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Abstract

The ML detection used in many communication applications reduces down to solving an integer

least-squares problem, which minimizes an objective function. If the matrix is not orthogonal, this

problem is NP-hard. An exhaustive search over all feasible solutions is thus only applicable when the

dimension of the problem is low. In the literature, there aretwo main available classes of methods.

The first class comprises of exact methods whose complexities are roughly cubic in the dimension

for medium to high SNR. However, the computational complexity remains exponential for low SNR.

Moreover, these algorithms are iterative and thus, not wellsuited for hardware implementation. The

second class is based on a relaxation strategy approach. However, the BER performance of this class

is still not optimum. In this paper, we use a third class of methods for the resolution of this problem.

Our approach, named Geometrical Diversification and GreedyIntensification (GDGI) associates two

complementary heuristic optimization methods (intensificationand diversification). Three versions of

the GDGI are presented and compared. The inherent parallel structure of the GDGI provide a very

suitable real-time hardware implementation. The GDGI allows a near optimal performance, with cubic

complexity and it’s almost independent of the SNR.

March 20, 2008 DRAFT



2

Index Terms

Maximum Likelihood Detection, MIMO systems, MC-CDMA systems, Singular Value Decompo-

sition, Greedy algorithm.

I. I NTRODUCTION

The main challenge of the receiver design for wireless communication systems lies in the non-

orthogonality of the transmission channel. In order to secure high reliability of data transmission

special attention has to be paid to the design of the receiver. Optimum maximum likelihood

detection requires the determination of the signal pointx̂ of the transmitter vector signal setξn

that minimizes the objective functionf(.):

x̂ = argmin
x∈ξn

f(x) (1)

The functionf(.) is the Euclidean distance between the received signal vector y (y ∈ R
m)

and the lattice pointHx (H ∈ R
m×n).

f(x) = ‖y − Hx‖2
2 (2)

In the following, m = n by default. We assume that the information signalx is uniformly

distributed over a discrete and finite setξn = {±1}n (the set of constellation points). The channel

matrix H is considered as constant over a block ofL consecutive time intervals and it is assumed

to be perfectly known at the receiver end.

An exhaustive search over all feasible solutionsξn can be used to solve the maximum

likelihood problems (1). However, the computational complexity is exponential in the number of

possible constellation points, thus making this alternative unsuitable for practical purposes when

aiming at high spectral efficiencies. Nevertheless, for lowproblem dimension with low-order

modulation schemes such as BPSK and4-QAM, exhaustive search methods have been shown

to be feasible and efficient [14].

For higher problem dimension, the maximum likelihood detection problem (1) can be resolved

using a “smart” efficient search method like the universal lattice decoding algorithm [1], also

called sphere decoding (SD). The SD search algorithm is based on the Finke-Pohst to enumerate

all the lattice points inside an hyper-sphere centered at the origin [3]. The interest in lattice
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decoding has steadily increased in the last few years. One ofthe most efficient sphere decoding

algorithms that has been proposed in the literature is the algorithm of Viterbo and Boutros (VB)

in [4]. However, an important drawback in the VB algorithm, and other similar SD algorithms,

is the choice of the initial value of the search radius. On onehand, if this radius is chosen

too small, there may be no solution for the algorithm (no point inside the hyper-sphere). On

the other hand, if the radius is chosen too large, the number of the checked points may be

very high and the algorithm will be ineffective. The averagecomplexity of the SD algorithm

is shown to be polynomial time (almost cubic) over a certain ranges of rate, Signal to Noise

Ratio (SNR) and dimension, while the worst-case complexity isstill exponential [12]. From a

hardware implementation point of view, the SD algorithm presents three weaknesses: first, it

is iterative in nature and cannot be easily pipelined. Second, its average complexity increases

for low SNR. Third, the number of branches evaluated in a SD algorithm has a large variation.

Nevertheless, several implementations of SD has been reported in the literature [20], [22], [23].

They show that, despite of these limitations, the SD decodercan be implemented in effective

way.

The second class of methods is based on a relaxation strategyapproach. It consists of finding

the optimal solution off(.) on a convex set that includes{±1}n and then projecting the returned

solution on the discret set{±1}n. This class encompasses linear and non linear receivers.

