̃−{t} Impur(w) + Impur(tL)

+ Impur(tR)

So the fluctuation of the impurity of the tree T
is given by :

Impur(T ) − Impur(T
′

)

= Impur(t) − Impur(tL) − Impur(tR)

= δImpur(∆, t)

= p(t)δimpur(∆, t) (6)

Indeed, it results from the probability to be
present in this node multiplied by the decrease
of impurity given by the split ∆.

When to stop the splits ? Different rules
exist to stop the division process. Some of them
are natural, others are purely arbitrary and re-
sult from the choice of the user :

• obviously, the divisions stop as soon as the ob-
servations of the explanatory variables are the
same in a given class (because it is not possible
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Figure 2: Construction of a binary tree

to go on splitting data !) ;

• define a minimum number of observations in
each node. The smaller it is, the bigger the
number of terminal nodes (leaves) is.

• choose a threshold λ as the minimum decrease
of the impurity : let λ ∈ R

∗
+,

max
∆∈D

δ Impur(∆, t) < λ ⇒ stop the division.

We will see that actually there is no stopping-
rules with CART algorithm; we build the largest
tree (Tmax) and then we prune it.

A.2 The classification function

Problem 2. The aim is to build a classification
function, denoted by class(.,ǫ), such that

class : X → C

x → class(x, ǫ) = j

with Bj = {x ∈ X; class(x, ǫ) = j}

The idea is that we can class the policyholder
(given its characteristics “x”) in a set Bj to
predict the result. This function must provide
insight and understanding into the predictive
structure of the data and classify them accu-
rately.
Consider that the optimal tree has been built ;
to know at what class the terminal nodes corre-

spond, use the following rule :

class(x, ǫ) = argmax
j∈C

p(j|t) (7)

In fact this is just the Bayes rule : it maximizes
the a-posteriori probability of being in class j
knowing that we are in the node t. This process
defines the classification function, which then al-
lows predictions. The estimation of classing an
observation present in the node t in a wrong class
(with respect to the class observed for this ob-
servation) is therefore

r(t) = 1 − class(x, ǫ) = 1 − max
j∈C

p(j|t), (8)

Let the misclassification rate at node t be τ̂(t) =
p(t)r(t).
For each node of the tree, it represents the prob-
ability to be in the node t multiplied by the prob-
ability to wrongly class an observation knowing
that we are in the node t.
It turns out that the general misclassification
rate on the tree A is given by

τ̂(T ) =
∑

t∈T̃

τ̂(t) (9)

To put it in a nutschell, Figure 3 shows the
four stages to be defined in the tree growing pro-
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cedure. The last point is easy to define whereas
others are much more difficult because of ar-
bitrary choices and the necessity to adapt the
questions to the problem. In fact, the CART

method builds first the maximal tree Tmax and
then prune it. It enables to remove the arbitrary
stop-splitting rules.

A.3 Prediction error estimate

The prediction error is assessed by the proba-
bility that an observation is classified in a wrong
class by class(.,ǫ), that is to say :

τ(class) = P (class(X, ǫ) 6= Y )

The classification process, the predictor and its
efficiency to get the final tree are based on the
estimation of this error. The true misclassifi-
cation rate τ ∗(class) cannot be estimated when
considering the whole data set to build the clas-
sification function. Various estimators exist in
the litterature (Ghattas (1999)); and the expres-
sion of the misclassification rate depends on the
learning sample chosen to run the study (some
details and remarks are given in Appendix II.3).

Resubstitution estimate of the tree mis-

classification rate : the learning sample is
the total sample of observations, ǫ. The part
of observations wrongly classed by the function
class is :

τ̂(class) =
1

N

∑

(xn,jn)∈ǫ

11{class(xn, ǫ) 6= jn}

(10)
Achievements are overestimated because we fi-
nally class the same data (as those used to build
the classification function) to test the efficiency

of the procedure. Not surprisingly, this is the
worse estimator in terms of prediction.

Test sample estimate : let W ⊂ ǫ be a wit-
ness (test) sample whose size is N ′ < N (N is the
size of the original data set ǫ). Usually N

′

= N
3

and so the size of the learning sample equals to
2
3
N . The test sample is used as in (10) :

τ̂ ts(class) =
1

N
′

∑

(xn,jn)∈W

11{class(xn, ǫ) 6= jn}

(11)
The learning sample is used to build the classi-
fier class and the test sample is used to check for
the accuracy of class. This estimator is better
but requires a larger initial data set.

By cross-validation : suppose that the orig-
inal sample ǫ is divided into K disjointed sub-
groups (ǫk)1≤k≤K of same size and let us define
K new learning data sets such that ǫk = ǫ − ǫk.
We can build a classification function on each
sample ǫk such that classk(.) = class(., ǫk). One
still uses the same idea :

τ̂ cv(class) =
1

N

K∑

k=1

∑

(xn,jn)∈ǫk

11{class(xn, ǫ
k) 6= jn}

(12)
This technique is highly recommended when we
do not have a lot of data available.

Notation 2. τ(T ) is the prediction error on T

; τ̂(T ), τ̂ ts(T ) and τ̂ cv(T ) its estimations.

B Limits and improvements

The classification tree method offers some in-
teresting advantages like no restriction on the

1. a set of binary questions like { is x ∈ S ?}, S ∈ X,

2. an impurity function for the goodness of split criterion,

3. a stop-splitting rule (or not, natural stopping-rule is then one case by leaf),

4. a classification rule to assign every terminal node to a class.

Figure 3: Necessary stages for the tree growing procedure
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type of data (both categorical and numerical ex-
planatory variables accepted), the final classifi-
cation has a simple form and can be compactly
stored and displayed.
By running the process to find the best split at
each node, the algorithm does a kind of auto-
matic stepwise variable selection and complex-
ity reduction. In addition, one can transform
ordered variables without changing the results
if the transformation is monotonous. Moreover
CART is not a parametric model and thus do
not require a particular specification of the na-
ture of the relationship between the outcome
and the predictor variables, it successfully identi-
fies interactions between predictor variables and
there is no assumption of linearity.

However, the splits are on single variables
and when the class structure depends on combi-
nations of variables, the standard tree algorithm
will do poorly at uncovering the structure. Be-
sides, the effect of one variable can be masked
by others when looking at the final tree. To
avoid this, there exists solutions as ranking the
variables in function of their potential : this is
what is called the secondary and surrogate splits
(also used with missing data, see Breiman et al.
(1984)). There exists other difficulties, particu-
larly :

• sometimes the final tree is difficult to use in
practice because of its numerous ramifications.
The more you split the better you think it is,
but if one sets the stop-splitting criterion so as
to get only one data point in every terminal
node, then the estimation of the misclassifi-
cation rate would not be realistic (equal to 0
because each node is classified by the case it
contains, one overfits the data);

• the CART method provides a way to have an
idea of the prominence of each explanatory
variable. As a matter of fact, reading the fi-
nal tree from the root to the leaves gives the
importance of variables in descending order.
But Ghattas (2000) criticizes the bad reliabil-
ity of the method : a small modification of
the data sample can cause different classifiers,

a big constraint to make predictions because
of its instability.

For sure, we do not want this kind of behaviours
because it means that a variable could be consid-
ered very important with a given data set, and
be absent in the tree in another quasi-similar
one ! The first point can be solved thanks to the
introduction of a complexity cost in the prun-
ing algorithm (see Appendix II.5) and the sec-
ond one using cross-validation, learning and test
samples (see A.3), bagging predictors or arcing
classifiers.

C Bagging predictors

The bad robustness of the CART algorithm
when changing the original data set has already
been discussed. This can cause to experiment
different optimal final classifiers, but this draw-
back can be challenged using resampling tech-
niques.
The bootstrap is the most famous of them (sam-
ple N cases at random with replacement in an
original sample of size N), and the bagging is
just a bootstrap aggregation of classifiers trained
on bootstrap samples. Several studies (Breiman
(1996), Breiman (1994) and Breiman (1998))
proved the significance and robustness of bag-
ging predictors. The final classifier assigns to an
observation the class which has been predicted
by a majority of “bootstrap” classifiers. This
classifier cannot be represented as a tree, but is
extremely robust.

