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Abstract

The ML detection used in many communication applicatiorduces down to solving an integer
least-squares problem, which minimizes an objective fonctlf the matrix is not orthogonal, this
problem is NP-hard. An exhaustive search over all feasibletisns is thus only applicable when the
dimension of the problem is low. In the literature, there awe main available classes of methods.
The first class comprises of exact methods whose complexitie roughly cubic in the dimension
for medium to high SNR. However, the computational compjerémains exponential for low SNR.
Moreover, these algorithms are iterative and thus, not waitled for hardware implementation. The
second class is based on a relaxation strategy approachevdovwthe BER performance of this class
is still not optimum. In this paper, we use a third class of hmds for the resolution of this problem.
Our approach, named Geometrical Diversification and Grdathnsification (GDGI) associates two
complementary heuristic optimization methodisténsificationand diversification). Three versions of
the GDGI are presented and compared. The inherent paraileitere of the GDGI provide a very
suitable real-time hardware implementation. The GDGIvedl@a near optimal performance, with cubic

complexity and it's almost independent of the SNR.
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Index Terms

Maximum Likelihood Detection, MIMO systems, MC-CDMA syats, Singular Value Decompo-

sition, Greedy algorithm.

. INTRODUCTION

The main challenge of the receiver design for wireless comeoation systems lies in the non-
orthogonality of the transmission channel. In order to setugh reliability of data transmission
special attention has to be paid to the design of the rece@ptimum maximum likelihood
detection requires the determination of the signal pgiof the transmitter vector signal s¢t

that minimizes the objective functiofi(.):

X = argmin f(X) Q)

XeEn
The function f(.) is the Euclidean distance between the received signal vgcfg € R™)
and the lattice poinHx (H € R™*™).

F(x) = lly = Hx|[3 (2)

In the following, m = n by default. We assume that the information sigrak uniformly
distributed over a discrete and finite gét= {4-1}" (the set of constellation points). The channel
matrix H is considered as constant over a block.afonsecutive time intervals and it is assumed
to be perfectly known at the receiver end.

An exhaustive search over all feasible solutiaffs can be used to solve the maximum
likelihood problems (1). However, the computational coexgly is exponential in the number of
possible constellation points, thus making this alteweatinsuitable for practical purposes when
aiming at high spectral efficiencies. Nevertheless, for [meblem dimension with low-order
modulation schemes such as BPSK an@AM, exhaustive search methods have been shown
to be feasible and efficient [14].

For higher problem dimension, the maximum likelihood detecproblem (1) can be resolved
using a ‘smart efficient search method like the universal lattice decgdaigorithm [1], also
called sphere decoding (SD). The SD search algorithm isdbasehe Finke-Pohst to enumerate

all the lattice points inside an hyper-sphere centered atotiigin [3]. The interest in lattice
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decoding has steadily increased in the last few years. Otteeahost efficient sphere decoding
algorithms that has been proposed in the literature is tperigthm of Viterbo and Boutros (VB)
in [4]. However, an important drawback in the VB algorithnmdaother similar SD algorithms,
is the choice of the initial value of the search radius. On baad, if this radius is chosen
too small, there may be no solution for the algorithm (no pamside the hyper-sphere). On
the other hand, if the radius is chosen too large, the numbéheo checked points may be
very high and the algorithm will be ineffective. The averagemplexity of the SD algorithm
is shown to be polynomial time (almost cubic) over a certainges of rate, Signal to Noise
Ratio (SNR) and dimension, while the worst-case complexitsgtils exponential [12]. From a
hardware implementation point of view, the SD algorithmser#s three weaknesses: first, it
is iterative in nature and cannot be easily pipelined. Sécds average complexity increases
for low SNR. Third, the number of branches evaluated in a SOralgn has a large variation.
Nevertheless, several implementations of SD has beentegpior the literature [20], [22], [23].
They show that, despite of these limitations, the SD deceodearbe implemented in effective
way.