Linear receiver, like zeros forcing (ZF) and minimum mean-squared error (MMSE) [2] are

computationally simple to implement, however, their performance can be far from the ML

performance. Therefore, there has been a considerable interest in non linear ML approximations,

which offer a better performance. The non linear receivers are uccessive interference cancellation

(SIC), parallel interference cancellation (PIC) [10], [11] and the recently proposed semidefinite

programming (SDP) receiver [5], [6], [7]. Simulation results indicate that the bit error rate (BER)

performance of the SDP detector is better than those of previous non linear receivers. However,

SDP is still non optimum and it complexity is high. From a hardware perspective, SDP lacks of

parallelism because of its iterative structure.

In this paper, we use a third class of methods for the resolution of the ML detection problem.

Following the pioneering work of Hui and Rasmussen [15], we consider the ML detection

problem as an operation research problem and use a heuristicmethod to solve it. A heuristic

technique seeks for local optimal solutions at a reasonablecomputational cost, but does not
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guarantee their optimality. In practice, it should be emphasized that many modern heuristic

techniques do give high-quality solutions [9] in the general case. This is also true for the ML

detection problem as shown in [15]. The originality of the presented work is to combine the

existing methods for deriving a new heuristic method havingquasi-optimal performance, limited

complexity and good properties for hardware implementation (low complexity and highly parallel

structure), even for the problem of high dimension (n = 60 has been successfully tested).

The proposed detector, called Geometrical Diversificationand Greedy Intensification (GDGI),

combines two complementary approaches to approximate the optimal solutionx̂. First, using the

geometrical properties of the problem, we generate a subsetξstart ⊂ ξn of pointsx “close” to the

received pointy according to the objective functionf(.) (diversification approach). Then, starting

from each point ofξstart, we perform the simple bit-flipping greedy algorithm to improve the

initial starting solution (intensification approach). The best point obtained is then the decoded

point. The main idea of this method is: “don’ t put all your eggs in one basket”. The GDGI

detector applies a geometrical approach to implement the defined complementary techniques

and in general starts its search from a simple solution givenby a linear detector (ZF or MMSE).

The reduced subset(ξstart ⊂ ξn) creation by the diversification scheme, is inspired from thevery

original works of H. Artes in [8] and P. Spasojevic in [13]. In[8], the authors discuss the effects

of bad (“poorly conditioned”) channel realizations on the sub-optimum detectors’ performance

and then propose a new detection method called the Sphere-Projection Algorithm (SPA). This

strategy uses the solution given by ZF as the initial solution and extends the search of other best

solutions into the direction of the dominant axis noise. In [13], P. Spasojevic has proposed a

very efficient geometrical method for generating a subset ofpoints close to the optimal solution.

In this paper, we use this method (called “slowest descent method”) and two new variants to

obtain the subsetξstart ⊂ ξn.

The GDGI detector is not, by far, just a generalization of thegeometrical approach proposed

in [13] for the diversification step, rather it is a new strategy using an intensification phase to

explore promised regions. The proposed algorithm sets the initial solution to the ZF solution

and then searches for candidates in the direction of theD smallest right singular vectors of the

channel matrixH. After the choice of theC best initial candidates in each direction, the GDGI

detector uses an intensification step to provide a quasi-optimal solution for the ML problem.

The next section briefly reviews the state of the art in the existing heuristic techniques and

DRAFT March 20, 2008



5

describes and analyze the greedy algorithm used in the intensification step. Subsequently, in

Section III, three efficient geometric diversification techniques are described for different variants

of the GDGI detector. Several simulation results and comparative analysis are provided in Section

IV which demonstrate the efficiency of the GDGI detector as a quasi-optimal ML detector. In

Section V, the computational complexity of the GDGI algorithm is explained and an architecture

for the efficient hardware implementation is described. Thepaper concludes with a summary in

Section VI.

II. T HE INTENSIFICATION STEP

As shown in [15], and [17] heuristic methods such as local search, simulated annealing, and

tabu search can lead to excellent decoding performance. These algorithms have a long iterative

structure and are not suited for implementation. In this paper, we focus our attention on the

greedy algorithm (or bit-flipping algorithm) that can be easily implemented in the hardware.

The greedy algorithm is first described and its complexity isevaluated, then its behavior is

analyzed and a diversification method to escape local minimum is presented.

A. Bit-flipping greedy algorithm : (decent-1 algorithm)

As presented in [15], [16], and [24] the principle of the bit-flipping greedy algorithm is very

simple. Starting from a current solutionx, the set of its neighbors is generated by flipping the

sign of one of its coordinates (i.e. the setN(x) of all the points ofξn at a Hamming distance

1 of x). The objective functionf(x) is evaluated among all the points ofN(x) and the pointx′

leading to the minimum objective function overN(x) is then used as the new current solution

if f(x′) ≤ f(x). The process is iterated starting from the new current solution x′. When a local

optimum is found (i.e. no better solution is found), the algorithm stops and outputs the local

minimum ϕ(x).