The “Random Forest” tool was developed by
Breiman (2001) and follows the same idea as
bagging predictors : this is a combination of tree
predictors such that each tree is built indepen-
dently from the others. The final classification
decision is obtained by a majority vote law on
all the classification trees, the forest chooses the
classification having the most votes over all the
trees in the forest. The larger the number of
trees is, the more the ability of this algorithm
is good (until a certain number of trees). We
usually speak about the out-of-bag error when
using Random Forest algorithm : it represents
for each observation the misclassification rate
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of predicted values of the trees that have not
been built using this observation in the bagging
scheme. This error tends to stabilize to a low
value.

The bagging method can be implemented
with the randomForest R package 1. It offers
the opportunity to compute the importance of
each explanatory variable, that is why we pre-
fer to use it in our applications instead of the
ipred package 2.
For more precision on these theories, refer to
Breiman et al. (1984).

III The LR model

The logistic regression (Hosmer & Lemeshow
(2000), Balakrishnan (1991)) belongs to the
class of generalized linear models (McCullagh
& Nelder (1989)). Using this technique yields
a mean to predict the probability of occurrence
of an event by fitting data to a logistic curve.
As this is the case in CART method, either nu-
merical or categorical explanatory variables can
be introduced. The logistic regression is used
for binomial regression and thus is considered
as a choice model. The main domains in which
it is used are medical and marketing worlds,
for instance for the prediction of a customer’s
propensity to cease a subscription. As it is of-
ten used with binary events, sometimes actuar-
ies also model the mortality of an experienced
portfolio with this tool. It is a mean for them to
segment their portfolio regarding this risk. Here,
the goal is to model the surrender decision of the
policyholders.

A Why the logistic function : a first explana-

tion

The logistic function is very useful because
from an input z which varies from negative in-
finity to positive infinity one gets an output Φ(z)
confined to values between 0 and 1. Its expres-
sion is :

Φ(z) =
1

1 + e−z
=

ez

1 + ez

Because we want to model a probability (repre-
sented by Φ(z) above), this is the first explana-
tion of this choice. The requirement of a non-
decreasing function for cumulative distribution
function is satisfied. Actually z represents the
exposure to some set of risk factors, and is given
by a common regression equation

z = β0 + β1X1 + ... + βkXk,

where the Xi are the explanatory variables (e.g.
age). Hereafter, we denote by β the vector of
regression coefficients (β0, β1, ..., βk)

′

.

B Another approach

We could also introduce this technique con-
sidering the strict regression approach. The idea
is to transform the output of a common linear re-
gression to be suitable for probabilities by using
a logit link function as :

logit(p) = ln

(
p

1 − p

)

= β0 + β1X1 + ... + βkXk,

(13)

Remark 1. :

• ∀i = 1, ..., k; βi represents the regression co-
efficient associated to the risk factor i (say the
sex for instance),

• the inverse of the logit function is the logistic
function : Φ−1(p) = β0 +

∑k

j=1 βjXj,

• there are also the so-called polytomic or
multinomial regression when the variable to
explain (response variable) has more than two
levels,

• p

1−p
∈ [0, +∞[⇒ ln

(
p

1−p

)

∈ ] −∞, +∞[,

• other link-functions exist.

C Estimation of parameters

Because we are not exactly working in the
same framework as in the linear regression case,

1. available at http://cran.r-project.org/web/packages/randomForest/index.html
2. available at http://genome.jouy.inra.fr/doc/genome/statistiques/R-2.6.0/library/ipred/html/bagging.html
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we use a different technique to estimate the pa-
rameters. The ordinary least square estima-
tion is the most famous one to get the regres-
sion coefficients, but the fact that we want to
estimate a probability (number of surrenders
∼ B(n, Φ(β0 + β1X1 + ... + βkXk))) implies that
we usually estimate the coefficients thanks to the
maximum likelihood principle. Besides, an ordi-
nary least square estimation would not be well-
adapted.

C.1 The maximum likelihood and the regres-

sion coefficients

Let n be the number of observations (policy-
holders). By definition, the maximum likelihood
principle gives with a binomial law

L(X, β) =
∏n

i=1 Φ(Xiβ
′

)Yi(1 − Φ(Xiβ
′

))1−Yi

The log-likelihood is then

ln(L(X, β)) =
∑n

i=1 Yi ln(Φ(Xiβ
′

))

+
∑n

i=1(1 − Yi) ln(1 − Φ(Xiβ
′

))

=
∑n

i=1 Yi ln
(

eXiβ
′

1+eXiβ
′

)

+
∑n

i=1(1 − Yi) ln
(

1 − eXiβ
′

1+eXiβ
′

)

=
∑n

i=1 Yi(Xiβ
′

) − ln(1 + eXiβ
′

) (14)

To find the right β which maximizes the likeli-
hood (or the log-likelihood!), let us find the β,
denoted by the estimator β̂, such that

∂ ln(L)

∂β̂
=

∂l

∂β̂
= 0 (15)

This condition yields to a system of equa-
tions that are not in a closed form. The use of
the Newton-Raphson algorithm to find its solu-
tion is advised (see Appendix C and Appendix D
for further details).

C.2 The final probability

The individual estimation of the final proba-
bility is inferred from the previous estimations,

p̂ = Φ(β̂0 + β̂1X1 + ... + β̂kXk) (16)

where the β̂i are the regression coefficients esti-
mated by maximum likelihood.
Each insured has an estimated probability to
surrender given its characteristics. Policyholders
with same characteristics are therefore homoge-
neous and have the same probability to surren-
der.
Next step is to determine the confidence inter-
val for the surrender probability on the whole
portfolio. In a collective framework, the usual
way is to use the Binomial law approximation
which considers that the number of surrenders
among n insureds follows a Normal distribution.
However this technique requires that :

• probability pi to surrender her contract is
comparable for all i in the group (homo-
geneity) ;

• n → ∞, which means that the portfolio
size is big (n insureds).

The first point is a direct consequence of the
Central Limit Theorem (TCL) : the number
of surrenders follows a Binomial law, which
is a sum of Bernouilli laws. Hence, if these
Bernouilli laws are independent and identically
distributed we can apply the TCL formula which
tells us that the number of surrenders is normally
distributed. But a portfolio is heterogeneous.
Imagine that the n policyholders in the portfolio
are divided into homogeneous groups of policy-
holders, then each group is normally distributed
and the sum of these groups consists in the port-
folio. But the sum of normally distributed laws
is a normally distributed law, that is why we still
can use the Normal approximation. The second
point is not a problem in insurance (portfolios
are huge by nature).

The exact estimation of the expectation and
the variance of the Binomial law yields to a cor-
rect final approximation using the confidence in-
terval of a Normal Standard law. Consider that
the individual surrender decision of a policy-
holder follows a Bernouilli law then the number
of surrenders N s

i in a given homogeneous group
i embedding ni policyholders is binomially and
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identically distributed, N s
i ∼ B(ni, pi). Hence,

E[N s
i ] =

ni∑

i=1

pi = nipi,

Var[N s
i ] =

ni∑

i=1

pi(1 − pi) =

ni∑

i=1

piqi = nipiqi,

σ[N s
i ] =

√

Var[N s
i ] =

√
√
√
√

ni∑

i=1

piqi =
√

nipiqi

Denote by p̂i =
N s

i

ni

the surrender rate, we get

E[p̂i] =
E[N s

i ]

ni

=

∑ni

i=1 pi

ni

= pi, (17)

σ[p̂] = σ

[
N s

i

ni

]

=
1

ni

σ[N s
i ] =

√
piqi

ni

(18)

From (17) and (18) we can get the classical con-
fidence interval of a Normal distribution within
a homogeneous group i. But the sum of indepen-
dent Normal distributions is still a Normal dis-
tribution (the total number of surrenders is the
sum of surrenders of homogeneous subgroups,
N s =

∑

i N
s
i ), thus we can generalize to the

whole portfolio and get the confidence interval

of p̂ =
N s

n
(95% confidence level)

CI(p) =

[

p̂ − 1.96

√

p̂(1 − p̂)

n
, p̂ + 1.96

√

p̂(1 − p̂)

n

]

(19)

C.3 Deviance and tests

Famous tests of likelihood ratio and Wald
test are available in more details in Appendix E.