The second class of methods is based on a relaxation strapgggach. It consists of finding
the optimal solution off (.) on a convex set that includgs-1}" and then projecting the returned
solution on the discret sef+1}". This class encompasses linear and non linear receivers.
Linear receiver, like zeros forcing (ZF) and minimum meagnaed error (MMSE) [2] are
computationally simple to implement, however, their perfance can be far from the ML
performance. Therefore, there has been a considerabieshia non linear ML approximations,
which offer a better performance. The non linear receivezsiacessive interference cancellation
(SIC), parallel interference cancellation (PIC) [10], [1Djdathe recently proposed semidefinite
programming (SDP) receiver [5], [6], [7]. Simulation retsuhdicate that the bit error rate (BER)
performance of the SDP detector is better than those of quueuion linear receivers. However,
SDP is still non optimum and it complexity is high. From a haade perspective, SDP lacks of
parallelism because of its iterative structure.

In this paper, we use a third class of methods for the reswiudf the ML detection problem.
Following the pioneering work of Hui and Rasmussen [15], wasitder the ML detection
problem as an operation research problem and use a heumstlood to solve it. A heuristic

technique seeks for local optimal solutions at a reasonedweputational cost, but does not
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guarantee their optimality. In practice, it should be engmed that many modern heuristic
techniques do give high-quality solutions [9] in the gehease. This is also true for the ML
detection problem as shown in [15]. The originality of theegented work is to combine the
existing methods for deriving a new heuristic method havjogsi-optimal performance, limited
complexity and good properties for hardware implementatiow complexity and highly parallel

structure), even for the problem of high dimensien= 60 has been successfully tested).

The proposed detector, called Geometrical Diversificasiod Greedy Intensification (GDGI),
combines two complementary approaches to approximateptvaal solutionx. First, using the
geometrical properties of the problem, we generate a syhsetC £" of pointsx “close” to the
received poiny according to the objective functiofy.) (diversification approach Then, starting
from each point of,..., we perform the simple bit-flipping greedy algorithm to irope the
initial starting solution ifitensification approach The best point obtained is then the decoded
point. The main idea of this method isddrit put all your eggs in one basketThe GDGI
detector applies a geometrical approach to implement tfi@ede complementary techniques
and in general starts its search from a simple solution goxea linear detector (ZF or MMSE).
The reduced subsét.;.,. C £") creation by the diversification scheme, is inspired fromvéiey
original works of H. Artes in [8] and P. Spasojevic in [13].[B], the authors discuss the effects
of bad (‘poorly conditioned) channel realizations on the sub-optimum detectors’ grenince
and then propose a new detection method called the Sphejecton Algorithm (SPA). This
strategy uses the solution given by ZF as the initial sofuiod extends the search of other best
solutions into the direction of the dominant axis noise. 18][ P. Spasojevic has proposed a
very efficient geometrical method for generating a subsgtoaits close to the optimal solution.
In this paper, we use this method (calleslowest descent methpdand two new variants to
obtain the subsef,;... C £".

The GDGI detector is not, by far, just a generalization of geemetrical approach proposed
in [13] for the diversification step, rather it is a new stggtaising an intensification phase to
explore promised regions. The proposed algorithm setsriti@lisolution to the ZF solution
and then searches for candidates in the direction ofitemallest right singular vectors of the
channel matrixH. After the choice of the” best initial candidates in each direction, the GDGI
detector uses an intensification step to provide a quashapsolution for the ML problem.

The next section briefly reviews the state of the art in thestexg heuristic techniques and
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describes and analyze the greedy algorithm used in thesifitation step. Subsequently, in
Section lll, three efficient geometric diversification tajues are described for different variants
of the GDGI detector. Several simulation results and coatper analysis are provided in Section
IV which demonstrate the efficiency of the GDGI detector asuasgoptimal ML detector. In
Section V, the computational complexity of the GDGI algamitis explained and an architecture
for the efficient hardware implementation is described. paper concludes with a summary in
Section VI.

II. THE INTENSIFICATION STEP

As shown in [15], and [17] heuristic methods such as locatcdgasimulated annealing, and
tabu search can lead to excellent decoding performanceeTdgorithms have a long iterative
structure and are not suited for implementation. In thisepape focus our attention on the
greedy algorithm (or bit-flipping algorithm) that can be iBagmplemented in the hardware.
The greedy algorithm is first described and its complexityevsluated, then its behavior is

analyzed and a diversification method to escape local miminsupresented.