The algorithm appears to be computationally expensive, dueto the number of repeated cost

function calculations required, but this may be largely reduced through simplification. Letx be

the current solution and letΩ = y − Hx. Equation (2) is then equivalent to:

f(x) = ‖Ω‖2
2 =

n−1
∑

i=0

Ω(i)2
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where

Ω(i) = y(i) −
n−1
∑

j=0

H(i, j)x(j), i = 1..n (3)

The first evaluation of the objective functionf(.) requiresn2 additions (x(i) is equal to+1

or −1) andn squares.

If the kth coordinate is flipped (i.e.x′(k) = x(k) + z, with z = −2x(k)), thenΩ′ = y − Hx′

is equal to:

Ω′(i) = Ω(i) + zH(i, k), i = 1..n (4)

SinceΩ is known from the previous cost calculation, the computation of Ω′ requires onlyn

additions. The final computation of‖Ω′‖2
2 requiresn additions andn squares.

The cost to evaluate then points of the setN(x) is then2n2 additions andn2 squares per

step. Assuming that the cost function of the initial point isknown, the global complexity of

the descent-1 algorithm is equal toθ2n2 additions andθn2 squares whereθ is the number of

iterations required before reaching a local optimum.

B. Analysis and performance of the intensification step

Let {x̃i}i=1..K be theK local optimums ofξn according to the greedy algorithm. The inten-

sification method partitions the set of feasible solutionsξn into K adjacent subsetsΠi defined

as:

Πi = {x ∈ ξn|ϕ(x) = x̃i} (5)

whereϕ(x) is the intensification step applied on the feasible pointx, andx̃i, i = 1..K, is the result

of the application of the intensification step starting fromthe current solutionx. Πi represents

a subset where any solution belonging to it can be descended to the unique local optimum̃xi if

Πi (x̃i ∈ Πi. By convention, the subsetΠ1 leads to achieve the optimal ML solution,i.e, x̂ = x̃1,

or, equivalently,∀x ∈ Π1, ϕ(x) = x̂.

The number of local minimumK can be large. For example, forn = 16, K is superior to

6 with a probability of 60%. The average value ofK increases when the dimensionn of the

problem becomes larger. The number of local minimumK is large enough to cause a significant

degradation of the average performance of the coordinate descent-1 algorithm.
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C. Needs of diversification method

To prevent from getting stuck in local optima, which is a common problem for direct search

methods and most of the nonlinear optimization algorithms,several rounds of optimization can

be made with different initial guesses and picking up the best local optimum as a global sub-

optimum. Letξstart be a subset ofξn, the decoding algorithm becomes:

x̃ = argmin
ϕ(x),x∈ξstart

‖y − Hϕ(x)‖2
2 (6)

One can note that the decoded pointx̃ equals the optimal point̂x if, and only if, at least one

point of ξstart belongs toΠ1, i.e. ξstart ∩ Π1 6= ∅.

Now the question arises how to generate a “good” starting setξstart. The diversification step

should verify the following properties:

1) Cardinality ofξstart is small, i.e., a reduced number of intensification processes.

2) ξstart ∩ Π1 6= ∅ with a very high probability (according to the requirement of the applica-

tion).

3) Small computational complexity.

The next section describes an efficient method to constructξstart, based on the geometrical

properties of theH matrix.

III. T HE DIVERSIFICATION STEP

The problem of determining a “good” starting setξstart (in the sense defined above) is a

hard problem. The choice is normally guided by the intuitionand the “trial and error” method

because very few theories are available. A clear trade-off can be observed between small and

large neighborhoods. A large number of point inξstart would seem promising but, as a drawback,

it will be time-consuming.

The simplest solution to generateξstart is to pick up random points. In that case, the generation

process ofξstart is very simple but in return, the cardinality ofξstart will become an important

factor to fulfill ξstart ∩ Π1 6= ∅ with a high probability. The complexity of the algorithm is then

dominated by the intensification stage. An other solution isto define a fixed set of point ”spread”

among the setξn. Several results using this approach with an extended BCH codeare presented
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in [18]. This type of approach is rather efficient but limitedto some values ofn. Moreover, the

cardinality ofξstart remains still important.

In this section, we propose to generalize the geometrical method presented in [13] and use

it in order to generate a subsetξstart. We present the principle of the geometrical approach and

we give three variants to create starting subset.