D Interpretations

The regression coefficients give us some in-
formation on effect of each risk factor.
The intercept β0 is the value of z for the ref-
erence risk profile, this is the expected value of
the outcome when the predictor variables corre-
spond to the reference modalities (for categorical
variables) and thresholds (for continuous vari-

ables).
Then the coefficients βi (i = 1,2,...,k) describe
the contribution of each risk : a positive βi

means that this risk factor increases the prob-
ability of the outcome (lapse), while a negative
one means that risk factor decreases the prob-

ability of that outcome. A large
βi

σ(βi)
(where

σ(βi) denotes the standard deviation of the coefi-
icient estimation) means that the risk i strongly
influences the probability of that outcome, and
conversely. In the case of a categorical variable,
the regression coefficient has to be interpreted
as compared to the reference category, for which
β = 0.

Focus on the odd-ratio indicators They
represent the ratio of probabilities p

1−p
.

Example 1. Let us say that the probability of
success p = P (Y = 1|X) is 0.7. Then the proba-
bility of failure q = P (Y = 0|X) is 0.3. The odds
of success are defined as the ratio of these two
probabilities, i.e. p

q
= 0.7

0.3
= 2.33 ; it means that

with the same characteristics (vector X), the suc-
cess is 2.33 more likely to happen than the failure
(obviously the odds of failure are 0.3

0.7
= 0.43).

Now consider that only one explanatory vari-
able differ from one policyholder to another, say
the age (among age and region). From (13) we
get for one policyholder p

q
= eβ0+β1Xage+β2Xregion.

All terms disappear between the two policyhold-
ers except age because they are equal, thus the
odd-ratio between them aged 40 and 30 years old
is defined by

P (Y = 1|Xage = 40)

P (Y = 0|Xage = 40)
P (Y = 1|Xage = 30)

P (Y = 0|Xage = 30)

=
e40β1

e30β1

= e10β1

More generally, looking at the equation giving
the odd-ratio, we notice that a unit additive
change in the values of explanatory variables
should change the odds by constant multiplica-
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tive figures.

elogit(p) =
p

1 − p
=

p

q
= eβ0+β1X1+...+βkXk

= eβ0eβ1X1 ...eβkXk (20)

From (20), for instance with a binary explana-
tory variable xi (categorical variable) :

{

if xi = 0 ⇒ e0 = 1, and the term disappears,

else if xi = 1 ⇒ eβixi = eβi

If our explanatory variables xi are all binary,
we are left in (20) with terms for only the xi

that are true, and the intuition here is that if I
know that a variable is true, then that will pro-
duce a constant change in the odds of the out-
come : x1 = x2 = 1 and xk = 0 ∀k 6= 1, 2 ⇒
odd-ratio = eβ1eβ2 .
This is the same idea with a continuous variable
(see Example 1).

Thus, the odd-ratios represent the difference
in terms of probability regarding the modeled
event (here the surrender) when explanatory
variables change and thus is a very useful op-
erational tool.

E Limits of the model

Some problems are raised when using this
modeling : concerning assumptions, the poli-
cies (Yi|Xi) are considered independent know-
ing the explanatory variables. Explanatory vari-
ables must be independent, which is never to-
tally right in reality. Fortunately calculations
can be done in practice if the Pearson corre-
lation coefficient is not equal to 100% (in this
case singularity in matrix inversion). Modalities
of a categorical variable are considered indepen-
dent, which is generally true except in case of
erroneous data. Another limit is that a lot of
data should be available for the robustness of the
modeling. Well, this is not our problem because
insurance portfolios are by definition huge.

Other topics have to be questioned in our
context, especially : applying the logistic regres-
sion over a whole portfolio of life-insurance con-

tracts could lead us to strange results. Indeed, if
the portfolio covers a period of 100 years, almost
all the policyholders would have lapsed and the
regression would make no sense ! That is why
we divide the study into several observation pe-
riods in the second part of applications (see B).
But this leads to duplicate contracts on each ob-
servation period, which is maybe an unpleasant
source of problems : we can cite the possible
existing correlation between periods for a given
contract (it is as if we would consider this con-
tract as another one when we change the period).
Finally, memory size and time of computations
could also be a problem.

The logistic regression is a great tool to
model the differences of the outcome variable
considering the differences on the explanatory
variables. The big drawback is the assumption
of independence between explanatory variables,
but a crucial advantage is the opportunity to
make predictions. Some example of applications
can be found in Huang & Wang (2001) and Ka-
graoka (2005). There exists some other segmen-
tation models in the same family as Tobit model
(see Cox & Lin (2006)) and Cox model. A com-
parison of these different models is also available
in Austin (2007). For further details, please refer
to the bibliography.

IV Application on a Life Insurance port-

folio

Depending on the country, the database pro-
vides typically data on policyholder’s character-
istics (birth date, gender, marital status, smoker
status, living place...) and policy features (issue
date, end date, type of contract, premium fre-
quency, sum insured, distribution channel...) of
life insurance contracts. Here, a Spanish real life
portfolio was collected thanks to AXA Seguros.
In our study we have information on the gender,
the birth date of the policyholders ; the type of
contract, its issue date, its termination date and
the reason of the termination, the premium fre-
quency, the face amount which is an indicator
of the wealth of the policyholder and the pre-
mium which encompasses the risk premium and
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the saving premium.
The risk premium is commonly the product of
the sum-at-risk (sum paid back to the policy-
holder in case of guarantee) by the probability
for the guarantee to be triggered. Typically with
certain endowment products covering the death,
the risk premium is the product of the sum-at-
risk by the mortality rate. The saving premium
is the investment made by the policyholder.
All simulations have been performed with R, an
open-source statistical software that you can find
on the web 1. We used the package rpart to
implement the CART method and obtain the
following results. The useful functions to imple-
ment the logistic regression are included in the
core of the R program.

A Static analysis

We mean by static analysis a “photograph”
at a given date of the state of the portfolio.
There are 28506 policyholders in this portfolio,
the types of long-term contract are either pure
saving or endowment products but we focus on
endowment policies hereafter. The study covers
the period 1999-2007 and the “photo” is taken
in December 2007. This means that the charac-
teristics of policyholders and contracts that we
extract from the database for the study are those
observed either at the date of their surrender or
in December 2007 if the policyholder has not sur-
rendered yet.
First, we would like to have an idea of the pos-
sible triggers in the surrender decision. Actually
we just want to explain the surrender in func-
tion of other variables. The static model enables
us to detect the “risky” policyholders regarding
the surrender at a given date.

Remark 2. The static analysis raises some
burning questions like : what is the composition
of the portfolio ? Is the portfolio at maturity ?
What is the part of new business ?
For example if the duration is one of the main
explanatory risk regarding the surrender (and
this is !), one has to be careful to cover a suf-

ficiently long period to experiment a normal sur-
render rate, say 15% a year. If the contract dura-
tion is almost always at least 15 months (before
the surrender), looking at surrenders statistics
twelve months after the issue date of the con-
tracts would not be realistic because the annual
lapse rate would be very close to 0%.
Actually we do not have a dynamical view of the
phenomenom (surrender), the static analysis is
just a simple way to point out the more discrim-
inant factors of the surrender decision. Even if
nine years of experience in our study seems to
be ok, we will run in B the study monthly to re-
flect the fact that policyholders often wonder if
they should surrender their contract (say at least
twice a year).

In December 2007, 15571 of the 28506 endow-
ment contracts present in the database have
been surrendered. The two segmentation models
provide us with two different information :

• first, the CART model gives us the more dis-
criminant variables regarding the surrender in
descending order (when reading the classifi-
cation tree from the root to the leaves). Fi-
nally, one can class a policyholder as “risky”
at the underwriting process or later but the
predicted response is binary (we can get the
probability to be in a given class but not the
probability to surrender);

• the LR model offers a more precise result, the
probability for this policyholder to lapse his
contract in the future given its characteris-
tics. Hence the response is not binary, this is
a kind of intensity or propensity to surrender
the contract. One can also compare the effect
of changing the modality (for categorical vari-
able) or the value (continuous variable) of an
explanatory variable thanks to the odd-ratios
technique.