A. Bit-flipping greedy algorithm : (decent-1 algorithm)

As presented in [15], [16], and [24] the principle of the fhippping greedy algorithm is very
simple. Starting from a current solutioq) the set of its neighbors is generated by flipping the
sign of one of its coordinates (i.e. the s€{x) of all the points of¢™ at a Hamming distance
1 of x). The objective functiory (x) is evaluated among all the points &f(x) and the point’
leading to the minimum objective function ovéf(x) is then used as the new current solution
if f(X') < f(x). The process is iterated starting from the new current soslu¢. When a local
optimum is found (i.e. no better solution is found), the aidpon stops and outputs the local
minimum ¢(X).

The algorithm appears to be computationally expensive,tditbe number of repeated cost
function calculations required, but this may be largelyusztl through simplification. Let be

the current solution and lé2 =y — Hx. Equation (2) is then equivalent to:

709 = 190 = 3 00y
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where

n—

Qi) = y(i) = _H(@.j)x(j), i = 1.n 3)

1
=0

<

The first evaluation of the objective functiof{.) requiresn? additions k(i) is equal to+1
or —1) andn squares.
If the k" coordinate is flipped (i.ex'(k) = x(k) + z, with z = —2x(k)), thenQ’ =y — HX'

is equal to:

(i) = Q@) + 2H(i, k)i = 1.n &)

Since(? is known from the previous cost calculation, the compuratd 2’ requires onlyn
additions. The final computation ¢fY'|| requiresn additions anch squares.

The cost to evaluate the points of the setV(x) is then2n? additions and»? squares per
step. Assuming that the cost function of the initial pointkisown, the global complexity of
the descent-1 algorithm is equal #6n? additions and¥n? squares wherd is the number of

iterations required before reaching a local optimum.

B. Analysis and performance of the intensification step

Let {X;},=1.x be theK local optimums of¢” according to the greedy algorithm. The inten-
sification method partitions the set of feasible solutighgnto K adjacent subsetd; defined

as:
II; = {x € £"[p(x) = X;} ®)

wherep(x) is the intensification step applied on the feasible prj@ndx;, i = 1..K, is the result
of the application of the intensification step starting fréme current solutiorx. I1; represents
a subset where any solution belonging to it can be descerdéx tunique local optimurg; if
I1; (X; € 1I;. By convention, the subsél; leads to achieve the optimal ML solutioine, X = Xy,
or, equivalentlyvx € II;, ¢(X) = X.

The number of local minimunk’ can be large. For example, far= 16, K is superior to
6 with a probability of 60%. The average value &f increases when the dimensianof the
problem becomes larger. The number of local minimiinis large enough to cause a significant

degradation of the average performance of the coordinaeedé 1 algorithm.

DRAFT March 20, 2008



C. Needs of diversification method

To prevent from getting stuck in local optima, which is a coamproblem for direct search
methods and most of the nonlinear optimization algorithseseral rounds of optimization can
be made with different initial guesses and picking up thet b®sal optimum as a global sub-

optimum. Leté,,,,, be a subset of”, the decoding algorithm becomes:

%= argmin [y — Hp(X)[3 (6)

W(X),Xegstart

One can note that the decoded potrgequals the optimal poirt if, and only if, at least one
point of £,,,,+ belongs toll;, i.e. Egqre NI # 0.
Now the question arises how to generategadd’ starting set{.;.... The diversification step

should verify the following properties:

1) Cardinality of{.,,; is small,i.e., a reduced number of intensification processes.

2) Esare NI # O with a very high probability (according to the requiremehthee applica-
tion).

3) Small computational complexity.

The next section describes an efficient method to constiuct, based on the geometrical

properties of thed matrix.

[11. THE DIVERSIFICATION STEP

The problem of determining agbod' starting seté,;.,: (in the sense defined above) is a
hard problem. The choice is normally guided by the intuiteord the ftrial and error” method
because very few theories are available. A clear tradeanff lme observed between small and
large neighborhoods. A large number of poin€ip,.; would seem promising but, as a drawback,
it will be time-consuming.

The simplest solution to generaig,.. is to pick up random points. In that case, the generation
process of,,,: IS very simple but in return, the cardinality 6f;,,; will become an important
factor to fulfill £+ NI # () with a high probability. The complexity of the algorithm isen
dominated by the intensification stage. An other soluticio idefine a fixed set of point "spread”

among the sef”. Several results using this approach with an extended BCH ampresented
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in [18]. This type of approach is rather efficient but limitexlsome values of. Moreover, the
cardinality of &+ remains still important.