A. Principle of the geometrical approach

In general, the channel matrix is modeled by anm × n random matrixH mentioned in the

introduction (see Eq.1). The singular value decompositionof the matrixH is H = UΣVT , where

the diagonal matrixΣ contains the singular values{λk}
n
k=1, supposed to be indexed in increasing

order i.e. λ1 ≤ ... ≤ λn. The unitary matricesU and V contain, respectively, the left{uk}
m
k=1

and right{vk}
n
k=1 singular vectors of the matrixH as columns. The geometrical approach can

be described as follows: letx0 = H+y, whereH+ = (HHT )−1HT is the pseudo-inverse ofH

(HT stands for the transpose matrix ofH), andx0 be the solution given by the ZF detector.

For all pointsx ∈ ξn, the vectorx−x0 can be expressed in theV base asx−x0 =
∑n

k=1 αkvk

where{αk}
n
k=1 are real coefficients. The value of the objective function atall pointsx ∈ ξn can

be expressed as:

f(x) = ‖H(x − x0)‖
2
2

= (x − x0)
T VΣ2VT (x − x0)

=
n

∑

k=1

α2
kλ

2
k (7)

Let us define△k = {z ∈ R
n/z = x0 +γvk, γ ∈ R} the line inR

n defined by the pointx0 and

the vectorvk. Sinceλ1 ≤ ... ≤ λn, we can note that the increase in the objective functionf(.) is

much slower along the firstD lines{△1, ...,△D} than the last(n−D) lines. The diversification

step consists of choosing the feasible points in the “vicinity” of the lines△1, ...,△D in order to

create the starting setξstart.

The method to createξstart is based on several steps. Let us first consider the line△k. The first

step consists of computing the intersections of the line△k with a given set ofNb hyperplanes

S = {Hp, p = 1..Nb} in order to obtain a list ofNb points. These pointscp
1, p = 1..Nb are then

projected onξn to generate the listIk = {c̄p
k, p = 1..Nb}. All these points are then evaluated

DRAFT March 20, 2008



9

with the objective functionf(.)1 and just the bestC points are selected to generate a subsetξk.

The same process is iterated on the firstD lines △1, △2, ..., △D to generateξstart = ∪D
k=1ξk.

Then the intensification process is performed on each point of ξstart. The summary of the GDGI

method is given in the algorithm 1.

Algorithm 1 GDGI(H, y,S, C,D)

Pre-process 1: Extract theD smallest right singular vectors of the channel matrixH, i.e,

{vk}
D
k=1.

Pre-process 2: ComputeH+ = (HHT )−1HT

1: Calculatex0 = H+y.

2: Create an empty listξstart, initialize k = 1.

repeat

3: Generate the line△k defined byx0 and vectorvk.

4: Calculate the intersection of the line△k and all hyperplanes ofS to generatecp
k, p =

{1, .., Nb}.

5: Projectcp
k, p = {1, ..,m} on ξn to generateIk.

6: Evaluate the objective functionf(x), ∀ x ∈ Ik.

7: Createξk by selectingC distinct points which minimize the objective function onIk.

8: Updateξstart (ξstart = ξstart ∪ ξk), k = k + 1.

until k = D + 1

9: Starting from the setξstart, perform the intensification process as described in the subsection

II.A.

In the next three sections, three different variants of Geometrical Diversification (steps4 and5

of the algorithm 1) are presented. All this variants correspond to three different sets of hyperplane

S. For the sake of brevity, the indexk of the direction will be omitted in those three subsections.

1The evaluation of the objective function can also be performed with thel-1 norm to simplify the design. The simulation

results, not shown in this paper, show only a very slight degradation of performance
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B. Hypercube Intersection and Selection method (HIS)

Geometrically, the setξn = {±1}n includes the vertices of the unit hypercube of dimension

n. The basic idea of this method is to determine the intersection points between△ and the

NbH = 2n faces of the unit hypercube. The setS is thus defined as:

SH = {H(i, s), s = {−1, 1}, i = {1..n}} (8)

where

H(i, s) = {z ∈ R
n|z(i) = s} (9)

Let us analyze the intersection between a given line△ and the hyperplaneH(i, s). The

problem is simply to obtainγs,i expressed in the form:

x0(i) + γs,iv(i) = s (10)

Assumingv(i) 6= 0, equation (10) has a unique solution given byγs,i = s−x0(i)
v(i) . The generated

intersection point between△ and the hyperplaneH(i, s) is then

cs,i = γs,iv + x0 (11)

Since only the projection̄cs,i of cs,i over ξn is required, explicit computation ofcs,i is not

mandatory. In fact, thejth coordinate of̄cs,i is equal to

c̄s,i(j) = sign((s − x0(i))v(j) + x0(j)v(i)) × sign(v(i)), j = 1, .., n. (12)

wheresign(x) returns 1 ifx > 0, returns−1 if x < 0 and returns0 otherwise.