In the following, the duration is an input of the
model (explanatory variable) to highlight its im-
portance in the surrender decision. If the ques-
tion concerns the segmentation at the underwrit-

1. www.r-project.org/
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Table 1: The confusion matrix for Tmax on the
validation sample.

observed Y = 0 observed Y = 1
predicted Y = 0 4262 1004
predicted Y = 1 728 5644

Table 2: The confusion matrix for the pruned
tree on the validation sample.

observed Y = 0 observed Y = 1
predicted Y = 0 4188 1078
predicted Y = 1 664 5708

ing process, this variable should not be input in
the model because it is unknown.

A.1 The CART method

In R, this application is done thanks to the
package rpart 1 (r-partitionning) and more pre-
cisely the procedure rpart which builds the
classification tree. By default, rpart uses
the Gini index to compute the impurity of a
node. As we have seen previously, this option
is not important because results do not much
differ. There is no misclassification cost (see Ap-
pendix II.4) in our application. We proceed like
in theory :

1. first, Tmax is built (by setting in rpart the
option cp equal to 0) ;

2. second, this tree is pruned off to lower the
number of leaves and simplify the results.

The minimum number of observations required
in a leaf of Tmax has been set to 1, the num-
ber of competitive splits computed is 2, and
we use the cross-validation technique to get
better and more accurate results. The num-
ber of samples for cross-validation is set to 10
in rpart.control. Beware : these cross-
validations correspond to the misclassification
rate estimated by cross-validations (and not the
cross-validation estimate of the prediction error
presented in A.3, which is just useful to estimate
better the real prediction error but not to build
an optimal tree).
We randomly create the learning and validation
data sets, whose sizes are respectively 16868 and
11638 policyholders.

The test-sample estimate of the prediction
error in the maximal tree Tmax computed on the
validation sample is 14.88%. The correspond-
ing confusion matrix is given in Table 1. This

tree has too many leaves, its representation is
too complex so we have to prune it.

The choice of the complexity parameter α in
the pruning algorithm (see Appendix II.5) is a
trade-off between the final size of the tree and
the minimum misclassification rate required by
the user. Figure 7 in Appendix I plots the learn-
ing error in function of this complexity cost.
Each complexity parameter corresponds to an
optimal tree whose size is specified on the graph
gotten by ten cross-validations.

Table 7 in Appendix I shows that mini-
mizing the learning error (by cross-validation)
and its standard deviation requires setting α ∈
]1.04e−04, 1.30e−04], but the corresponding num-
ber of leaves (equal to 82) is too high to repre-
sent the tree easily. Hence we have chosen to
set α = 6e−04 which corresponds to 11 leaves
and a very small increase of the error. Figure 4
shows this tree. The most important (discrimi-
nant) variable seems to be the type of contract
(characterized by the premium type,unique or
periodic; and the profit benefit option), then the
duration and so on.

The variables actually input for the tree con-
struction are the contract type, the duration, the
face amount, the premium.frequency, the saving
premium and the underwriting age. Finally, the
gender and the risk premium are the only vari-
ables which don’t appear in the final tree.
The first splitting-rule is therefore “does the pol-
icyholder own a contract with profit benefit ?”.
If “no” go down to the left, otherwise go down
to the right. The predicted classes are written
in the terminal nodes, and the proportions un-
der this class are the number of policyholders
observed as “no surrender” on the left and “sur-
render” on the right. Obviously the bigger the

1. http://cran.r-project.org/web/packages/rpart/index.html, developed by T. M. Therneau and B. Atkinson
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Figure 4: The final classification tree. Binary response variable : surrender. The first splitting-rule
contract.type = bd means that the contract type is the more discriminant variable (bd correspond
to the 2nd and 4th categories, like in alphabetic order). continuous explanatory variables have been
previously categorized for the modeling.

difference between these numbers is, the better
the tree segment the data. Here, if the policy-
holder has a contract with a periodic or unique
premium and no profit benefit option (PP sin
PB and PU sin PB), he probably won’t surren-
der (2608/2610 = 99.92%). The predicted class
is labeled “No”.

Remark 3. Sometimes some categories of cer-
tain explanatory variables do not appear in the
final tree. In fact, the representation of the tree
obliges us to hide other competitive possible splits
at each node (or surrogate splits). But the com-
plete analytic result provides the solution to this
problem (it is just a display problem).

Example 2. Let us consider a man whose char-
acteristics are the following : he pays a periodic
premium and owns a contract with profit benefit,

the duration of his contract is today observed in
the seventh range and his face amount belongs
to the second range. The tree predicts that this
policyholder is today in a risky position knowing
its characteristics (58/61 ≃ 95% of people with
these characteristics have surrendered their con-
tract).

Looking at Figure 4, it is clear that the main
discriminant factor regarding the surrender risk
here is the profit benefit option. The misclassifi-
cation rate (learning error) of this tree is 33.1%
according to Table 7 presented in Appendix I.
The prediction error can be estimated via the
confusion matrix in Table 2.

This prediction is quite good because only
14.97% of predictions are wrong, which is almost
equal to the prediction error on the maximal tree
Tmax. Indeed the compromise is really interest-

Table 3: The confusion matrix of the classifier by the Random Forest.
observed Y = 0 observed Y = 1

predicted Y = 0 10327 2608
predicted Y = 1 1592 13979
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Figure 5: On the left, the importance of explanatory variables. On the right, the number of trees
required to stabilize the out-of-bag errors : the black line is the overall error, the green line is the
error of the category “surrender” and the red one for the category “no surrender”.
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ing because pruning the tree from 175 leaves to
11 leaves increases the prediction error less than
1% !

To consolidate these results, we use the bag-
ging predictors thanks to the randomForest

package. The following stages in the Random
Forest algorithm are performed to grow a tree :
bootstrap the original sample (this sample will
be the training set), split at each node with the
best variable in terms of decrease of the impurity
(possible m variables randomly chosen among M
initial input variables, m < M because m=M
corresponds to the bagging method), grow the
tree to the largest extent possible (no pruning).
The forest error rate depends on the strength of
each individual tree (its power to classify well)
and the correlation between any two trees in the
forest. When the strength increases the forest er-
ror decreases and when the correlation increases
the forest error also increases. m is the only ad-
justable parameter to which random forests is
sensitive, and reducing m reduces both the cor-

relation and the strength ; thus there is an opti-
mal m that we can find with the out-of-bag error.
We cannot represent the new final classifier as a
tree, but it gives best results. Table 3 summa-
rizes the results on the entire original data set
(no learning and test samples because this is al-
ready a bootstrap aggregation).

The unbiased out-of-bag error estimate is
14.73%. The importance of explanatory vari-
ables is given in Figure 5, as well as the necessary
number of trees in the forest for the out-of-bag
error to be stabilized (here it seems to be about
50 trees). These results confirms what we ex-
pected : the duration and the type of contract
are the most meaningful variables to explain the
decision to surrender her life insurance contract.
All the concepts developed in this section are
explained on Breiman’s webpage 1.

A.2 The LR model

Consider that X is the matrix of explanatory
variables for each observation, that is to say a

1. See http://www.stat.berkeley.edu/users/breiman/RandomForests/cc home.htm
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Table 4: Odd-ratios, endowment products (duration in month, learning sample). Contract types :
PP con PB → periodic premium (PP) with profit benefit (PB), PP sin PB → PP without PB, PU
con PB → unique premium (PU) with PB, PU sin PB → PU without PB. continuous explanatory
variables have previously been categorized for the modeling.