In this section, we propose to generalize the geometricdhodepresented in [13] and use
it in order to generate a subsgt,,.. We present the principle of the geometrical approach and

we give three variants to create starting subset.

A. Principle of the geometrical approach

In general, the channel matrix is modeled byranx n random matrixH mentioned in the
introduction (see Eq.1). The singular value decompositibtihe matrixH is H = UXV?, where
the diagonal matrix. contains the singular valugs\; }}_,, supposed to be indexed in increasing
orderi.e. A\; < ... < \,. The unitary matrice¥) andV contain, respectively, the leftu,}7,
and right{v,}7_, singular vectors of the matrikd as columns. The geometrical approach can
be described as follows: let, = H'y, whereH™ = (HH?)~'H” is the pseudo-inverse d¢f
(HT stands for the transpose matrix ld), andx, be the solution given by the ZF detector.

For all pointsx € £", the vectorx — x, can be expressed in thebase ax—Xo = > _;_, ayVy
where{ay }}_, are real coefficients. The value of the objective functioalapointsx € ¢" can

be expressed as:

F¥) = [Hx=xo)l;3

= (X —X%)TVE2VT(x — xo)
D (7)
k=1

Let us defined, = {z € R"/z = Xo+ Vi, v € R} the line inR" defined by the poink, and
the vectorv,. Since)\; < ... < \,, we can note that the increase in the objective funcfion is
much slower along the firdD lines{A, ..., Ap} than the lastn — D) lines. The diversification
step consists of choosing the feasible points in tieifity” of the lines A4, ..., /Ap in order to
create the starting seét;.:.

The method to creatg;,,; is based on several steps. Let us first consider thedinerhe first
step consists of computing the intersections of the inewith a given set ofNb hyperplanes
S = {H,,p = 1..Nb} in order to obtain a list ofVb points. These points], p = 1..Nb are then
projected on¢™ to generate the list, = {C;,p = 1..Nb}. All these points are then evaluated
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with the objective functionf(.)! and just the best’ points are selected to generate a suljset
The same process is iterated on the fitstines A, Ay, ..., Ap to generate o, = UP_, &
Then the intensification process is performed on each poéiat; ;. The summary of the GDGI

method is given in the algorithm 1.

Algorithm 1 GDGIH,y, S, C, D)
Pre-process 1: Extract thB smallest right singular vectors of the channel mattx:.e,

{Vihils-
Pre-process 2: Computet = (HH”)~'H”

1: Calculatex, = H™y.

2: Create an empty list,;.¢, initialize & = 1.
repeat
3: Generate the liné\, defined byx, and vectorv,..
4: Calculate the intersection of the linkg, and all hyperplanes of to generatec}, p =
{1,.., Nb}.
5: Projectc;, p = {1,..,m} on£" to generatez;.
6: Evaluate the objective functiofi(x), V x € Zj.
7: Createg;, by selectingC' distinct points which minimize the objective function @p.
8: Updateliars (§start = Estart UER), k =k + 1.
until k=D +1
9: Starting from the set.;.,:, perform the intensification process as described in theestion
ILA.

In the next three sections, three different variants of Getaigal Diversification (step$ and5
of the algorithm 1) are presented. All this variants coroegpto three different sets of hyperplane

S. For the sake of brevity, the indéxof the direction will be omitted in those three subsections.

1The evaluation of the objective function can also be performed withi-theorm to simplify the design. The simulation

results, not shown in this paper, show only a very slight degradatiorrdimance
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B. Hypercube Intersection and Selection method (HIS)

Geometrically, the sef” = {+1}" includes the vertices of the unit hypercube of dimension
n. The basic idea of this method is to determine the interseqgbioints betweem\ and the

Nby, = 2n faces of the unit hypercube. The setis thus defined as:

Sy ={H(i,s),s={-1,1}, i = {1.n}} (8)

where

H(i,s) = {z € R"|z(i) = s} (9)

Let us analyze the intersection between a given Ukeand the hyperplané{(i,s). The

problem is simply to obtain** expressed in the form:
Xo(1) + (i) = s (10)

Assumingv(i) # 0, equation (10) has a unique solution given Yy = %j)(” The generated

intersection point betweeA and the hyperplang((i, s) is then
¢ = %V 4 X (11)

Since only the projectiort® of ¢*' over " is required, explicit computation of** is not

mandatory. In fact, thg*" coordinate ofc*? is equal to
¢ (5) = sign((s — o(1))V(j) + Xo(J)V(i)) x sign(v(i)),j = 1, .., n. (12)

wheresign(z) returns 1 ifz > 0, returns—1 if x < 0 and returng) otherwise.