If the jth coordinate of̄cs,i(j) = 0 equals zero, than̄cs,i(j) is set to−sign(x0(i)) if j = i, and

set tosign(x0(j)) otherwise. This additional rule allows to obtain a solutioneven if v(i) = 0.

In the following, we neglect the hardware complexity of thesign processing in (12). The

direct computation of̄cs,i requires then2 multiplications and2 additions for each coordinate, i.e.

2n multiplications and2n additions for itsn coordinates. SinceI containsNbH = 2n points,

the overall complexity of a direct computation for each direction is then4n2 multiplications and

4n2 additions. However, it is possible to factorize some computation to reduce the overall cost.

Let M = vxT
0 , then:

(M − MT )(i, j) = x0(j)v(i) − x0(i)v(j) (13)
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and thus,

c̄s,i(j) = sign((M − MT )(i, j) + s × v(j))sign(v(i)) (14)

The computation ofM − MT requiresn2 multiplications andn2 additions2. OnceM − MT is

determined, then according to (14) the computation ofc̄s,i requires just a single addition per

coordinate, thus a total ofn additions per points and2n2 additions for theNbH = 2n points of

I.

C. Basis Intersection and Selection (BIS)

This variant is the same as proposed by P. Spasojevic in [13].In this method, the setSB of

hyperplanes contains theNbB = n hyperplanes defined by:

SB = {H(i, 0), i = {1..n}} (15)

whereH(i, 0) is defined as in (9).

In this variant, the method to compute thec̄0,i is the same as for the HIS method. By

construction, one can note that theith coordinate of̄c0,i is equal to zero. The value of̄c0,i(i) is

then determined by−sign(x0(i)) as defined above.

One can note, that, sinces = 0, the complexity to determine the set of intersecting point is

limited to the computation ofM − MT , i.e. n2 additions andn2 multiplications to compute the

NbB = n points of the setI.

D. Orthogonal Intersection and Selection method (OIS)

As mentioned before, the objective of the diversification process is to find points closed to the

line △. In the two previous approaches, the hyperplaneH(i, s) and the line△ are not necessarily

orthogonal. As a result, the intersecting pointcs,i can be very far from the setξn. Ideally, the

hyperplanes should be orthogonal to the line△ but this leads to a complex solution. The OIS

method is an attempt to obtain a set of hyperplanes “roughly”orthogonal to the line△. To do

so, the set of hyperplanesSO is no more constant but constructed “on the fly”. For a given

2Using the fact that(M − MT ) = −(M − MT )T , the number of addition can be further reduced ton2/2
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directionk, SO is defined as the set of hyperplanes orthogonal to the quantized vectorn = Q(v)

of v and containing at least one point ofξn. The quantization functionQ(v) is defined as:

Q(v)(j) = sign(v(j)) if |v(j)| > max(v)/4, 0 otherwise (16)

wheremax(v) is the maximum module of the coordinates of the vectorv3.

The coordinates ofn can take their values in{-1, 0, 1}. Let l be the number of non zero

coordinates ofn. It is easy to show that the setSO contains exactly theNbO = l+1 hyperplanes

defined as:

Ot = {z ∈ R
n|zT n = t, t = {−l,−l + 2, ..., l − 2, l}} (17)

For example, letn = 4 and n = (0, 1,−1, 1)T , i.e. l = 3, if x ∈ ξ4 then xT n can only takes

the value−3, −1, 1, and3 (x = (1,−1, 1,−1)T givesxT n = −3 and so on...).

The intersection between△ and the hyperplaneOt is then given by:

(x0 + γtv)T n = t (18)

The value ofγt is then equal to:

γt =
t − x0

T n
vT n

(19)

and the intersection pointct is then:

ct =

(

t − x0
T n

vT n

)

v + x0. (20)

The returned point̄ct = sign(ct) can be defined by the same process as for the HIS and the

BIS algorithms. In that case, it should be noted that for the OIS method, the simplification of

equation (14) is no more feasible. The direct computationalcomplexity, for a given dimension

is then2n × NbO multiplications and2n × NbO to generateI.