Odd-ratio Ref. Other modalities
Duration [0,12] ]12,18] ]18,24] ]24,30] ]30,36] ]36,42] ]42,48] ]48,54] > 54

nb surrenders 3062 1740 1187 791 728 400 365 244 682
empirical OR 10.56 2.89 2.69 1.82 1.16 0.96 0.68 0.19
modeled OR 0.27 0.07 0.06 0.05 0.03 0.02 0.02 0.004

Premium freq. Monthly Bi-monthly Quarterly Half-Yearly Annual Single
nb surrenders 2790 12 323 92 595 5387
empirical OR 2.22 0.93 0.66 2.39 1.60
modeled OR 2.52 0.97 0.80 1.55 0.75

UW. age [0,20[ [20,30[ [30,40[ [40,50[ [50,60[ [60,70[ > 70
nb surrenders 258 1719 2165 2002 1490 1088 477
empirical OR 1.16 1.06 1.25 1.63 2.67 3.28
modeled OR 1.32 0.99 0.77 0.67 0.51 0.47
Face amount #1∗ #2∗ #3∗

nb surrenders 5361 684 3154
empirical OR 0.14 0.12
modeled OR 0.003 0.0008
Risk prem. #1∗ #2∗ #3∗

nb surrenders 3941 2987 2271
empirical OR 1.50 0.92
modeled OR 1.43 1.30
Saving prem. #1∗ #2∗ #3∗

nb surrenders 3331 1762 4106
empirical OR 1.90 2.09
modeled OR 2.55 3.78

Contract type PP con PB PP sin PB PU con PB PU sin PB
nb surrenders 3840 0 5357 2
empirical OR 0 4.75 0.0008
modeled OR 5.6e-08 0.0006 3.9e-06
∗

Note : for confidentiality reasons, the real ranges of the face amount, the risk premium and saving premium are omitted.

line of the matrix X represents a policyholder
and a column represents the observed value for
a certain risk factor (e.g. the age).
The response vector Y = (Y1, Y2, ..., Yn)

′

repre-
sents the surrender decisions of the 28506 in-
sureds (policyholders).
In the classical regression framework, the prob-
lem can be written in the matrix form :








Y1

Y2
...

Yn








=








1 X1,1 X1,2 · · · X1,k

1 X2,1
. . . . . .

...
...

...
. . . . . .

...
1 Xn,1 · · · · · · Xn,k







×








β0

β1
...

βk








We ran the logistic regression in R thanks to

the function glm, the output of the model is the
effect of each variable and its confidence bands
(see D and Appendix D), and the deviance of
the model (see Appendix E).

Categorical variables are split into dummy
variables corresponding each one to a modality.
A stepwise logistic regression is carried out with
a step-by-step iterative algorithm which is used
to compare a model based on p

′

of the p origi-
nal variables to any of its sub-model (with one
less variable) or to any of its top-model (with
one more variable). Hence the R procedure
stepAIC from the R package MASS allows us
to drop non significant variables from the model
and to add relevant ones. We finally get the opti-
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mal model with the minimum number of relevant
variables.
The learning sample still contains the randomly
chosen 16868 policyholders and the validation
sample 11638. As usual, the regression coef-
ficients were computed on the learning sample
whereas the predictions were made on the vali-
dation data set.

Table 8 in Appendix A summarizes the re-
gression coefficients of the explanatory variables,
the standard deviation associated, and the con-
fidence we can have in the test of the relevance
of the explanatory variable (see Appendix E.2).
The odd-ratios, presented in D, is an important
operational tool and should be compared to 1.
Looking at Table 4, we clearly see that the mod-
eled odd-ratios are a bad representation of the
reality : they are very different from the empir-
ical odd-ratios (obtained via descriptive statis-
tics). For instance, the model tells us that a
policyholder whose underwriting age is over 70
years old is less likely to surrender than a young
policyholder whose underwriting age is less than
20 years old (the reference range) all other things
being equal. The experience shows that in fact
they are 3.28 times more likely to lapse !

The model has therefore a bad goodness of fit
since many regression coefficients estimates are
not significant, and this is the reason why the
modeled odd-ratios do not represent the reality
in most of cases. But there is a trade-off between
the goodness of fit and the predictive accuracy.
In our case, we prefer to have good results in
terms of prediction than for goodness of fit. To
check for this, we still look at the confusion ma-
trix given in Table 5 which gives the number
of missclassified policyholders and represents the

prediction power of the method. Of course good
predictions still appear in the diagonal of this ta-
ble and we can get the predicted misclassification
rate with it. To make such predictions, we con-
sider that a policyholder with a modeled prob-
ability to surrender greater than 0.5 is assigned
the response 1, otherwise the response 0. Here
the predictions are right for 84.96% of the vali-
dation sample. Thus the prediction error equals
to 15.04% and is quasi-similar to the one gotten
with the CART method.

Other usual performance criteria to compare
the two methods are the sensitivity (Se) and the
specificity (Sp). Let success be the case which
corresponds to a predicted and an observed re-
sponse equal to 1 in the confusion matrix, misses
correspond to a predicted response equal to 0
and the observed one 1, correct rejections corre-
spond to an observed and a predicted response
equal to 0, and finally when the predicted re-
sponse is 1 and the observed one is 0 this is a
false risky policyholder. The sensitivity is the
number of success over the number of observed
surrendered contracts, and the specificity is the
number of correct rejections over the number of
observed non-surrendered contracts.
Table 6 summarizes the performance criteria for
each method ; we want to minimize the propor-
tion of misses. The predictions of the LR model
have less misses and more false risky policyhold-
ers ; in all CART models results are quite sim-
ilar, errors are well-balanced and the compro-
mise between the sensitivity and the specificity
is better but the number of misses is higher.
Hence, the most prudential model is clearly the
LR model (10%).

Table 5: The confusion matrix (LR model).
observed Y = 0 observed Y = 1

predict Y = 0 #correct rejections #misses
4153 637

predict Y = 1 #false risky policyholder #success
1113 5735

Table 6: The performance criteria.
Tmax Tpruned TRandomForest LR

Se 84.9% 84.1% 84.3% 90%
Sp 85.4% 86.3% 86.7% 78.9%

(1-Se) 15.1% 15.9% 15.7% 10%
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Figure 6: Predictions and confidence bands of the portfolio surrender rate. On the left, the predic-
tions on the learning sample and on the right predictions on the validation sample.
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B A dynamical analysis

In this part of the paper, the LR model is the
only one used.

We have already discussed about the prob-
lem of a static analysis : depending on the pe-
riod covered and the phenomenom modeled, it
could be erroneous.
If the period covered is longer than the term of
the phenomenom, the binary response variable
would be equal to 1 everytime. By consequence,
the model would not work well; this is the first
explanation of running a monthly study. The
second one is that we want to model a dynami-
cal decision : we may think that the policyholder
is likely to wonder each month if he has to keep
in force her contract. However, a robustness and
stability problem is raised : we perform the logit
modeling monthly (just considering the present
contracts in the portfolio at the given date), but
is the resulting model reliable and stable between
month ? To validate the model built on one pe-
riod, you might ensure that the model is built
on a representative period (the portfolio is at

maturity for example). The dynamical analysis
allows us to model the monthly decisions of pol-
icyholders and thus to model the surrenders on
the whole portfolio each month by aggregation
of individual decisions.

The main assumption is the independence
between agents (policyholders) and the added
underlying assumption here is the independence
in time. In practice, we consider that the de-
cision of the policyholder at date t + 1 is in-
dependent of what happened before, and more
precisely independent with the decision at date
t. This is a very strong hypothesis which is not
reasonable in reality. In the new data set (whose
size is 991010), policyholders are duplicated each
observed month while they are present in the
portfolio (no surrender and no other reason to
leave), and their characteristics are up-dated (for
instance duration).
We have chosen to check for the accuracy and
the quality of the predictions looking at the pre-
dicted surrender rate as compared to the ob-
served one each month. The final data set is
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divided into the following learning and valida-
tion samples : the learning sample (whose size
is 629357 lines) covers the period January 1999
to December 2004, and thus the validation sam-
ple covers the period January 2005 to December
2007 (its size is 361653).