If the j** coordinate of*i(;j) = 0 equals zero, that®(j) is set to—sign(Xe(i)) if j =i, and
set tosign(Xo(j)) otherwise. This additional rule allows to obtain a solutewen ifv(i) = 0.

In the following, we neglect the hardware complexity of thign processing in (12). The
direct computation o€** requires ther2 multiplications and2 additions for each coordinate, i.e.
2n multiplications and2n additions for itsn. coordinates. Sinc& containsNb;; = 2n points,
the overall complexity of a direct computation for each dii@n is therdn? multiplications and
4n? additions. However, it is possible to factorize some comatiom to reduce the overall cost.

Let M = vx{, then:
(M = MT)(i, j) = Xo(j)V(i) — Xo(i)V(5) (13)
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and thus,

c(j) = sign(M = MT)(i, 5) + s x v(j))sign(v(i)) (14)

The computation oM — M7 requiresrn? multiplications andn? additiong. OnceM — M7 is
determined, then according to (14) the computatiorc’dfrequires just a single addition per
coordinate, thus a total of additions per points an#h? additions for theNb;, = 2n points of
Z.

C. Basis Intersection and Selection (BIS)

This variant is the same as proposed by P. Spasojevic in [A3his method, the sef; of

hyperplanes contains th€b; = n hyperplanes defined by:
S = {H(i,0),i = {1..n}} (15)

whereH(i,0) is defined as in (9).

In this variant, the method to compute tlté’ is the same as for the HIS method. By
construction, one can note that tHe coordinate ofc’? is equal to zero. The value @f(i) is
then determined by-sign(Xy(i)) as defined above.

One can note, that, since= 0, the complexity to determine the set of intersecting paosnt i
limited to the computation oM — M7, i.e. n? additions andh? multiplications to compute the

Nbg = n points of the sef.

D. Orthogonal Intersection and Selection method (OIS)

As mentioned before, the objective of the diversificationgasss is to find points closed to the
line A. In the two previous approaches, the hyperplafié s) and the lineA are not necessarily
orthogonal. As a result, the intersecting poifit can be very far from the sét'. Ideally, the
hyperplanes should be orthogonal to the lifiebut this leads to a complex solution. The OIS
method is an attempt to obtain a set of hyperplanes “rougbittiogonal to the line\. To do

so, the set of hyperplane$, is no more constant but constructed “on the fly”. For a given

2Using the fact thatM — M7) = —(M — MT)7, the number of addition can be further reducechfy2
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directionk, Sy is defined as the set of hyperplanes orthogonal to the qeahtiectom = Q(v)

of v and containing at least one point &f. The quantization functio®(v) is defined as:
QV)(y) = sign(v(j)) if |v(j)| > max(v)/4, 0 otherwise (16)

wheremaz(v) is the maximum module of the coordinates of the veefor
The coordinates ofi can take their values if-1, 0, 1}. Let [ be the number of non zero
coordinates ofi. It is easy to show that the s contains exactly thevb, = [+ 1 hyperplanes
defined as:
O'={zeR"Zn=tt={-1,-1+2,..,1—-2,1}} (17)

For example, let, = 4 andn = (0,1, —1, 1)T, i.e.l =3, if x € & thenx’n can only takes
the value—3, —1, 1, and3 (x = (1,—1,1, —1)T givesx’n = —3 and so on...).
The intersection betweef\ and the hyperplan®® is then given by:

(X0 +~'v)'n=t (18)
The value ofy' is then equal to:
. t—Xo'n
T (19)
and the intersection poirt is then:
t—X%o'n
¢ = (ﬁ) V + Xo. (20)

The returned point’ = sign(c') can be defined by the same process as for the HIS and the
BIS algorithms. In that case, it should be noted that for th8 @lethod, the simplification of
equation (14) is no more feasible. The direct computati@oahplexity, for a given dimension
is then2n x Nbo multiplications an®n x Nby to generatel.