However, it is possible to dramatically simplify this complexity using the fact that all the

hyperplansOt are parallel. In fact, according to (20), fort = −l,−l + 2, ..., l − 2:

w = ct+2 − ct =

(

2

vT n

)

v (21)

Thus, in the OIS case, it is more efficient to determine explicitly a first point (sayc−l for

example), and then find recursively the others using equation (21). Let us describe a possible

sequence of computation and their precise associated costs.

3max(v)/4 is easy to compute and this value gives good simulation result
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1) d = vT n: n additions4;

2) e = xT
0 n: n additions;

3) f = 1/d: one division;

4) γ−l = f(l − e): one addition and one multiplication;

5) c−l = γ−lv + x0: n multiplications andn additions.

6) w = 2fv: n multiplications.

7) determine the lastl points using (21):l × n additions.

Thus, neglecting the step 4, the global complexity is then reduced to((3 + l)n = (2 +NbO)n

additions,2n multiplications and one division.

To illustrate the differences between the three variants ofthe algorithm, Fig. 1, 2 and 3 show

all the hyperplanes, intersection pointsc and their corresponding feasible points{c̄} in the case

of a n = 2-dimensional problem withD = 1.

IV. SIMULATION RESULTS

In this section the performance of the proposed algorithm isevaluated with computer simu-

lations. We have compared the performance of the GDGI (threevariants: HIS, BIS and OIS)

detector with those of other decoders including SD, SDP and MMSE.

A. Computer simulation

First, we consider a multiple-input / multiple-output (MIMO) system withN transmitter and

M receiver antennas in a Rayleigh flat fading channel. The elements of the channel matrix

H̃ ∈ C
M×N are drawn from an independent and identically distributed zero-mean, unit variance

Gaussian distribution. The received vectorỹ ∈ C
M was constructed as

ỹ = H̃x̃ + b̃ (22)

where each entry of̃x was taken from{±1 ± j}N (4-QAM), the elements of the noise vector

b̃ ∈ C
M are drawn from an i.i.d zero-mean Gaussian distribution. Treating real and imaginary

part of (22) separately, the system model can be rewritten asy = Hx + b, with the real-valued

4Sincen containsl non null values, the number of additions can be reduced tol.
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channel matrix

H =





ℜ(H̃) −ℑ(H̃)

ℑ(H̃) ℜ(H̃)



 ∈ R
m×n

and the real-valued vectors

x =





ℜ(x̃)

ℑ(x̃)



 , y =





ℜ(ỹ)

ℑ(ỹ)



 , b =





ℜ(b̃)

ℑ(b̃)





whereℜ(x̃) and ℑ(x̃) denote the real and imaginary part ofx̃ , respectively. By defining

m = 2M and n = 2N the dimension of the real channel matrix is given bym × n. Likewise

the dimension of the vectors are given byy ∈ R
m, b ∈ R

m andx ∈ ξn ≡ {±1}n.

The simulations have been done for the values ofn = [10, 40, 60] andm = n.

Figure 5 shows the results of simulation whenn = 10. It can be seen that the SD and the HIS

variant detector (whenD = 2 andC = 4) outperform the SDP detector as well as the MMSE

detector. In fact, the required SNR for a BER of10−4 is 2.5 dB lower than that of the SDP

detector.

Let’s simulate high-dimensional systemsn = 40 or n = 60. This is a very hard instance

of the detection problem and is therefore a good benchmark for comparing the performance

of various detection algorithms. The performance of the proposed GDGI detector variants are

shown in Figure 6 and Figure 7. Forn = 40, the results given in Figure 6 indicate that the three

GDGI variants (HIS, BIS, and OIS), whenD = 4 andC = 4 have almost identical performance

and obtain about0.6 dB performance gain compared with SDP scheme at BER10−4. Figure 7

illustrates the result in the case ofn = 60. The OIS and the HIS schemes are 0.3 dB from the

optimal SD and 0.6 dB better than the SDP detector (given in [25]) at BER10−4.

In second experiment, we present the performance of HIS, SD (sphere decoding) and other

known detection algorithms for a downlink MC-CDMA system Figure 8. The channel coefficients

are modified for each transmitted symbol. All users have the same power. We assume the power

control being perfect,i.e., at each timei, the received symbol power is equal to the transmitted

symbol power. Each user symbol is spread overLc = Np = 16, whereNp is the number of

sub-carriers andLc is the length of spreading code, with a real Walsh-Hadamard sequence.