The same explanatory variables as in the
static study have been input to build the model,
plus the date. The month of observation is
added in the modeling to enable us to predict
future surrenders when assuming an expected
level (either increase or decrease) of lapsation
as compared to a reference date. This is a key-
advantage.
The results seem to be acceptable but we should
keep in mind that it should work very bad in
extreme situations. Here the economic context
is not considered in the model, and during eco-
nomic crisis these indicators should be the main
explanatory variables of the surrender decisions.
The assumption of independence between poli-
cyholders and in time are not at all realistic when
considering a crisis period. As a matter of fact,
we see on Figure 6 that the period has a big in-
fluence : the model perfectly fits the data in the
learning period but is a bit far from the reality
when predicting the future. The beginning of
the financial and economic crisis led the surren-
der rate to drop in 2007, which is not predicted
by the model and shows that the economic situ-
ation is also very important.
This is certainly due to the fact that the user
has to make an assumption when predicting :
what will be the level of lapsation in the com-
ing months as compared to today (or a reference
date) ? Then the predicted surrender rate will be
adjusted depending on this hypothesis. Here, we
simply assume that the level of lapsation in De-
cember 2004 will stay the same in 2005, 2006 and
2007 and then we predict the surrender decisions
of policyholders. Actually a good prediction de-
pends on the good choice of the future expected
general level of lapsation as compared to today
(when the date is introduced in the model) : will
it be higher ? lower ? the same ?

V Discussion and improvements

The goal of this paper is to give insights
about the discriminant contract features and
policyholder’s characteristics regarding the sur-
render behaviour, so what’s new ?
Our study has brought out some typical risky
profiles : oldest people tend to surrender more
than others, as well as people who have a peri-
odic premium (“annual” and “bi-monthly” are
the worst cases). Unlike policyholders with an
intermediate wealth, those who are very poor or
very rich are not really interested in surrendering
their contracts : poor insureds have to pay for
fees but they do not have the money for it, and
rich people may not really pay attention to the
situation. But in general the biggest risks are
concentrated on the first periods following the
termination of a fiscality constraint : if the dura-
tion of the contract has reached the period from
which the policyholder can surrender her con-
tract without penalty, the risk is very high. Fi-
nally, the participation of the policyholder to the
benefits of the insurance company plays an im-
portant role in its decision, the study has shown
that people with no profit benefit option do not
surrender their contract whereas people with the
profit benefit (PB) option tend to surrender their
contract. Three reasons could explain it : first
people move to a new product which globally of-
fers a higher PB, second a high PB in the first
years of the contract enables the policyholder to
overperform the initial yield and could lead her
to surrender the contract and recover the sur-
render value, third someone with a PB option
simply receives frequent information on it and
on the surrender value which can prompt her to
surrender. The gender of the policyholder does
not seem to be discriminant.

The conclusion could be that the predictions
can be performed by running either the LR

model or the CART model, but risky profiles
should be extracted from the descriptive statis-
tics or the CART model more than from the
LR model for which the modeled odd-ratios are
not really significant here. An idea could be
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to select salient explanatory variables with the
CART procedure and Random Forest algorithm
and then apply the LR model to make predic-
tions and use odd-ratios. Another improvement
in the LR model could be to re-balance the data
set which is extremely unbalanced in the dy-
namical analysis : we observe 15571 surrenders
among 991010 observations, thus surrenders rep-
resent only 1.57% of the whole data set. We can
overcome it by using downsampling or oversam-
pling (Liu et al. (2006)), or by changing the deci-
sion function (here the policyholder was assigned
a surrender if the modeled probability was over
0.5 in the predictions, but this is not always op-
timal (Lemmens & Croux (2006))).

A lot of professionnals know that the du-
ration is a meaningful factor in explaining the
surrender because of fiscality constraints, but at
the underwriting we do not have any informa-
tion on this factor because the contract is newly
acquired.
Hence, duration as an input of the model enables
us to predict well the surrender rates but should
not be applied when we want to segment the
population of policyholders at the underwriting.
However this is not a problem : we just have to
remove the duration in the models to segment
policyholders at underwriting process.
Besides, the results of these two models are true
for a fixed date t, when the model is computed.
But we would like a dynamical response in func-
tion of time, which could be preferable if we want
to know for example not the intensity to surren-
der at t but the intensity to surrender at t + dt,
where dt can be big. The next step could be to
run a functional data analysis which could nicely
take into account the economic situation, or to
try some models used in survival analysis like
the Cox model family. The hazard moral, the
adverse selection and hidden variables such as
the competition on the market (Albrecher et al.
(2010)) could be considered as well.
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Appendices

A CART method

I Choice of the complexity parameter

rpart() prunes the tree and runs a K-
fold cross validation (K=10 by default) on each
pruned tree (we took K=10). The policyholders
in the cross-validation process are randomly se-
lected, thus the cptable can slightly differ from
one simulation to another. On Table 7, relerror

measures the learning error and describes the fit
of the tree, xerror measures the misclassification
rate in the 10-fold cross validation and is consid-
ered as a better estimator of the actual error.
xstd is the standard deviation of xerror. The
optimal tree minimizes err = xerror + xstd. If
two trees have the same error err, we choose the
smallest. Table 7 enables to plot the learning er-
ror in function of the complexity parameter and
the size of the tree in Figure 7.

Remark 4. Notes on how to read this table :

• the third tree with 2 splits corresponds to
α ∈]2.30, 3.10] ,

• R standardizes the error, that is why relative
error of the root is equal to 1. The real error
of the root can be obtained by printing the tree
(here it is 45.465%),

• the maximal tree Tmax (non-pruned) returned
automatically and by default by the function
rpart() corresponds to the last line of the
cptable.

II Deeper in CART theory

II.1 What is an impurity function ?

Definition 2. An impurity function is a real
function g defined over discrete probabilities on
a finite set :

g : (p1, p2, ..., pJ) → g(p1, p2, ..., pJ),

symetric in p1, p2, ..., pJ and :

1. the maximum of g is at equiprobability :
argmax g(p1, p2, ..., pJ) =

(
1
J
, 1

J
, ..., 1

J

)
,
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Table 7: Complexity parameters
CP nsplit rel error xerror xstd CP nsplit rel error xerror xstd

3.3981e-01 0 1.000 1.000 0.0084 1.9559e-04 59 0.312 0.332 0.0060
3.0539e-01 1 0.660 0.660 0.0077 1.8255e-04 68 0.310 0.332 0.0060
5.9982e-03 2 0.354 0.361 0.0062 1.3040e-04 73 0.309 0.332 0.0060
7.8237e-04 5 0.336 0.337 0.0061 1.0432e-04 82 0.308 0.332 0.0060
5.2158e-04 10 0.331 0.333 0.0060 9.7796e-05 88 0.307 0.333 0.0060
4.5638e-04 15 0.328 0.333 0.0060 8.6930e-05 97 0.306 0.334 0.0060
3.9119e-04 19 0.326 0.333 0.0060 6.5198e-05 100 0.306 0.334 0.0060
3.6945e-04 21 0.325 0.333 0.0060 4.3465e-05 117 0.305 0.337 0.0061
3.2599e-04 32 0.319 0.333 0.0060 3.7256e-05 132 0.304 0.339 0.0061
3.1295e-04 34 0.318 0.333 0.0060 3.2599e-05 139 0.304 0.340 0.0061
2.6079e-04 39 0.317 0.332 0.0060 2.6079e-05 159 0.303 0.340 0.0061
2.1733e-04 53 0.31360 0.334 0.0060 0.0000e+00 174 0.303 0.341 0.0061

2. the minimum of g is given by the “dirac”:
argmin g(p1, p2, ..., pJ) ∈ {e1, ..., eJ},
where ej is the jth element in the canonical
basis of R

J .

II.2 Existing impurity functions

We usually consider the following functions
which satisfy the concavity criterium :

• impur(t) = -
∑J

j=1 p(j|t) ln(p(j|t)) ;
• impur(t) =

∑

j 6=k p(j|t) p(k|t) (Gini index)

Remark 5. In a variance approach,

• the Gini diversity index also equals to 1 −
∑

j p2
j ;

• we also use the twoing rule, choose ∆ to

maximize
pLpR

4

[
∑

j|p(j|tL) − p(j|tR)|
]2

;

• in a two-class problem, the Gini index re-
duces to impur(t) = 2p(1|t)p(2|t).
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Figure 7: The cross-validated misclassification estimator of the optimal tree in function of the
complexity parameter cp (or α). Tmax contains here 175 leaves and corresponds to cp = 0. Notice
that there is an initial sharp drop of error followed by a “flat” plateau and a slow rise.
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II.3 Notes on prediction error

Notice that :

E[τ̂(class)] = E

[

1
N

∑

(xn,jn)∈ǫ

11{class(xn, ǫ) 6= jn}
]

=
1

N

∑

(xn,jn)∈ǫ

E[11{class(xn, ǫ) 6= jn}]

= P (class(X, ǫ) 6= Y ) = τ(class).

and all presented estimators are unbiased :
E[τ̂(class)] = E[τ̂ cv(class)] = E[τ̂ ts(class)]

Prediction error and misclassification error are
two different concepts. Misclassification error is
the error in nodes of the tree whereas predic-
tion error is linked to the final classification of
the variable of interest and is calculated once the
tree is built.