However, it is possible to dramatically simplify this corapity using the fact that all the

hyperplans®! are parallel. In fact, according to (20), foe= —1, -1 +2,...,1 — 2:

w:ct“—ct:(Q)v (21)

vin
Thus, in the OIS case, it is more efficient to determine ekpli@ first point (sayc™' for
example), and then find recursively the others using equdfd). Let us describe a possible

sequence of computation and their precise associated costs

3mazx(v)/4 is easy to compute and this value gives good simulation result
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1) d =v'n: n addition$;

2) e =xin: n additions;

3) f =1/d: one division;

4) v~! = f(I — e): one addition and one multiplication;

5) ¢! = v v + X,: n multiplications and» additions.

6) w = 2fv: n multiplications.

7) determine the lastpoints using (21)7 x n additions.

Thus, neglecting the step 4, the global complexity is theluced to((3+1)n = (2+ Nbp)n
additions,2n multiplications and one division.

To illustrate the differences between the three varianthefalgorithm, Fig. 1, 2 and 3 show
all the hyperplanes, intersection poimt&nd their corresponding feasible poidts; in the case

of an = 2-dimensional problem withD = 1.

V. SIMULATION RESULTS

In this section the performance of the proposed algorithmveduated with computer simu-
lations. We have compared the performance of the GDGI (theemnts: HIS, BIS and OIS)
detector with those of other decoders including SD, SDP aiMiSH.

A. Computer simulation

First, we consider a multiple-input / multiple-output (M) system with/N transmitter and
M receiver antennas in a Rayleigh flat fading channel. The eltsmef the channel matrix
H e CM*N are drawn from an independent and identically distributee-amean, unit variance

Gaussian distribution. The received vecjoe C* was constructed as

y=Hx+b (22)
where each entry ok was taken from{£1 + j}¥ (4-QAM), the elements of the noise vector
b € CM are drawn from an i.i.d zero-mean Gaussian distributioeafing real and imaginary
part of (22) separately, the system model can be rewritten-asix + b, with the real-valued

4Sincen containsl! non null values, the number of additions can be reduced to
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channel matrix

H — §R(If|) —S(~I:|) J—
S(H) R(H)
and the real-valued vectors
o | ROV RO || RG)
3(%) 3(Y) S(b)

where R(X) and (x) denote the real and imaginary part ©f, respectively. By defining
m = 2M andn = 2N the dimension of the real channel matrix is givensbyx n. Likewise
the dimension of the vectors are given ¥ R™, b € R™ andx € £" = {£1}".

The simulations have been done for the values ef [10, 40, 60] andm = n.

Figure 5 shows the results of simulation wher-= 10. It can be seen that the SD and the HIS
variant detector (whe® = 2 and C' = 4) outperform the SDP detector as well as the MMSE
detector. In fact, the required SNR for a BER 1f * is 2.5 dB lower than that of the SDP
detector.

Let’s simulate high-dimensional systems= 40 or n = 60. This is a very hard instance
of the detection problem and is therefore a good benchmarlcdmparing the performance
of various detection algorithms. The performance of theppsed GDGI detector variants are
shown in Figure 6 and Figure 7. Far= 40, the results given in Figure 6 indicate that the three
GDGl variants (HIS, BIS, and OIS), whell = 4 andC' = 4 have almost identical performance
and obtain abou.6 dB performance gain compared with SDP scheme at BER. Figure 7
illustrates the result in the case of= 60. The OIS and the HIS schemes are 0.3 dB from the
optimal SD and 0.6 dB better than the SDP detector (given %) [&t BER 10~

In second experiment, we present the performance of HIS,spbefe decoding) and other
known detection algorithms for a downlink MC-CDMA system Hig&. The channel coefficients
are modified for each transmitted symbol. All users have #@mespower. We assume the power
control being perfect;.e., at each time, the received symbol power is equal to the transmitted
symbol power. Each user symbol is spread oker= N, = 16, where N, is the number of
sub-carriers and.. is the length of spreading code, with a real Walsh-Hadamaglience.
Figure 8 shows the performance of the HIS variant in a Raylégling channel for a fully
loaded downlink MC-CDMA system withV, = 16 users and employing an uncoded 4-QAM

modulation. It can be seen that the performance of the pespaoetector is excellent, using
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D = 4 andC = 4. In fact, the required SNR for a BER ab—? is 0.8 dB lower than that of
the SDP detector.