Figure 8 shows the performance of the HIS variant in a Rayleighfading channel for a fully

loaded downlink MC-CDMA system withNu = 16 users and employing an uncoded 4-QAM

modulation. It can be seen that the performance of the proposed detector is excellent, using
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D = 4 and C = 4. In fact, the required SNR for a BER of10−3 is 0.8 dB lower than that of

the SDP detector.

B. GDGI Parameters Impact for the OIS version forn = 10

The impact of the parametersD andC on the performance is studied. Table I shows the SNR

difference between the optimal decoder (the SD) and the OIS variant for a BER=10−4 whenD

and C both vary from1 to 4. It can be observed that the performance increases both withC

andD as expected.

V. COMPUTATIONAL COMPLEXITY AND IMPLEMENTATION STRUCTURE

In this section, the computational complexity model of the GDGI is proposed according to

the parametersD, C and the type of variants (HIS, BIS and OIS). Based on [21]), we assign a

relative cost for each operation: 1 for one addition, 5 for one square, 10 for one multiplication,

and 40 for one division. We assume the channel matrix to be static over a sufficiently long period

of time, so that the computational complexity of any preprocessing step (SVD decomposition

and pseudo-inverse of the channel matrix) is negligible. The different levels of parallelism of

GDGI algorithm are also described.

In the following, the variableNb indicate the cardinality of setS: Nb = NbH = 2n in case

of HIS method,Nb = NbB = n in case of BIS method, andNb = NbO = l + 1 in case of OIS

method.

A. Computational Complexity

We concentrate here on processing part of GDGI detector. To find the pointx0, the received

signal vector will be multiplied by the pseudo-inverse of channel matrix. The resulting complexity

for a single transmitted vector is hence:n2 additions andn2 multiplications. For theD studied

directions, the diversification comes down to finding all intersection pointsIk, k = 1..D. The

total complexity of this phase would be:

• Dn2 + NbDn additions andDn2 multiplications for HIS method.

• Dn2 additions andDn2 multiplications for BIS method.
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• n(2+Nb)D additions,2nD multiplications, andD divisions for OIS method, whereNb =

l̄ + 1, where l̄ indicate the average number of non zero coordinate ofnk = Q(vk), see the

equation (16).

Given all subsetIk ⊂ {±1}n, k = 1..D, the evaluation step needs(n+n2Nb)D additions and

nNbD squares. For each studied directionvk, the GDGI detctor sort in ascending order and select

C best points having the minimum objective function values, then for theD direction we need

CDNb comparison (i.e. additions). The final step of the presenteddetector is the intensification

step overCD starting points. The computational complexity of the abovestep is hence:2CDθn2

additions andCDθn2 squares.

For a givenD andC, the computational complexity of the GDGI detector is almost constant,

over the entire SNR range, compared to that of the sphere decoding5.

The impact of the parametersD andC on the complexity of the OIS variant is shown in Table

II for n = 10. The association of table II and I allows to tune optimally the tradeoff between

performance and complexity of the GDGI decoder.

B. Implementation architecture

The proposed detector is more simple than existing iterative suboptimal detectors, and offer

improved performance and is not too complex to be feasible for hardware implementation.

Moreover, compared to other high performance algorithms such as SDP approach and SD, the

level of complexity is much simpler. The SDP requires expensive hardware iterative structure

[19], and the SD algorithm requires a large amount of calculation in the preprocessing and

searching stages [20]. The advantage of our approach is thatits complexity is fixed and easily

adjustable, at the expense of a possible performance penalty.

Among various sub-optimal detectors, the GDGI detector is particularly attractive for a hard-

ware implementation due to its inherent parallel structure. In fact, theD directions can be

processed in parallel, and in each direction each point of the list Ik can be determined and

evaluated in parallel. Then, onceξstart is obtained, the coordinate descent-1 algorithm can also

be performed in parallel.

5for example, forn = 60, l̄ varies from 17.5 (SNR = 0 dB) downto 14.9 (SNR = 12 dB) andθ varies from 5.3 (SNR = 0

dB) downto 3.8 (SNR = 12 dB)
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The architecture proposed for implementing the GDGI detector is seen in Figure 4. The Pre-

Processing step is used to compute the SVD decomposition of the channel matrix as well as

calculate ZF solutionx0. This step generates theD smallest right singular vectors{vk}
D
k=1 and

the pseudo-inverse matrixH+, and it can be implemented with a digital signal processing (DSP)

device instead of systolic FPGA architecture. For a given received symbol(y), x0 = H+y is

first computed. The geometrical intersection (GI) module creates the subsetIk ⊂ {±1}n using

the ZF solution and thekth smallest right singular vector. Evaluation (EVA) module computes

the value of the objective function,f(x) = ‖y−Hx‖2
2, wherex belongs to the subsetIk. SORT

module sorts the results of the EVA module in ascending orderand selectC best points having

the minimum distances. Finally, intensification (INT) module performs the coordinate descent-1

algorithm over theC selected feasible points.