By default, R computes a cross-validation es-
timator of the learning error. This is the re-
sults given in the complexity parameter table.
But this cross-validation procedure does not cor-
respond to the cross-validation technique in re-
sampling theory. The former computes the opti-
mal tree for a given size by minimizing the learn-
ing error whereas the latter only aims at getting
to a more realistic estimator of the prediction er-
ror but does not deal with the problem of finding
an optimal tree.

II.4 Penalize wrong classification

Using the inaccurate resubstitution estimate
(see A.3) as well as selecting too large trees have
led tree structured methods to a lot of critics.
In real applications, the cost of misclassifying a
class j object as a class i object is not the same
for all i 6= j. A possible improvement could be
to penalize the misclassification of an observa-
tion (as compared to the response observed) by
a positive factor.

Definition 3. The cost of classifying an obser-
vation in a wrong class is defined by

Γ : C × C → R+ , such that

Γ(i|j) ≥ 0 and Γ(i|i) = 0

Hence, let us define

• the probability to class an observation badly
by Pclass(i|j) = P (class(x, ǫ) = i | j) (the
function class classes x in the class i instead
of the class j ),

• τclass(j) =
∑

i Γ(i|j)Pclass(i|j) : the mean cost
of wrong classification,

We get τclass = τ(T ) and

τ(T ) =
∑

j

π(j)τclass(j) =
1

N

∑

j

Njτclass(j)

Given this new framework, Ghattas (2000) de-
fines the new penalized classification function to
assign a class to a terminal node t :

class(x, ǫ) = argmin
i∈C

∑

j∈C

Γ(i|j) p(j|t) (2)

From (2), the estimation of the misclassification
rate is now

r(t) = min
i∈C

∑

j∈C

Γ(i|j) p(j|t)

Knowing that τ(t) = r(t)p(t), the misclassifica-
tion rate by substitution on the tree T is still

τ̂(T ) =
∑

t∈T̃

τ̂(t) (3)

Corollary 1. The tree misclassification rate es-
timator τ̂(T ) becomes smaller each time a split
is made, whatever the split. Thus, if we denote
by Ts the tree gotten by splitting T at a terminal
node, we get

τ̂(Ts) ≤ τ̂(T ) (4)

Let tL and tR be the descendants of node t in
tree Ts.
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From (3) and (4), it turns out that

∑

t∈T̃s

τ̂(t) ≤
∑

t∈T̃

τ̂(t)

∑

t∈T̃

τ̂(t) − τ̂(t) + τ̂(tL) + τ̂(tR) ≤
∑

t∈T̃

τ̂(t)

τ̂(tL) + τ̂(tR) ≤ τ̂(t) (5)

II.5 Pruning the tree

The problem of a too complex final tree over-
fitting data can be easily solved. In fact looking
for the right stopping-rule is the wrong way of
looking at the problem, a more satisfactory pro-
cedure to get the final result consist of two key
elements.

1. Don’t stop the construction of the tree
(forget arbitrary stopping-rules) and get
the largest tree Tmax ; then prune it up-
ward until the root node (the criterion to
prune and recombine the tree upward is
much more important than the splitting
criterion) ;

2. Use better estimators of the true misclas-
sification rate to select the right sized tree
from among the pruned subtrees. Use
cross-validation or learning/test samples
for this.

The idea is to look for subtrees of Tmax with
a minimum misclassification rate. To prune a
branch T t from a tree T means to delete all de-
scendants of node t in T .
The resulting pruned tree is denoted by T

′

=
T − T t, and T

′

< T .
From (5) we get

τ̂(t) ≥ τ̂(T t) (6)

Tmax contains so many nodes that a huge num-
ber of distinct ways of pruning up to the root
exist, thus we need to define a criterion to select
the pruning procedure which gives the “best”
subtree (the right-sized tree). Obviously, the
natural criterion to compare same sized trees is
the misclassification error : the selective prun-
ing process starts with Tmax and progressively

prunes Tmax upward to its root node such that at
each stage of pruning the misclassification rate
of the tree is as small as possible. This work
yields to a sequence of smaller and smaller trees
: Tmax > T1 > T2 > ... > Troot. (Troot is just the
root node)

From (4), notice that : T1 < Tmax ⇒ τ̂(Tmax) ≤
τ̂(T1). The error of the maximal tree is always
less or equal to the error of the pruned tree and
the aim is to lower the number of leaves of Tmax,
thus it is natural to think about penalizing a big
number of leaves in the final tree. That is why we
introduce in the term of the error a complexity
cost representing this idea. The new misclassi-
fication rate or cost-complexity measure is then
:

τ̂α(T ) = τ̂(T ) + α Card(T̃ )
︸ ︷︷ ︸

complexity term

, where α > 0.

(7)
Card(T̃ ) is the number of terminal nodes of T .
Actually we just want to find the substree
T (α) ≤ Tmax which minimizes τα(T ) for each
α :

τα(T (α)) = min
T≤Tmax

τα(T ) (8)

For problems of existence and unicity of the tree
T (α), please refer to Breiman et al. (1984).
α is clearly linked to the size of the final pruned
tree; if α is small, then the penalty for having a
lot of leaves is small and the tree T (α) will be
large.
The critical cases are :

• α = 0 : each leaf contains only one ob-
servation (Tmax very large). Every case is
correctly classified and τ(Tmax) = 0. Tmax

minimizes τ0(T ) ;
• α → +∞ : the penalty for terminal nodes

is big and the minimizing subtree will con-
sist in the root node only.

Algorithm 1. To know what branches to prune
off and the optimal α associated,

1. Let terminal nodes tL and tR be the imme-
diate descendants of a parent node t; start-
ing from Tmax, one looks for the division
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which did not lead to a decrease of error,
i.e. where τ̂(t) = τ̂(tL) + τ̂(tR) (see (5)).
Prune off tL and tR, and do it again un-
til no more pruning is possible. We get
T1 < T ;

2. For T t
1 any branch of T1, define τ̂(T t

1) =
∑

t∈T̃ t
1

τ̂(t). According to (6), the non ter-
minal nodes t of the tree T1 satisfy the fol-
lowing property : τ̂(t) > τ̂(T t

1) (no equality
because of step 1).

3. Denote by {t} the subbranch of T t
1 consist-

ing of the single node {t}, card({t}) = 1.
Hence, τ̂α({t}) = τ̂(t) + α and

τ̂α(T t
1) = τ̂(T t

1) + α Card(T̃ t
1) (9)

We have seen that τ̂(T t
1) < τ̂({t}), but the

introduction of the complexity term makes
this inequality with τ̂α become not always
true. While τ̂α(T t

1) < τ̂α({t}) it is no use
to prune the tree, but there exists a thresh-
old αc such that ˆταc

(T t
1) = ˆταc

({t}). There-
fore,

τ̂(T t
1) + αc Card(T̃ t

1) = τ̂(t) + αc

αc =
τ̂(t) − τ̂(T t

1)

Card(T̃ t
1) − 1

While α < αc, it is no use to prune off the
tree at the node t, but as soon as α = αc

pruning off the subbranch presents some
interest because the error is the same and
the tree is simpler ;

4. Do this for all t in T1 and choose the node
t in T1 which minimizes this quantity αc.
Let α1 be αc. By pruning T1 at the node t,
we get T2 = T1 −T t

1. Recursively, repeat 3.
and 4. with T2, get α2, and so on until the
root node.

Finally, we get by construction (see the critical
cases) a sequence α1 < α2 < ... < αroot corre-
sponding to the pruned trees T1 > T2 > ... >

Troot. Troot consists only on the root node.
But what is the optimal tree in this sequence ?

(8) tells us that the best pruned tree is the one
with the minimum misclassification rate.