B. GDGI Parameters Impact for the OIS version for= 10

The impact of the parametefs andC' on the performance is studied. Table | shows the SNR
difference between the optimal decoder (the SD) and the @ttt for a BER*0-* when D
and C both vary from1 to 4. It can be observed that the performance increases both@vith

and D as expected.

V. COMPUTATIONAL COMPLEXITY AND IMPLEMENTATION STRUCTURE

In this section, the computational complexity model of thB@ is proposed according to
the parameter®, C and the type of variants (HIS, BIS and OIS). Based on [21]), v&gasa
relative cost for each operation: 1 for one addition, 5 foe aquare, 10 for one multiplication,
and 40 for one division. We assume the channel matrix to lie steer a sufficiently long period
of time, so that the computational complexity of any prepssing step (SVD decomposition
and pseudo-inverse of the channel matrix) is negligiblee @Hferent levels of parallelism of
GDGI algorithm are also described.

In the following, the variableVb indicate the cardinality of se¥: Nb = Nb;, = 2n in case
of HIS method,Nb = Nbz = n in case of BIS method, an¥b = Nbp = [+ 1 in case of OIS

method.

A. Computational Complexity

We concentrate here on processing part of GDGI detector.ntbtfie pointx,, the received
signal vector will be multiplied by the pseudo-inverse cachel matrix. The resulting complexity
for a single transmitted vector is henee: additions and:? multiplications. For theD studied
directions, the diversification comes down to finding alensection points,, £k = 1..D. The

total complexity of this phase would be:

« Dn?+ NbDn additions andDn? multiplications for HIS method.

« Dn? additions andDn? multiplications for BIS method.
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. n(2+ Nb)D additions,2nD multiplications, andD divisions for OIS method, wher&'b =
[+ 1, wherel indicate the average number of non zero coordinate,of Q(v;), see the
equation (16).

Given all subsef;, C {+1}", k = 1..D, the evaluation step nee@is+n>Nb)D additions and
nINbD squares. For each studied directignthe GDGI detctor sort in ascending order and select
C best points having the minimum objective function valuégntfor theD direction we need
CDNb comparison (i.e. additions). The final step of the presededdctor is the intensification
step overC D starting points. The computational complexity of the abstep is hence2C Ddn?
additions and” D6n? squares.

For a givenD andC, the computational complexity of the GDGI detector is albmmstant,
over the entire SNR range, compared to that of the spheredihgfo

The impact of the parametefs andC' on the complexity of the OIS variant is shown in Table
Il for n = 10. The association of table 1l and | allows to tune optimallg tnadeoff between

performance and complexity of the GDGI decoder.

B. Implementation architecture

The proposed detector is more simple than existing itexagivboptimal detectors, and offer
improved performance and is not too complex to be feasibiehBrdware implementation.
Moreover, compared to other high performance algorithnth s SDP approach and SD, the
level of complexity is much simpler. The SDP requires expenbkardware iterative structure
[19], and the SD algorithm requires a large amount of catmrain the preprocessing and
searching stages [20]. The advantage of our approach istshedbmplexity is fixed and easily
adjustable, at the expense of a possible performance penalt

Among various sub-optimal detectors, the GDGI detectoraidiqularly attractive for a hard-
ware implementation due to its inherent parallel structunefact, the D directions can be
processed in parallel, and in each direction each point efligt Z, can be determined and
evaluated in parallel. Then, onégg,,; is obtained, the coordinate descent-1 algorithm can also

be performed in parallel.

Sfor example, forn = 60, [ varies from 17.5 (SNR = 0 dB) downto 14.9 (SNR = 12 dB) #hdaries from 5.3 (SNR = 0
dB) downto 3.8 (SNR = 12 dB)
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The architecture proposed for implementing the GDGI deteist seen in Figure 4. The Pre-
Processing step is used to compute the SVD decompositioheottiannel matrix as well as
calculate ZF solutiorx,. This step generates tHe smallest right singular vectorss, }2_, and
the pseudo-inverse matrkt™, and it can be implemented with a digital signal processibgR)
device instead of systolic FPGA architecture. For a givezeiked symbol(y), xo = HTy is
first computed. The geometrical intersection (Gl) moduleates the subséf, ¢ {+1}" using
the ZF solution and thé'* smallest right singular vector. Evaluation (EVA) modulemqutes
the value of the objective functiorf,(x) = ||y — Hx||3, wherex belongs to the subs&},. SORT
module sorts the results of the EVA module in ascending oader select' best points having
the minimum distances. Finally, intensification (INT) méelperforms the coordinate descednt-

algorithm over theC' selected feasible points.