VI. CONCLUSION

A new method is presented to solve the ML problem in a quasi optimal way for the case of a

constellationξn = {±1}n and a square channel matrixH of dimensionn. This method, named

GDGI, is based on common tools in the domain of heuristic techniques: diversification, using

geometrical properties of the channel matrixH and intensification using the greedy algorithm.

The two new variants of the Geometrical Diversification presented are: HIS and OIS. All variants,

HIS, BIS and OIS exhibit almost optimal performance. For example, for a square matrixH of

size 60 × 60, GDGI performs only0.6 dB lower than the optimal SD solution at the BER of

10−5. Compare to the BIS, the HIS has a higher complexity and similarperformance. In the

case whereξ = {±1}, BIS is preferable to HIS.

The superiority of BIS over HIS is still an open issue in the cases whereξ = {−3,−1, 1, 3}

(MAQ-16 constellation) and for higher order constellations. In fact, the HIS method can be

naturally extended to this type of constellations, while itis not the case for the BIS. Compare to

the BIS, the new OIS method offers significant reduction of computation, since the number

of multiplications of the geometrical diversification partis reduced from2n2 to 2n while

number of additions remain the same. Moreover, the cardinality of the subsetI is significantly

reduced (by a factor greater than 3 forn = 60). It is also interesting to note that the trade-off

performance/complexity can be finely tuned by setting theC and D parameters. In addition

to this, the GDGI is very well suited for hardware implementation: its complexity is almost
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constant for all SNR and many level of parallelism can be exploited (the numberD of direction,

the computation of the intersection, the evaluation of the point in (I), the realization of the GI)

to pipeline the architecture and obtain very efficient, highthroughput decoding receiver.

As a future work, we propose to carry on some theoretical studies to understand and optimize

the diversification process in a better way and to generalizeit in the case of higher dimensional

constellations. We also plan to develop the GDGI algorithm on a FPGA architecture.
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TABLE I

SNR DIFFERENCE BETWEEN THEGDGI DETECTOR BASED ONOIS METHOD AND OPTIMAL DETECTOR (SD) AT

BER= 10−4, l = 4, AND n = 10.

H
H

H
H

H
HH

C

D
1 2 3 4

1 8.45 3.35 2.97 2.80

2 6.22 1.68 1.22 1.10

3 5.37 1.35 0.67 0.59

4 5.3 1.16 0.63 0.58

TABLE II

PROCESSING PHASE COST(K ILO-UNITARY-OPERATION ) OF THE GDGI DETECTOR BASED ONOIS METHOD, l = 4, θ = 3,

AND n = 10.

H
H

H
H

H
HH

C

D
1 2 3 4

1 4.28 7.47 10.66 13.84

2 6.38 11.67 16.66 22.24

3 8.48 15.87 23.26 30.64

4 10.58 20.07 29.56 39.04

Fig. 1. Hypercube intersection method: One to one mapping from{cs,i}s=−1,1
i=1..n to {c̄s,i}s=−1,1

i=1..n for n = 2.
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Fig. 2. Basis intersection method : One to one mapping from{x0, c1
k, .., cn

k} to {sign(x0), c̄1
k, .., c̄n

k} for n = 2. Each intersection

point ci
k is at equal distance from its two neighboring candidate points.c̄i

k is chosen to be one of these two candidate points

that is on the opposite side of theith coordinate hyper-plane with respect tosign(x0).

Fig. 3. Orthogonal intersection method: One to one mapping from{ct}t=−l,−l+2,...,l−2,l to {c̄t}t=−l,−l+2,...,l−2,l for n = 2.

Fig. 4. Block diagram of the GDGI detector.
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Fig. 5. BER versus SNR forn = 10, comparison of HIS variant, sphere decoding, SDP and MMSE detectors.
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Fig. 6. BER versus SNR forn = 40, comparison of GDGI variants (HIS, OIS and BIS) detectors and SDP detector [25].
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Fig. 7. Performance of GDGI (OIS and HIS) detectors, SDP [25], SD(sphere decoding) [25],n = 60, and perfect channel

estimation.
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Fig. 8. Comparison between SD detection, HIS variant and others sub-optimum detectors in case of MC-CDMA system

(Nu = Np = Lc = 16)
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