B Logistic regression

A Static results

The regression coefficients, their standard er-
ror, the confidence we can have in the value of
the coefficients and their effect are available in
Table 8. The regression coefficients of the dy-
namical study are not given here, there are too
many coefficients because the date was included
in the modeling.

B Theoretical framework

The main idea why the logit modeling seems
to be relevant is that we want to model a bi-
nary event (surrender). Indeed, logistic regres-
sion analyses binomially distributed data of the
form Yi ∼ B(ni, pi), where ni is the number of
bernouilli trials and pi the probability of “suc-
cess” (surrender). If we denote by Y the variable
to explain (i.e. the surrender decision), we have

Y =

{

1, if the policyholder surrenders,

0, else.

It is now possible to adapt the logistic regression
equation to our environment and we get p as the
probability to surrender :

logit = ln

(
P [Y = 1|X0 = x0, ..., Xk = xk]

P [Y = 0|X0 = x0, ..., Xk = xk]

)

= β0 + β1X1 + ... + βkXk

Finally,

Φ(logit(p)) = Φ(Φ−1(p)) = p

Φ(logit(p)) = Φ(β0 +
∑k

j=1 βjXj)

}

(1)

(1) ⇒ p = Φ(β0 +
∑k

j=1 βjXj).

This writing will help us to understand the ex-
pression of the likelihood function in C.

C The Newton-Raphson algorithm

The condition on maximizing the log-
likelihood function (15) yields to the following
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Table 8: Estimations of the logistic regression coefficients for “Mixtos” products. With confidential
data, modalities increasing means the variable associated also increasing.

Coef. (var. type) modality : correspondance coefficient estimate std error p-value effect
β0 (continuous) 10.63398 1.48281 7.42e-13 > 0

1 : [0,12] (in month) 0 (reference) nul
2 : ]12,18] -1.31804 0.15450 < 2e − 16 < 0
3 : ]18,24] -2.66856 0.14016 < 2e − 16 < 0
4 : ]24,30] -2.75744 0.14799 < 2e − 16 < 0

βduration 5 : ]30,36] -3.09368 0.14294 < 2e − 16 < 0
(categorical) 6 : ]36,42] -3.54961 0.15080 < 2e − 16 < 0

7 : ]42,48] -3.72161 0.14980 < 2e − 16 < 0
8 : ]48,54] -4.10431 0.15772 < 2e − 16 < 0
9 : > 54 -5.49307 0.14037 < 2e − 16 < 0
Monthly 0 (reference) nul

Bi-monthly 0.92656 0.62071 0.135504 > 0
Quarterly -0.03284 0.10270 0.749148 < 0

βpremium frequency Half-yearly -0.22055 0.16681 0.186128 < 0
(categorical) Annual 0.43613 0.10690 4.51e-05 > 0
(in month) Single -0.28494 0.38155 0.455177 < 0

1 : [0,20[ (years old) 0 (reference) nul
2 : [20,30[ 0.28378 0.13912 0.041376 > 0
3 : [30,40[ -0.01146 0.13663 0.933163 < 0

βunderwriting age 4 : [40,50[ -0.26266 0.14077 0.062054 < 0
(categorical) 5 : [50,60[ -0.42098 0.15136 0.005416 < 0

6 : [60,70[ -0.66396 0.19531 0.000675 < 0
7 : > 70 -0.75323 0.23417 0.001297 < 0

1∗ : 0 (reference) nul
βface amount 2∗ : -5.79014 1.46592 7.82e-05 < 0
(categorical) 3∗ : -7.14918 1.46631 1.08e-06 < 0

1∗ : 0 (reference) nul
βrisk premium 2∗ : 0.36060 0.11719 0.002091 > 0
(categorical) 3∗ : 0.26300 0.14041 0.061068 > 0

1∗ : 0 (reference) nul
βsaving premium 2∗ : 0.93642 0.13099 8.74e-13 > 0
(categorical) 3∗ : 1.32983 0.14955 < 2e − 16 > 0

PP con PB 0 (reference) nul
βcontract type PP sin PB -16.79213 114.05786 0.882955 < 0
(categorical) PU con PB -7.48389 1.51757 8.16e-07 < 0

PU sin PB -12.43284 1.08499 < 2e − 16 < 0
Female 0 (reference) nul

βgender Male -0.08543 0.04854 0.078401 < 0
∗

Note : for confidentiality reasons, the real ranges of the face amount, the risk premium and saving premium are omitted.

system of (k + 1) equations to solve







∂l

∂β̂0

=
∑n

i=1 Yi − Φ(β0 +
∑k

j=1 βkXk) = 0

∂l

∂β̂j

=
∑n

i=1 Xij(Yi − Φ(β0 +
∑k

j=1 βkXk)) = 0

∀j = 1, ..., k.

The problem is that it is not in a closed form,
we need to use an algorithm (often Newton-
Raphson) to find its solution. In SAS and R soft-
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ware, the Newton-Raphson algorithm to solve it
is included and uses the following iterative pro-
cess :

β(i+1) = β(i) −
(∂2 ln(L(β))

∂β∂β
′

)−1

×
(∂ ln(L(β))

∂β

)

(10)
When the difference between β(i+1) and β(i) is
less than a given threshold (say 10−4), the iter-
ation stops and we get the final solution.

D Estimating the variance matrix

The variance matrix Z of coefficients β̂ is









V ar(β̂0) Cov(β̂0, β̂1) · · · Cov(β̂0, β̂k)

Cov(β̂1, β̂0) V ar(β̂1)
. . .

...
...

...
. . .

...

Cov(β̂k, β̂0) Cov(β̂k, β̂1) · · · V ar(β̂k)









(11)
and is estimated by the inverse of the informa-
tion of Fisher matrix, given by

I(β) = −E

[∂2 ln(L(β))

∂β∂β
′

]

.

So we have a pretty result : the latter term also
appears in the Newton-Raphson algorithm, so
we can estimate the regression coefficients and
their variance matrix together.
The maximum likelihood estimator β̂ converges
and is asymptotically normally-distributed with
mean the real value of β and variance the inverse
of the Fisher matrix I(β).
The term in the expectation is called Hessian
matrix and is also used in the significance tests
of the regression coefficients β.

E Deviance and tests

E.1 Statistic evaluation of the regression

To check the relevance of the model, we clas-
sically use the statistic of the log-likelihood ra-
tio test : the first assumption of this test is
β1 = β2 = ... = βk = 0 (H0) ;
And the alternative hypothesis is ”at least one
regression coefficient is not equal to 0” (H1).

Now let us denote by l(β) the log-likelihood of

the logistic regression model with k + 1 regres-
sion coefficients, and the log-likelihood of the
simplest logistic regression model (with only the
constant term associated to β0) by l(β0), the
statistic of the log-likelihood ratio is

Λ = 2 ×
(

l(β) − l(β0)
)

(12)

This statistic follows a χ2
k, a chi-square law with

k degrees of freedom (d.f.).
To conclude, if the “p-value” is lower then the
expected threshold of confidence (e.g. 5%), the
model is globally statistically significant and H0

is rejected.

More intuitively, sometimes the R2 coefficient of

MC Fadden is also used : R2 = 1 − l(β)

l(β0)
.

As one could expect, if this coefficient is closed
to 0 it is because the ratio is closed to 1, and
then the log-likelihood of the complete model is
closed to the simplest model one which means
that this is not significant to have explanatory
variables.
On the contrary, if R2 is closed to 1 it means
that there is a huge difference between the two
model. In this case, the complete model is the
best one.

E.2 Relevance of a given explanatory variable

The idea of this test is to compare the value
of the estimated coefficient βj (associated to the
explanatory variable Xj) to its variance. This
variance is taken from the Hessian matrix de-
fined above.
Here the first assumption is : βj = 0 (H0) ;
Otherwise the alternative one is then : βj 6= 0
(H1).

We use the Wald statistic which follows a χ2
1 to

do this test : Λ =
β̂j

2

V ar(β̂j)
.

Let us choose 5% as confidence threshold, and
let us denote by χ2

95%(1) the 95% quantile of the
chi-square law with 1 d.f. H0 is true if the ra-
tio is lower than this quantile, otherwise H1 is
confirmed.