VI. CONCLUSION

A new method is presented to solve the ML problem in a quasimgbptway for the case of a
constellations” = {£+1}™ and a square channel mattik of dimensionn. This method, named
GDGI, is based on common tools in the domain of heuristic rigples: diversification, using
geometrical properties of the channel matrixand intensification using the greedy algorithm.
The two new variants of the Geometrical Diversification preed are: HIS and OIS. All variants,
HIS, BIS and OIS exhibit almost optimal performance. For epl@nfor a square matrixl of
size 60 x 60, GDGI performs only0.6 dB lower than the optimal SD solution at the BER of
10~°. Compare to the BIS, the HIS has a higher complexity and sinpiéaformance. In the
case wherg = {+£1}, BIS is preferable to HIS.

The superiority of BIS over HIS is still an open issue in theesawheref = {—3, -1, 1, 3}
(MAQ-16 constellation) and for higher order constellatonn fact, the HIS method can be
naturally extended to this type of constellations, whilesihot the case for the BIS. Compare to
the BIS, the new OIS method offers significant reduction of potation, since the number
of multiplications of the geometrical diversification past reduced from2n? to 2n while
number of additions remain the same. Moreover, the caitinail the subsefZ is significantly
reduced (by a factor greater than 3 for= 60). It is also interesting to note that the trade-off
performance/complexity can be finely tuned by setting ¢he@nd D parameters. In addition

to this, the GDGI is very well suited for hardware implemeiota its complexity is almost
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constant for all SNR and many level of parallelism can be @tgd (the numbeD of direction,
the computation of the intersection, the evaluation of tbmtin (/), the realization of the GI)
to pipeline the architecture and obtain very efficient, higfoughput decoding receiver.

As a future work, we propose to carry on some theoreticalissuih understand and optimize
the diversification process in a better way and to generdlirethe case of higher dimensional
constellations. We also plan to develop the GDGI algorithmad=PGA architecture.
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TABLE |
SNRDIFFERENCE BETWEEN THEGDGI DETECTOR BASED ONOIS METHOD AND OPTIMAL DETECTOR(SD) AT

BER=10"*,1 =4, AND n = 10.

D
1 2 3 4
C
1 8.45| 3.35| 297 | 2.80
2 6.22 | 1.68 | 1.22 | 1.10
3 537 | 1.35| 0.67 | 0.59
4 53 | 1.16 | 0.63 | 0.58

TABLE Il

PROCESSING PHASE COSTKILO-UNITARY-OPERATION) OF THEGDGI DETECTOR BASED ONOIS METHOD, [ = 4, 6 = 3,

AND n = 10.
D
1 2 3 4
C
1 428 | 7.47 | 10.66 | 13.84
2 6.38 | 11.67 | 16.66 | 22.24
3 8.48 | 15.87 | 23.26 | 30.64
4 10.58 | 20.07 | 29.56 | 39.04

Fig. 1. Hypercube intersection method: One to one mapping ffot}:= 1! to {e>1}:= 1! for n = 2.

i=1l..n i=1l..n
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Fig. 2. Basis intersection method : One to one mapping ffggcy, .., ci'} to {sign(Xo), <y, .., Cp } for n = 2. Each intersection
point ¢., is at equal distance from its two neighboring candidate poiitss chosen to be one of these two candidate points

that is on the opposite side of thi&" coordinate hyper-plane with respectdiyn(Xo).

uonn[os 153q JIPS

_____________________________________________________________________________________

Fig. 4. Block diagram of the GDGI detector.
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Fig. 5. BER versus SNR for = 10, comparison of HIS variant, sphere decoding, SDP and MMSE desector
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Fig. 6. BER versus SNR fon = 40, comparison of GDGI variants (HIS, OIS and BIS) detectors and S&Ectbr [25].
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Fig. 7. Performance of GDGI (OIS and HIS) detectors, SDP [25],(S§ihere decoding) [25)z = 60, and perfect channel

estimation.
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Fig. 8. Comparison between SD detection, HIS variant and others girhton detectors in case of MC-CDMA system
(Ny =N, = L. = 16)
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